메뉴 닫기

전원설계 토폴로지

2023년 11월 18일, 저는 유튜버 루드비크 전원설계연구소의 중출력 전원 설계 교육을 받게 되었습니다.

교육을 받으시던중, 루드비크 님은 최근 기분좋은 소식이 있다고, 그 이유는 유튜브 구독자가 1만명이 되었다고 합니다.
축하드립니다! 루드비크님!

Cafe : https://cafe.naver.com/ludvik
Youtube : https://www.youtube.com/@LUDVIKPOWER
전원설계 연구소 : https://ludvik-lab.co.kr/

이 중 교육을 받은 전원설계의 토폴로지를 공유 드리고자 포스팅을 해 봅니다.

전원설계 중 설계에 고려해야될 사항이 비절연/절연 형태이며, 출력하고자 하는 에너지 크기 입니다.

먼저 여러가지 형태의 전원 설계 회로를 보실까요?

Type of ConverterBuckBoostBuck BoostSepicFlyback2 Switch ForwardActive Clamp ForwardHalf BridgePush PullFull BridgePhase Shift
Circuit Configuration
Buck Circuit
Buck Circuit
Boost Circuit
Boost Circuit
Buck Boost Circuit
Buck Boost Circuit
Sepic Circuit
Sepic Circuit
Flyback Circuit
Flyback Circuit
2 Switch Forward Circuit
2 Switch Forward Circuit
Active Clamp Forward Circuit
Active Clamp Forward Circuit
Half Bridge Circuit
Half Bridge Circuit
Push Pull Circuit
Push Pull Circuit
Full Bridg Circuit
Full Bridg Circuit
Phase Shift Circuit
Phase Shift Circuit
Voltage and Current Waveforms
Buck Waveforms
Buck Waveforms
Boost Waveforms
Boost Waveforms
Buck Boost Waveforms
Buck Boost Waveforms
Sepic Waveforms
Sepic Waveforms
Flyback Waveforms
Flyback Waveforms
2 Switch Forward Waveforms
2 Switch Forward Waveforms
Active Clamp Forward Waveforms
Active Clamp Forward Waveforms
Half Bridge Waveforms
Half Bridge Waveforms
Push Pull Waveforms
Push Pull Waveforms
Full Bridg Waveforms
Full Bridg Waveforms
Phase Shift Waveforms
Phase Shift Waveforms
Ideal Transfer Function \frac{V_{OUT}}{V_{IN}} = (\frac{t_{ON}}{T_P}) = D \frac{V_{OUT}}{V_{IN}} = (\frac{T_P}{T_P-t_{ON}}) = \frac{1}{(1-D)}  \frac{V_{OUT}}{V_{IN}} = -( \frac{t_{on}}{T_P - t_{ON}} ) = - ( \frac{D}{1-D} ) \frac{V_{OUT}}{V_{IN}} = ( \frac{D}{1-D})  \frac{V_{OUT}}{V_{IN}} = D \times \sqrt{  \frac{T_P \times V_{OUT}}{2 \times I_{OUT} \times L_P} }  \frac{V_{OUT}}{V_{IN}} = ( \frac{N_S}{N_P} ) \times (  \frac{t_{ON}}{T_P} ) = ( \frac{N_S}{N_P} ) \times D \frac{V_{OUT}}{V_{IN}} = ( \frac{N_S}{N_P}) \times ( \frac{t_{ON}}{T_P}) = ( \frac{N_S}{N_P} ) \times D \frac{V_{OUT}}{V_{IN}} = ( \frac{N_S}{N_P}) \times ( \frac{t_{ON}}{T_P} ) = ( \frac{N_S}{N_P} ) \times D  \frac{V_{OUT}}{V_{IN}} = 2 \times ( \frac{N_S}{N_P} ) \times \frac{t_{ON}}{T_P} = 2 \times( \frac{N_S}{N_P} ) \times D  \frac{V_{OUT}}{V_{IN}} = 2 \times ( \frac{N_S}{N_P} ) \times ( \frac{t_{ON}}{T_P} ) = 2 \times ( \frac{N_S}{N_P} ) \times D  \frac{V_{OUT}}{V_{IN}} = 2 \times ( \frac{N_S}{N_P} ) \times ( \frac{t_{ON}}{T_P}) = 2 \times ( \frac {N_S}{N_P} \times D)
Drain Current I_{Q1} (max) = I_{OUT}  I_{Q1}(max) = I_{OUT} \times ( \frac{1}{1-D} )  I_{Q1} (max) = I_{OUT} \times ( \frac{1}{1-D} )   I_{Q1} (max) = I_{OUT} \times ( \frac{D}{1-D} )  I_{Q1} (max) = ( \frac{V_{IN} \times t_{ON}}{L_P} ) I_{Q1} (max) = ( \frac{N_S}{N_P} \times I_{OUT} )  I_{Q1} (max) = (  \frac{N_S}{N_P}  ) \times I_{OUT}  I_{Q1} (max) = ( \frac{N_S}{N_P} ) \times I_{OUT}  I_{Q1} (max) = ( \frac{N_S}{N_P} ) \times I_{OUT}  I_{Q1} (max) = ( \frac{N_S}{N_P} ) \times I_{OUT}  I_{Q1} (max) = \frac{N_S}{N_P} \times I_{OUT}
Drain Voltage VDS = V_{IN}  VDS = V_{OUT}  VDS = V_{IN} - V_{OUT}   VDS = V_{IN} + V_{OUT}  VDS = V_{IN} + V_{OUT} \times ( \frac{N_P}{N_S} )  VDS = V_{IN}  VDS = V_{IN} \times ( \frac{1}{1-D})  VDS = V_{IN}  VDS = 2 \times V_{IN}  VDS = V_{IN}  VDS = V_{IN}
Diode Current I_{D1} = I_{OUT} \times (1-D)  I_{D1} = I_{OUT}  I_{D1} = I_{OUT}  I_{D1} = I_{OUT}  I_{D1} = I_{OUT}  I_{D1} = I_{OUT} \times D  I_{D1} = I_{OUT} \times D  I_{D1} = (I_{OUT} \times D) + \frac{I_{OUT}}{2}  \times (1-2 \times D) I_{D1} = (I_{OUT} \times D) + \frac{I_{OUT}}{2} \times (1-2 \times D)  I_{D1} = (I_{OUT} \times D) + \frac{I_{OUT}}{2} \times (1 - 2 \times D)  I_{D1} = \frac{1}{2} \times I_{OUT}
Diode Reverse Voltage V_{D1} = V_{IN}  V_{D1} = V_{OUT}  V_{D1} = V_{IN} - V_{OUT}  V_{D1} = V_{OUT} + V_{IN}  V_{D1} = V_{OUT} + V_{IN} \times ( \frac{N_S}{N_P} )  V_{D1} = V_{OUT} + V_{IN} \times ( \frac{N_S}{N_P})  V_{D1} = V_{OUT} + V_{IN} \times ( \frac{N_S}{N_P} ) \times ( \frac{1}{1-D} )  V_{D1} = \frac{V_{IN}}{2} \times ( \frac{N_S}{N_P} )  V_{D1} = V_{IN} \times ( \frac{N_S}{N_P} )  V_{D1} = V_{IN} \times ( \frac{N_S}{N_P} )  V_{D1} = V_{IN} \times ( \frac{N_S}{N_P} )

루드비크님은 아래의 내용으로 파워설계 방향을 설명해 주셨습니다.

그럼 이젠 토폴로지별 회로 분석을 한번 해 봐야 겠군요.

댓글 남기기