
Version: 4.16

TouchGFX Documentation
Welcome to the official documentation of TouchGFX!

If you are new to this documentation and/or TouchGFX, we recommend that you read on to get an
overview of what this documentation has to offer. The table of contents in the sidebar should let you
easily access the documentation for your topic of interest. You can also use the search function in the
top right corner.

About this documentation
The main documentation for the site is organized into the following sections:

Introduction - read surface-level information on TouchGFX and installation guide.
Basic Concepts - introduction to key graphics concepts.
Development - how to develop a TouchGFX application including, structure, workflow and tools.
Tutorials - a collection of TouchGFX tutorials.

Target User
The TouchGFX documentation is targeting software developers with a basic skill-set within C++ and
embedded GUI development on STM32. Newcomers to Embedded GUI Development are supported in
the section Basic Concepts, while step by step guides and tutorials support everyone towards a
smooth learning in TouchGFX development as well.

We would really like to improve this documentation in any way possible. If you don’t understand
something, or cannot find what you are looking for in the docs, help us make the documentation better
by letting us know in the forum!

Version: 4.16

What is TouchGFX?
TouchGFX is delivered as one X-Cube package the X-Cube-TouchGFX.

With this you have all you need to do a full implementation of your GUI application for STM32 based
hardware. TouchGFX consists of three main parts - two tools and one framework.

TouchGFX Designer: An easy-to-use GUI builder in TouchGFX that lets you create the visual
appearance of your TouchGFX application.
TouchGFX Generator: A CubeMX plugin where the user can configure and generate a custom
TouchGFX Abstraction Layer (AL) for their STM32-based hardware.
TouchGFX Engine: The TouchGFX C++ framework that drives the UI application. Handles screen
updates, user events and timing. The advanced TouchGFX technology is optimized for STM32
microcontrollers, giving you maximum performance with minimum CPU load and memory usage.

Version: 4.16

Installation
TouchGFX is distributed as an X-CUBE-TOUCHGFX zip file which has the following components inside:

TouchGFX Designer - Build a UI through a Windows-based GUI Builder
TouchGFX Generator - Create a custom TouchGFX HAL through CubeMX
TouchGFX Engine - The TouchGFX C++ framework that drives the UI application

Prototyping on STM32 Evaluation kits
If your intention is to simply try TouchGFX Designer and perhaps do some prototyping on STM32
Evaluation kits, refer to the section Installing TouchGFX Designer.

Installing TouchGFX Designer
Download X-CUBE-TOUCHGFX from the ST.com official website to anywhere on your hard drive and
extract it.

Downloading X-CUBE-TOUCHGFX from st.com

Inside the extracted folder, you will find the TouchGFX .msi installer in the following path:

Double-clicking the .msi file will bring up the installer. Follow the instructions to complete the
installation process.

Utilities\PC_Software\TouchGFXDesigner

Installing TouchGFX Designer

TIP

You need the following tools to be able to flash your board directly from within TouchGFX Designer:
STM32CubeProgrammer
STM32 ST-LINK Utility

Installing STM32CubeProgrammer
After downloading STM32CubeProgrammer from STM32CubeProgrammer download location,
uncompress the downloaded .zip file and launch the .exe installer file. Then Follow the
instructions to complete the installation process.

Installing TouchGFX Designer

CAUTION

In order for the TouchGFX Designer and Makefiles to be able to use STM32CubeProgrammer for flashing
target hardware it must be installed at the default install location: C:\Program
Files\STMicroelectronics\STM32Cube\STM32CubeProgrammer

Installing STM32 ST-LINK Utility
After downloading STM32 ST-LINK Utility from STM32 ST-LINK utility location, simply open the
downloaded .exe file and follow the instructions to complete the installation process.

Installing STM32 ST-LINK Utility

CAUTION

In order for the TouchGFX Designer and Makefiles to be able to use STM32 ST-LINK Utility for flashing target
hardware it must be installed at the default install location: C:\Program Files
(x86)\STMicroelectronics\STM32 ST-LINK Utility

Custom Product Development
If your intention is to run TouchGFX applications on either ST display kits or your own custom STM32
based platform, refer to the section Installing TouchGFX Generator in CubeMX.

Installing TouchGFX Generator in CubeMX
To install X-CUBE-TOUCHGFX through CubeMX, start by selecting "Manage Embedded Software
Packages" under "Help" (or press ALT + U).

Help -> Manage embedded software packages

Click "Refresh" to get an updated list of available packages.

Refresh to update available packages

Go to the "STMicroelectronics" tab. Scroll until you find "X-CUBE-TOUCHGFX" and expand the node.
Check the checkbox for "TouchGFX Generator" and click "Install Now". This will download the package
and bring up the license agreement.

Finding the TouchGFX Generator package

Read and accept the license agreement and click "Finish" to install TouchGFX Generator inside
CubeMX.

Accepting the license agreement

The X-CUBE-TOUCHGFX distribution is now unpacked to the following path:

Location of the X-CUBE-TOUCHGFX package

C:\Users\<user>\STM32Cube\Repository\Packs\STMicroelectronics\X-CUBE-TOUCHGFX\4.13.0

Version: 4.16

Getting Started
A prerequisite to get started using TouchGFX is to install the newest version of TouchGFX, which is
described in the Installation section.

After this is done you are ready to begin your very first TouchGFX project. It is highly recommended
that you read some key sections of this documentation to get familiar with the very basic of TouchGFX
concepts. The most essential section is the Development Introduction which will give you an
introduction to the software and hardware components needed for a complete TouchGFX project and
the activities and tools involved in creating them. It also describes how to get started doing a fast
prototype using premade components.

TouchGFX Designer Quick Start
Application Template + UI Template
If you are eager to start experimenting with TouchGFX, trying out an example UI project and maybe
running it on an STM32 Evaluation Kit, you can go ahead and start the TouchGFX Designer.

Quickly creating a project with an application template and a UI template

On the startup window in TouchGFX Designer you can select from a wide range of UI examples to start
from. You can even combine this with board specific code for a range of STM32 Evaluation Kits, so you
can try out the example on the embedded hardware right away.

If you do not have an STM32 Evaluation Kit, you can simply run the TouchGFX application on your PC.
If you want to be guided through the first steps, you can have a look at the Tutorials chapter. Here you
will be shown how to get a project up and running, ending with doing a rather complex UI application.

Online Applications
Aside from being able to combine an application template with a UI template, TouchGFX Designer also
includes some out of the box demos for specific STM32 Evaluation Kits. These are located under the
Online Applications tab.

Quickly creating a project with an online application

What's Next
At this point it is recommended that you browse through the documentation and read the chapters
that look relevant to you. This will give you an overview of the documentation, so you know where to
look for more information, and it will introduce you to key TouchGFX concepts.

The main chapters are:

Basic Concepts: This chapter serves as background knowledge for the rest of the documentation. It
introduces all the key graphics concepts that will be referenced later on. Depending on your current
knowledge and which TouchGFX development activities you will do, you might want to skip some
sections and consult them later if some details are unclear.
Development: This chapter is the main chapter of the documentation. It explains the structure of a
TouchGFX Project, the workflow and the tools involved in the entire project development cycle.
Each step in the workflow has it own section and is described in details. Here you will find all you
need to know on how to make your application run on your hardware and how you will do UI
development, including descriptions of all features and components in the TouchGFX Framework.

Version: 4.16

Embedded Graphics
The term embedded graphics means many things.

First of, the word embedded means different things to different people. To some an embedded system
means a very dependable old 8 bit microcontroller, with no operating system, and virtually no RAM,
ROM or GPIO. To others it might mean a modern day smart phone with gigabytes of everything.

Secondly, the word graphics has many interpretations. To some it means drawing your own pixels in
your favourite painting program. To others again it means the 3D rendering software running on your
gaming console.

To TouchGFX, embedded systems mean any system based on an STM32 microcontroller. And graphics
means interactive applications with a user interface running at 60 frames per second.

The four main parts
In order to do graphics applications on such platforms, we consider four main components directly
involved. Naturally many more components might be present in an embedded system, but these are
less related to the display of graphics.

MCU, RAM, Flash and display

In short, TouchGFX, using the MCU, creates and updates an image in RAM, by assembling parts from
flash. The assembled image is transferred to the display. This process is repeated as often as possible
and needed.

MCU
The MCU is doing all the heavy lifting in this process. It reads images in flash and writes them to RAM.
It calculates the resulting colors when merging a semi-transparent red text onto an image and saves
these to RAM. It renders and stores all the pixels of a circle to RAM. It transfers the image from RAM to
the display.

Flash CPU RAM

...

...

MCU

The MCU provides the CPU, internal flash, internal RAM and much more

STM32 MCUs have specific capabilities, like LTDC, Chrom-ART, Chrom-GRC, ..., that help in the
realization of graphics.

FURTHER READING

See the guide for selecting the right MCU and the board bring up guide for setting up the MCU.

RAM
RAM is where the resulting calculated image (framebuffer) is stored. The RAM is being read and
written by the MCU when updating the graphics. And read again when the resulting image is
transferred to the display.

In many cases the resulting image is stored in RAM internal to the MCU. In cases where it is not
feasible to have the resulting image in internal RAM, external RAM can be added to the setup.

FURTHER READING

See the guide for selecting the right RAM and the board bring up guide for setting up the RAM.

Flash
Flash is where all static data is placed. Images, fonts and texts. The flash is read by the MCU and the
contents written to or combined with the RAM.

Most often an external flash is added to the setup, as the internal flash is seldomly large enough to
hold all graphics assets. For very simple applications the internal flash is enough.

Ideally the flash is memory mapped, such that pixels can be read directly from the flash and written to
RAM. Otherwise, when the flash is not memory mapped, the contents of the flash can be transferred to
RAM and then read from there instead.

FURTHER READING

See the guide for selecting the right flash and the board bring up guide for setting up the flash.

Display
The display is where the image is actually displayed to the eyes of a person.

The calculated image (framebuffer) stored in RAM is sent by the MCU to the display at regular
intervals.

FURTHER READING

See the guide for selecting the right display and the board bring up guide for setting up the display.

FURTHER READING

See Hardware selection for details on the possible hardware choices.
See Board Bring Up for details on setting up the board and components.

Version: 4.16

Color Formats
Colors are what is seen on the pixels of the display. These colors come from values stored in a
framebuffer. Traditionally in graphics systems, there is a limited amount of possible colors that can be
represented, used and displayed. This applies also to TouchGFX and TouchGFX applications.

The number of possible pixel colors of an application has an impact on many parts of an application.
From the visual appearance of what is seen on the display to the memory consumption imposed by
the framebuffer and the overall performance. This section will explain colors in TouchGFX in more
detail and describe the color formats available in TouchGFX and highlight pros and cons.

Color
A color in TouchGFX is a triplet of red, green and blue components, known as an RGB color. Each
component of the color ranges from 0 to 255. 0 means that the component is off, and 255 means that
the component is at its maximum.

A completely black color is represented by the RGB color (0,0,0) and a completely white is
(255,255,255). Bright green is (0,255,0), a semi bright red (128,0,0), a darkish purple (64,0,64) and so
on.

rgb(0,0,0) rgb(255,255,255) rgb(0,255,0) rgb(128,0,0) rgb(64,0,64)

Some RGB colors

Grayscale
For grayscale applications all colors are gray, ranging from black to white and therefore the
representation is the gray intensity instead of the RGB value. One can think of grayscale colors as RGB
colors where R = G = B.

Opacity
In some circumstances we might consider colors to have a component describing the opacity of the
color. The opacity ranges from 0 to 255, as the other components of the color. Colors with opacity are
referred to as RGBA colors. The A stands for alpha, which is the classic name used for the opacity level.

A completely opaque black color here is (0,0,0,255), a somewhat transparent red is (255,0,0,128), and
so on.

rgba(0,0,0,255) rgba(255,0,0,128) rgba(0,255,0,64)

Some RGBA colors atop white and grey

When a color is not completely opaque it needs to be mixed together with the color already present.
This mixing of colors is known as alpha blending.

Color depth
Color depth is the number of bits used to describe each color as stored in the framebuffer. We denote
this number the bits per pixel, or in short bpp.

The more bits we use, the more colors we can describe.

A much used color depth is 24 bpp. As each bit can be either on or off, this implies that 224 =
16777216 different colors can be represented.

Another, a little less used, color depth is 1 bpp. This color depth applies to black and white
applications, and implies that only 21 = 2 different colors can be represented.

TouchGFX has built-in support for the following color depths:

32 bpp - 16777216 colors and corresponding opacity values
24 bpp - 16777216 colors
16 bpp - 65536 colors
6 bpp - 32 colors
4 bpp - 16 grayscale colors
2 bpp - 4 grayscale colors
1 bpp - 2 grayscale colors

A note on color component ranges. When working with less than 24 bpp color depth, each of the red,
green and blue components does not directly range from 0 to 255. Instead such a component, say red
in 16 bpp, ranges 0 to 31. We will think of the value 31 as representing the most red we can represent
in 16 bpp, i.e. 255 in 24 bpp. One way of thinking of this is that colors of 16 bpp depth can only
represent a subset of the colors possible in 24 bpp.

Formats
Having determined the amount of bits needed to represent colors, we investigate the contents of the
bits in more detail. A color will have some bits describing the red component, some the green and
some the blue.

Pixel color formats
Dependent on the color depth of the application, some particular color formats will be available.

RGB888

In TouchGFX, a color of 24 bpp color depth will have the color format RGB888. This means that 8 bits
are used for each of the color components red, green and blue.

Representing such a color, say bright purple rgb(255,0,255), in code is done by assembling the
components into a color value

RGB565

For 16 bpp colors, TouchGFX uses the color format RGB565. That is 5 bits for red, 6 bits for green, 5
bits for blue. As we have 5 bits for red, fully lit is 31, and a bright red in code is

RGBx2222, xRGB2222, BGRx2222, xBGR2222

For 6 bpp colors, TouchGFX supports 4 different formats, RGBx2222, xRGB2222, BGRx2222, xBGR222. 6
bit colors are stored as bytes and this is the reason for having the x in the forementioned formats. The
color is padded with 2 bits, to fit into a byte. The reason for having both RGB and BGR is that some
displays need this and we do not want to convert pixels before sending them to the display.
Representing a bright yellow in RGBx2222 in code is

GRAY4, GRAY2, BW

uint32_t brightPurpleRGB888 = 255 << 16 | 0 << 8 | 255 << 0;

uint16_t brightPurpleRGB565 = 31 << 11 | 0 << 5 | 0 << 0;

uint8_t brightYellowRGBx2222 = 3 << 6 | 3 << 4 | 0 << 2;

For each of the grayscale color depths TouchGFX supports one corresponding color format. For 4 bpp
the color format is denoted GRAY4, for 2 bpp it is GRAY2 and for 1 bpp it is denoted BW for black and
white. In 4 bpp a completely white color is

TouchGFX includes a helper function that will return the correct representation of a color in the correct
color format.

Image formats
Images are an important part of most UI applications and images are filled with colors. In TouchGFX
images are stored in memory and are filled with colors of a specific format. In many cases images are
using one of the supported pixel color formats, but other image formats are also available. A pixel in
an image of a particular image color format will be converted into the appropriate pixel format before
being drawn

Image Color format Description

ARGB8888 32 bits, 8 bits per component

L8_ARGB8888 8 bits indexed format, ARGB8888 palette

RGB888 24 bits, 8 bits per component.

L8_RGB888 8 bits indexed format, RGB888 palette

RGB666 24 bits, 6 bits per component

RGB565 16 bits, 5 bits red, 6 bits green, 5 bits blue

L8_RGB565 8 bits indexed format, RGB565 palette

ARGB2222 8 bits, 2 bits per component

ABGR2222 8 bits, 2 bits per component

RGBA2222 8 bits, 2 bits per component

uint8_t whiteGRAY4 = 15;

#include <touchgfx/Color.hpp>
...
aColor = Color::getColorFrom24BitRGB(255,0,128);

Image Color format Description

BGRA2222 8 bits, 2 bits per component

GRAY4 4 bits grayscale

GRAY2 2 bits grayscale

BW 1 bit grayscale

BW_RLE 1 bit grayscale run-length encoded

Some of these image formats, the L8 ones, are representing the image in question by a lookup table
of colors (known as a CLUT) and indices into this table. The maximum number of possible colors in
such an L8 image is 28-1 = 255. The L8 formats take up less space than their non-L8 counterparts, as
an example a 100x100 image with 200 different colors, takes up 10010032 bits = 40000 bytes when
stored in the ARGB8888 format, and only 1001008 bits + 200*32 bits = 10800 bytes when stored in the
L8_ARGB8888 format.

The image format BW_RLE stores the colors as consecutive runs of black and white instead of storing
single pixel colors. This can in many cases also be more space efficient.

The rest of the formats are the same as the pixel color formats above.

Text formats
Texts, or more accurately glyphs, are also stored in memory in a specific color format. The available
text color formats in TouchGFX are

Text Color format Description

A8 8 bits, opacity only

A4 4 bits, opacity only

A2 2 bits, opacity only

A1 1 bits, opacity only

Glyph formats are comparable to small images, where each color entry holds the level of opacity of
each pixel. This enables applying the actual color, the red, green and blue components, at a later time,
and enables drawing for instance the stored glyph 'A' in both a blue version and a red version.

The more bits used for each glyph the smoother and nicer it will typically appear.

Visual quality
When doing embedded graphics we want the highest visual quality, but at the same time we need to
look at the amount of memory consumed.

Therefore it is many times desirable to go for an RGB565 color format instead of the richer RGB888
and in general we should go for the color format that provides us the most visual quality, while
respecting our memory requirements.

Dithering
TouchGFX employs what is known as dithering to improve the visual quality of images when
representing these in different color formats.

Dithering is a well known technique for making images appear to have more colors than what is
actually present. This is done by adding a bit of noise to the colors of the image.

One example - when converting an RGB888 image to an RGB565 image, instead of just chopping of
the lower bits of each color component, the conversion process adds some noise to each of the
resulting colors, the result being that the converted image looks richer and similar to the RGB888
original.

Explaining by images instead of words, we have an original RGB888 image, and a number of converted
images. The converted images have the formats RGB565 with and without dithering, xRGB2222 with
and without dithering, GRAY4 with and without dithering.

Original RGB888 image

Converted RGB565 images with and without dithering

Converted xRGB2222 images with and without dithering

Converted GRAY4 images with and without dithering

As can be seen dithering improves the perceived quality of images quite a bit. When looking closely at
the RGB565 with and without dithering, it can be seen that the dithered version looks almost exactly
like the original whereas the undithered one has some areas where color banding is apparent. This
examplifies that in many cases 16 bit colors is more than enough to do great looking graphics.

When your graphics assets has big gradients, you might experience some color banding even in
dithered images. Here are two examples. A bluish gradient ranging from RGB888 (64,190,222) to black
and the converted RGB565 image with and without dithering.

Original RGB888 and converted RGB565 images with and without dithering

And another red gradient ranging from (255,0,0) to black.

Original RGB888 and converted RGB565 images with and without dithering

Looking closely, it can be seen that color banding is present in both the dithered and the undithered
RGB565 versions. The red image has the most noticeable bands.

Always pay close attention to your resulting images and color formats and if needed alter your original
images or choose another color format.

Performance
All the image formats discussed are optimized for "easiness" of drawing. This means that the images
can more or be less copied to the framebuffer without much conversion taking place.

This is intentional and is one of the reasons TouchGFX can achieve fluent graphics on microcontrollers.

When designing a UI with TouchGFX one uses .png images and at compile time each of these images
are converted into one of the efficient image formats detailed above. Read more on image formats
and performance.

Alpha blending
At runtime the copying of image data is done either by a regular CPU copy operation or by using
features of the MCU. If the image includes pixels that are not completely transparent or opaque, the
pixels need to be alpha blended onto the background. In some STM32 MCUs this blending is
supported by the hardware.

Other image formats
If you need to support other image formats at runtime, for example compressed image formats, such
as .jpg or .png you can utilize the support of TouchGFX for dynamic bitmaps.

FURTHER READING

Wikipedia article on color depth.

Version: 4.16

Framebuffer
A framebuffer is a piece of memory that is updated by the graphics engine to contain the next image
to be shown on the display.

The framebuffer is a contiguous part of RAM of a given size.

0 1 2 ... size-1

Framebuffer memory

A framebuffer has an associated width and height. Therefore we typically think of a framebuffer as
being a two dimensional part of memory, indexable by x, y coordinates.

0,0 1,0 2,0 w-1,0

0,1 1,1

0,2

... ...

... ... w-1,h-1

2D framebuffer memory

A framebuffer has an associated color format. Each entry in the framebuffer will be a color in this color
format. We will refer to each such entry in the framebuffer as a pixel.

We can update the color of a pixel at position x,y in the framebuffer by calculating the memory
address of the pixel within the framebuffer and updating the stored color.

Similarly we can obtain the color of a pixel in the framebuffer and use this in calculations. For instance
darkening the color of a pixel in the framebuffer (assuming we have a darken function available).

uint32_t pixelAddress = x + y * WIDTH;
framebuffer[pixelAddress] = newColor;

uint32_t pixelAddress = x + y * WIDTH;
framebuffer[pixelAddress] = darken(framebuffer[pixelAddress]);

Often the framebuffer memory is not written and read pixel by pixel as above, but by utilizing the
underlying hardware capabilities of the system, e.g. the Chrom-ART DMA.

Colors
In TouchGFX the pixel color format of a framebuffer can be either:

Grayscale 1, 2 or 4 bits per pixel (bpp) grayscale, or
High or true color 16, 24 or 32 bpp color

The more bits per pixels used the more distinct colors can be represented by the framebuffer,
moreover the more bits per pixels used the more memory will be consumed by the framebuffer.

Display
The contents of the framebuffer is what is ultimately transferred to and seen on the physical display.
Therefore it is very common to have the same pixel width and height of the framebuffer and the
display.

rgb(0,0,0) rgb(255,0,0) rgb(0,0,0) ...

rgb(0,255,0) rgb(0,0,0) ...

rgb(0,0,255) ...

...

24 bpp framebuffer contents and resulting display

FURTHER READING

See the section on display technologies to learn more on different display types.

Location of framebuffer
One oversimplified view of a microcontroller based graphics system is here.

Oversimplified view of graphics system

A framebuffer can be placed either internally in the MCU or in external RAM.

Possible locations of framebuffer

Each possible location has potential benefits and drawbacks.

Internal RAM
Placing the framebuffer in RAM internal to the MCU makes the read and write access to the
framebuffer as fast as possible. This means that your TouchGFX application will run as smooth as

possible. Conversely, internal RAM is a very scarce resource and one that is used by many parts of a
system, therefore occupying a large part of this with a framebuffer might be infeasible.

If feasible, having a framebuffer in internal RAM, could reduce the overall cost of the system as no
additional RAM is needed.

External RAM
If the system has external RAM, placing the framebuffer here is an alternative to placing it in internal
RAM. The read and write access to external RAM will typically be slower than to the internal RAM, but
the amount of external RAM will typically be much larger. Therefore this is sometimes the only viable
solution.

The MCU might have capabilities, like caching, that makes access to external RAM faster. See the
section on MCU for details.

Display with embedded RAM
Depending on the type of display in the system there might be memory embedded on the display.
This memory holds the contents of the "physical" pixels of the display. Having this pixel memory in the
display implies that the MCU can be idle while the display is still alive.

Placing a TouchGFX framebuffer in the RAM of the display is not possible, as the memory of the
display is not memory mapped and is not intended nor suitable for random pixel reads or writes.
Instead TouchGFX places the framebuffer in internal or external RAM and transfers this to the display
RAM when appropriate.

Amount of framebuffers
TouchGFX can use one, multiple, or less than one framebuffer in the application. The amount of
framebuffers might impact the visual appearance, performance and memory consumption of the
application.

One framebuffer
One framebuffer is enough to hold precisely all pixels that are to be transferred to the display. One
framebuffer (at least) is needed when the display has no display RAM on board. In this case one
framebuffer is ideal when the complexity of the displayed graphics does not induce any visual artifacts.

More than one framebuffer

In TouchGFX, having multiple framebuffers means having two framebuffers. One framebuffer is used
for writing the next resulting image, the other framebuffer is used for transferring to the display. This
implies that no visual artifacts, e.g. tearing, will appear.

Less than one framebuffer
Having less than one framebuffer in general implies that

less memory is consumed
more drawing operations will be performed
more transfers to display needed

In TouchGFX less than one framebuffer is denoted a partial framebuffer. The partial framebuffer
scheme is available only for displays with display RAM.

Memory consumption
The amount of colors and the number of pixels in the framebuffer determines the memory consumed
by the framebuffer.

In general the amount of memory used by a framebuffer is width * height * color depth in bits / 8
bytes.

Resolution (pixels) Colors (bpp) Calculation Memory consumed (byte)

800x480 16 bpp 800 * 480 * 16 / 8 768.000 B

480x272 24 bpp 480 * 272 * 24 / 8 391.680 B

100x100 8 bpp 100 * 100 * 8 / 8 10.000 B

When having more than one framebuffer the amount of memory consumed will be correspondingly
larger. For example when having a double buffering scheme, using two framebuffers, will consume
twice the amount of memory.

When having less than one framebuffer the amount of memory is explicitly allocated and controlled by
the application. The memory consumption is therefore completely customizable, but be warned that
using too little will harm the overall graphics performance.

FURTHER READING

The STM32 LTDC display controller document has further details on framebuffers

Version: 4.16

Graphics Engine
TouchGFX graphics engine's main responsibility is drawing graphics on the display of an embedded
device.

This section will give an overview of what kind of graphics engine TouchGFX is and provide some
background on why it is this way.

Scene model
Graphics engines can be divided into two main categories.

Immediate mode graphics engines provide an API that enables an application to directly draw
things to the display. It is the responsibility of the application to ensure that the correct drawing
operations are invoked at the right time.
Retained mode graphics engines let the user manipulate an abstract model of the components
being displayed. The engine takes care of translating this component model into the correct
graphics drawing operations at the right times.

TouchGFX follows the retained mode graphics principles. In short this means that TouchGFX provides a
model that can be manipulated by the user and TouchGFX then takes care of translating from this
model into an optimized set of rendering method calls.

model
DisplayApplica�on

manipulate
model

issue drawing
 commands

Retained mode graphics

The benefits of TouchGFX being retained are many. Primary ones are:

Ease of use: A retained graphics engine is easy to use. The user adresses the configuration of
components on screen, by invoking methods on the internal model and does not think in terms of
actual drawing operations.
Performance: TouchGFX analyses the scene model and optimizes the drawing calls needed to
realize the model on screen. This includes deliberately not drawing hidden components, drawing
and transferring only changed parts of components, managing framebuffers, and much more.
State management: TouchGFX keeps track of which part of the scene model is active. This in turn
makes it easier for the user to optimize the scene model contents.

The main drawback of TouchGFX adhering to the retained mode graphics scheme is:

Memory consumption: Representing the scene model takes up some memory. TouchGFX reaches
its performance levels, typically rendering 60 frames per second, by analyzing the scene model and
optimizing the corresponding rendering done. Great effort has gone into reducing the amount of
memory used by the scene model of TouchGFX. In typical applications the amount of memory for
this model is well below one kilobyte.

Manipulate the model
The scene model consists of components.

Container

Box Bu�on

Container

Analog
Clock

A tree of widgets

Each of the components in the model has exactly one associated parent component. The parent
component itself is also part of the scene model. Such a model is widely referred to as a tree.

We will often refer to a component in this tree as a UI component or a widget.

From the point of view of the application, the displayed graphics are updated by setting up and
manipulating the widgets in the scene model. An example setup of a button, with position, images and
added to the scene model, is:

Issue drawing commands
Ultimately, when rendering the scene model, TouchGFX will utilize its drawing API. This drawing API
has methods for drawing graphics primitives, such as boxes, images, texts, lines, polygons, textured
triangles, etc.

myButton.setXY(100,50);
myButton.setBitmaps(Bitmap(BITMAP_BUTTON_RELEASED_ID), Bitmap(BITMAP_BUTTON_PRESSED_ID));
add(myButton);

As an example, the Button widget in TouchGFX, when rendered, uses the drawPartialBitmap method
for drawing images. The source code for the drawing of the button widget in TouchGFX looks close to:

touchgfx/widgets/button.cpp

inspect the actual source in touchgfx/widgets/button.cpp for details.

TouchGFX includes optimized implementations of the drawing API. The drawPartialBitmap method for
instance utilizes the underlying hardware (Chrom-ART if available) to draw the bitmap.

One can utilize these API drawing methods when extending the scene model with new types of
widgets. See the section on creating your own custom widget.

The implementation of the drawing API methods is platform specific and highly optimized for each
specific MCU.

Main Loop
The workings of many game engines, graphics engines and in particular TouchGFX can be thought of
as an infinite loop.

Within the main loop of TouchGFX there are three main activities:

Collect events: Collect events from the touch screen, presses of physical buttons, messages from
backend system, ...
Update scene model: React to the collected events, updating the positions, animations, colors,
images, ... of the model
Render scene model: Redraw the parts of the model that has been updated and make them
appear on the display

A diagrammatic version of the main loop is:

void Button::draw(const Rect& invalidatedArea) const
{
 // calculate the part of the bitmap to draw
 api.drawPartialBitmap(bitmap, x, y, part, alpha);
}

Main loop

Each execution of the main loop is denoted a tick of the application.

Platform adaptibility
As TouchGFX is designed for running on all STM32 embedded setups the above activities can be
tailored.

The collection of events is handled by a dedicated abstraction layer. The tailoring of this layer is the
subject of the section on TouchGFX AL Development.
The updating of the model is completely up to the application. The details on how to do this
update is the subject of UI Development.
The rendering of graphics to the framebuffer is handled by TouchGFX and will in general not need
to be customized. The transferring of the pixels in the framebuffer to the display is platform
specific, see Board Bring Up and TouchGFX AL Development for how to customize this to specific
platforms.

Read on to get more specifics on the main loop of TouchGFX.

Version: 4.16

Main Loop
In this section you will learn more about the workings of the graphics engine in TouchGFX and in
particular the main loop. Recall that the main task for the graphics engine is to render the graphics
(the ui model) of your application in to the framebuffer. This process happens over and over again to
produce new frames on the display.

The graphics engine collects external events like display touches or button presses. These events are
filtered and forwarded to the application. The application can use these events to update the ui model.
E.g. by changing a button to its pressed state when the user touches the screen over the button, and
later changing the button back to the released state when the user does not touch the screen
anymore.

Finally the graphics engine renders the updated model to the framebuffer. This process loops forever.

After rendering a frame, the framebuffer is transferred to the display, where the user can see the
graphics. The transfer to the display must be synchronized with the display to avoid disturbing glitches
on the display. For some displays the transfers must happen regularly with a minimum time inverval.
For other displays the transfer must happen when a signal is sent from the display.

The graphics engine implements this synchronisation by waiting for a "go" signal from the hardware
abstraction layer. Read more about the hardware abstraction layer here

In pseudo code the main loop inside the TouchGFX graphics engine looks like this:

while(true) {
 collect(); // Collect events from outside

The code is more involved in the real implementation, but the pseudo code above helps in
understanding the main parts of the engine.

We will discuss these four stages in more detail below.

Collect
In this phase the graphics engine collects events from the outside environment. These events are
typically touch events and buttons.

TouchGFX samples and propagates events to the application. The raw touch events are converted into
more specific touch events:

Click: The user pressed or released his finger from the display
Drag: The user moved his finger on the display (while touching the display).
Gestures: The user moved his finger fast in a direction and then released. This is called a swipe and
is recognized by the graphics engine.

The events are forwarded to the ui elements (e.g. widgets) that are currently active.

The engine also forwards a tick event. This event represents the new frame (or the step in time), and is
always send, also if there was no other external input. This event is used by applications to drive
animations, or other timebased actions like changing to a pause screen after a specific time has
elapsed.

Update
Here the graphics engine works together with the application to update the ui to reflect the collected
events. The graphics engine knows which Screen is currently active and passes events to this object.

The basic principle is that the engine informs the application (i.e. the Screen and Widget objects in the
ui model) about the events. In response, the application requests specific parts of the display to be
redrawn. The application does not draw directly as response to the events, it changes the properties of
Widgets and request redraws.

 update(); // Update the application ui model
 render(); // Render new updated graphics to the framebuffer
 wait(); // Wait for 'go' from display
}

If for example a Click event occurs, the graphics engine searches the scene model of the Screen object
to find the Widget that should receive the event. Some Widgets like Image and TextArea do not wish
to receive Click events. They further have an empty event handler, so nothing happens.

Other Widgets like Button reacts to a Click event (pressed or released). The Button widget changes its
state to show another image when pressed, and changes the state back again when the touch is
released again.

Image widget in the background with a Button widget in front

When a Widget like the Button changes its state, it must also be redrawn in the framebuffer. The
Widget is responsible for communicating this back to the graphics engine as response to the event.
The graphics engine does not itself redraw any Widgets based on the collected events. The Widgets
keep track of their own internal state (for a Button, what image to draw), and instruct the graphics
engine to redraw the part (a rectangle) of the display that is covered by the Widget.

The application itself can also react to the events. One of two ways are common:

Configure an interaction for a Widget in TouchGFX Designer For example, we can configure an
interaction to make another Widget visible when the Button is pressed. This interaction is executed
after the Button has changed its state and requested a redraw of itself from the graphics engine. If
you use the interaction to show another (invisible) Widget, the application should also request a
redraw from the graphics engine.
React to events on the Screen It is also possible to react to events in the Screen itself. The event
handler are virtual functions on the Screen class. These functions can be reimplemented in the
Screens in the application. This can e.g. be used to perform an action whenever the user touches
the screen no matter where if the touch is on a Widget.

The Screen class has the following event handlers. These are called by the graphics engine when the
corresponding external event has been collected:

framework/include/touchgfx/Screen.hpp

Any C++ code can be inserted in these event handlers. Typically applications update the state of some
Widgets and/or call some application specific functions (business logic).

Time based updates
The handleTickEvent event handler is called in every frame. This allows the application to perform time
based updates of the user interface. An example could be to fade a Widget away after 10 seconds.
Assuming that we have 60 frames in a second, the code could look like:

The graphics engine also calls an event handler on the Model class. This event handler is typically used
to perform repeated actions like checking message queues or sampling GPIO:

Requesting a redraw
As we discussed above with the Button example; the Widgets are responsible for requesting a redraw
when their state changes. The mechanism behind this is called an invalidated area.

virtual void handleClickEvent(const ClickEvent& evt);

virtual void handleDragEvent(const DragEvent& evt);

virtual void handleGestureEvent(const GestureEvent& evt);

virtual void handleTickEvent();

virtual void handleKeyEvent(uint8_t key);

void handleTickEvent() {
 tickCounter += 1;
 if (tickCounter == 600) {
 myWidget.startFadeAnimation(0, 20); // Fade to 0 = invisible in 20 frames
 }
}

void Model::tick() {
 bool b = sampleGPIO_Input1(); // Sample polled IO
 if (b) {
 ...
 }
}

When the Button changes state (e.g. from released to pressed) and needs a redraw, the area covered
by the Button Widget is an invalidated area. The graphics engine keeps a list of these invalidated areas
requested for the frame. All the collected events (touch, button, tick) may result in one or more
invalidated areas, so there can be many invalidated areas in every frame.

The event handlers on the Screen class can also request a redraw of an area. Here we change the color
of a Box widget, box1, in frame 10 and request a redraw by calling the invalidate method on the Box:

In this example the graphics engine will call the handleTickEvent handler in every frame. In the 10th
frame, the application code requests a redraw of the area covered by box1. As a response to this the
graphics engine will redraw that area in the framebuffer using the color saved in the box1 widget.

In the user interface below we have a Button Widget and a Box Widget on top of a background image.
If we insert an interaction on the Button to change the color of the Box when the Button is clicked we
get two invalidated areas (indicated with red) when the user clicks the Button:

Two invalidated areas

The area of the Box is invalidated to get the new color drawn in the framebuffer. The Button also
invalidates itself to get the released state drawn again.

Render

void handleTickEvent() {
 tickCounter += 1;
 if (tickCounter == 10) {
 box1.setColor(Color::getColorFrom24BitRGB(0xFF, 0x00, 0x00)); // Set color to red
 box1.invalidate(); // Request redraw
 }
}

As we just discussed, the result of the update phase is a list of areas to redraw, the invalidated areas.
The task for the render phase is basically to run through this list and draw the Widgets covering these
areas into the framebuffer.

This phase is handled automatically by the graphics engine. The application has defined the scene
model (the Widgets in the ui) and invalidated some area. The rest is handled by the engine.

The graphics engine handles the invalidated areas one-by-one. For each area the engine scans the
scene model and collects a list of the widgets that is covered by the area (partly or in whole).

Given this list of Widgets the graphics engine calls the draw method on the Widgets. Starting with the
widget in the background and ending with the foremost Widget.

The Widget's draw methods use the state of the Widget, e.g. the color, when drawing to the
framebuffer. Any information that is needed to draw the Widget must be saved to the Widget during
the update phase. Otherwise this information is not available in the rendering phase.

Wait
The TouchGFX graphics engine waits for a signal before updating and rendering the next frame. There
are two reasons for waiting between the frames instead of just continuously rendering frames as fast
as possible:

The rendering is synchronized with the display. As mentioned above some displays requires that the
framebuffer is transmitted repeatedly. While this transmission is ongoing, it is not adviseable to
render arbitrarily to the framebuffer. The graphics engine therefore waits for a short time after the
transmission is started before starting the rendering. Other displays send a signal to the
microcontroller when the framebuffer should be transmitted. The graphics engine waits for that
signal.

Frames are rendered at a fixed rate. It is often beneficial for the application that frames are
rendered at a fixed rate, as this makes it easier to create animations that lasts a specific time. For
example, if you have a 60 Hz display, a two seconds animation should be programmed to complete
in 120 frames.

The time where the graphics engine is waiting is typically used by other lower priority processes in the
application. In these cases the time is not wasted, as the lower priority processes should run at some
point in time anyway.

Handling the framebuffers

Recall from the discussion previously that the graphics engine synchronizes with the display before the
framebuffer is updated. After the rendering to the framebuffer the engine also needs to make sure
that the display shows the updated framebuffer.

Two framebuffers
In the simplest setup we have two framebuffers available. The graphics engine alternates between the
two framebuffers. While drawing a frame into a framebuffer, the other framebuffer is transferred to
(and shown on) the display.

Double framebuffers

In this drawing we assume a parallel RGB display connected to the LTDC controller. This means that a
framebuffer must be transmitted to the display in every frame. As we have two framebuffers the
graphics engine can draw into one framebuffer while the other framebuffer is being transmitted. This
scheme works very well and is preferred if possible.

As the graphics engine is drawing in every frame we also transmit a new framebuffer in all frames in
the above drawing.

There will often be frames where the application is not updating anything. This implies that nothing is
rendered. The same framebuffer is therefore transmitted again in the succeeding frame.

No update in frame 2

The application is not drawing anything in frame 2, so the graphics engine retransmits framebuffer 2
again in frame 3.

The typical parallel RGB display has a refresh rate around 60 Hz. This update frequence must be
maintained by the microcontroller. This update frequency means that we have 16 ms to render a new

frame before the transmit begins again. In some cases the time to render a new frame is more than 16
ms. In this case the graphics engine just retransmit the same frame again (as before):

Long render time

The rendering of frame 1 takes more than 16 ms, so the frame 0 previously rendered to framebuffer 1
is retransmitted. The new frame in framebuffer 2 is transmitted in frame 3. When two framebuffers are
available, the rendering time can be very long. The previous frame is retransmitted until the new frame
is available.

One framebuffer
In some systems there is only memory for one framebuffer. If we have a parallel RGB display we are
thus forced to transmit framebuffer 1 in every frame.

This can be problematic because the graphics engine is forced to draw into the same framebuffer that
we are also transmitting to the display at the same time. If this is done without care there is a high risk
that the display shows a frame that is a mix of the previous frame and the new.

One solution is to hold back the drawing until the transfer is complete and only draw in timeslot
before the transfer starts again. This yields little time to draw as the transfer takes up a significant part
of the overall frame time. Another drawback is that incomplete frames (tearing) might still occur if the
drawing is not complete when the next transfer starts.

A more potential solution is to keep track of how much of the framebuffer is already transmitted and
then limit the rendering to the appropriate part of the framebuffer. As the transfer progresses more
and more of the framebuffer is available for the rendering algorithms.

The graphics engine contains algorithms that help the programmer to ensure that the drawing is
performed correctly.

The application updates and renders the framebuffer in every frame:

A single framebuffer is retransmitted in every frame

The framebuffer is retransmitted unchanged if nothing is updated in a frame.

If the rendering time is longer than 16 ms the rendering has not finished when the retransmission
starts again:

Long render time

In this situation the graphics engine must make sure that the part that is being transmitted is rendered
completely. Otherwise the display will show the unfinished framebuffer.

In the next section we will discuss the rendering time for the individual Widgets. This will help the
programmer to write applications of high performance.

Version: 4.16

Performance
In this section we will discuss performance aspects of an embedded graphical user interface.

A high performance is here defined as getting a high frame rate while still obtaining the desired
graphical effects and animations.

Let's recall from the previous section how the frame rate of the user interface is affected by the main
loop. Assume again that there is a parallel RGB display attached to the LTDC and two framebuffers.
The basic situation is illustrated below:

Double framebuffers

As the display is assumed refreshed 60 times each second there is approximately 16 ms between each
refresh. The calculation is this: 1 s / 60 = 0.01667 s = 16.67 ms.

TouchGFX starts drawing frame 1 into framebuffer 2 at the time where the transfer of framebuffer 1
has started. If the rendering of frame 1 is finished before the next transfer starts we can transfer
framebuffer 2. If not finished within 16.67 ms framebuffer 1 is transferred again and the display will
appear unchanged:

Main loop time above 16.67 ms

This situation is denoted a lost frame.

The time for the collect and update phases are typically minuscule, e.g. less than 1 ms, and therefore
more or less neglectable when considering the overall time taken of the main loop. Therefore, in the
following and in general, when considering render time, this includes the collect and update phases.

If the rendering time in many frames exceeds the 16.67 ms time limit the frame rate on the display will
be 30 frames per second (fps).

If the rendering generally is shorter than 16.67 ms, but in some frames longer than 16.67 ms, the
frame rate may be close to 60 fps in average, but the animation may not appear fluent to the user.
Depending on the application it can look like some steps in the animation are fast and some are slow.
This is not desireable.

The rendering time can also be even longer. If it is just above 33 ms, the framerate will drop to 20 fps
as we only have a new frame ready on every third transfer.

FPS Max rendering time

60 16.67 ms

30 33.34 ms

20 50.00 ms

15 66.67 ms

The table shows the maximum rendering time (including the collect and update phases) that is
available for a given framerate.

To achieve a good performance of a user interface it can be very beneficial to check and monitor the
frame rate regularly. Two approaches can be used:

Measure the rendering time
Count the lost frames

Measuring the Rendering Time
The first approach of measuring the rendering time gives the most detailed information. The idea is
basically to measure the time from the frame transfer to the end of the rendering phase. The graphics
engine calls a function on the GPIO class when the collect phase starts and makes another call when
the rendering phase ends. The application defines these function and can hook into them to peform
measurements.

The measurements can be done in two ways:

Use external timing device like an oscilloscope: To measure using an oscilloscope, the application
should implement the set(GPIO_ID) and clear(GPIO_ID) methods from the GPIO interface.

The oscilloscope can then measure the rendering time as the time elapsed while the output is high.
Use an internal timer: Another approach is to use an internal timer, like the sysTick timer. When the
GPIO::set(RENDER_TIME) is called the application can save the value of the timer in a variable. When
the clear call is made the application can read the timer again and subtract the previous value to
get the render time. The speed of the timer will define the resolution of the measurement. The
application must somehow make the render time visible. One way is to save the value in a global
variable and maybe show the value on the screen in a TextArea. The value can also be checked with
a debugger.

Counting the Lost Frames
The graphics engine counts the number of transfers that has occured during the last collect-update-
rendering phase. The application can easily check this value to see if a frame was lost and the frame
rate therefore lowered.

The count is available in the HAL class:

Compensating for Lost Frames
When frames are lost and the framerate of one of our animations therefore lowered we can
compensate to a certain degree. We can either:

wait it out - let the animation go on, resulting in a longer animation duration, and possibly
unsmooth animation.
skip some frames - make sure that the overall animation does not take longer time than intended
by skipping frames.

TouchGFX can be instructed to automaticallly skip some frames, when frames are lost. This can be
accomplished by ticking animations more than once per actual frame. This can help in making
animations more fluent when the render time is uneven.

HAL.hpp

void handleTickEvent() {
 tickCounter += 1;
 if (HAL::getInstance()->getLCDRefreshCount() > 1) {
 //Alert programmer somehow
 ...
 }
}

What Affects the Rendering Time?
A number of different things affect the rendering time: The size of the updated parts, the use of
layering, the complexity of the widgets, and the available hardware support for the rendering.

How Much of the Screen Is Updated?
The rendering time is generally proportional to the number of pixels that must be updated. So if an
animation takes too long time to render, a possible fix is to reduce the area of the animation. For
example, if you have a rotating image and the performance is not good enough, the performance can
be improved by reducing the size of the image.

Reducing image size reduces the rendering time

Remember that the graphics engine redraws the areas that the application invalidated. This means that
it is important to only invalidate the areas that actually requires a refresh.

The larger the invalidated areas, the longer the render time.

The Number of Layers in the Graphics
In a typical application the graphics will consist of different elements that are stacked upon each other.
If one of the elements is updated all the elements must typically be redrawn.

A typical example of this is a background image, a frame, and some text:

void setFrameRateCompensation(bool enabled)

Layering graphical elements

This user interface is created by putting a TextArea widget on top of an Image widget showing a
transparent frame. Both on top of the background Image:

Layering graphical elements in TouchGFX Designer

This solution is used very often in application. It is a very easy solution with a high flexibility, as it is, for
example, possible to change the frame at runtime or move the frame and the text on the background.

The problem regarding rendering time is that if the text is updated at runtime and needs to be
redrawn, the graphics engine also needs to redraw the background and the frame; and then the new
text. This increases the time to render the text considerably.

The more layers in an invalidated area, the longer the render time.

The Complexity of Rendering the Pixels
Not all pixels are equally difficult to render to the framebuffer. In all types of rendering the graphical
engine must write the resulting pixel to the framebuffer. But the cost of calculating the pixel to write
differs.

The fixed color, e.g. used in the Box Widget, has the lowest cost, as the calculation of a pixel is done
once and reused for all the pixels. This means that we can get a very high performance by using a lot
of Boxes. This is not recommended as the user interface will not be of high quality.

An image has the next lowest cost of pixel calculation since the pixels are stored in a ready to use
format in the bitmaps. Calculating the pixel to write to the framebuffer is a matter of loading the color
value from the correct place in the bitmap.

Text bears a cost comparable to images as the individual letters are actually represented as small
images. In practice the cost is higher as the high number of small images gives rise to a considerable
"start-stop" cost. For example the calculation of the position of the individual letters. In order for text
to look as nice as possible, it is represented as small images with transparency, see the notes on
transparency below.

Rotated or scaled images are more expensive. The task is again to load the pixel value from the
bitmap, but this time it is a more time consuming calculation because the graphics engine has to
incorporate the scaling and rotation.

Geometric elements like a circle are even more expensive. This time we cannot load the pixel color
from a bitmap, but we have to calculate both the shape of the circle and the color of individual pixels
in the circle.

Transparency adds to the cost of drawing an element. An element is transparent if some of the pixels
are not solid. This increases the cost of drawing as the graphical engine first has to draw the element
behind the transparent element (as we saw in the "text in a frame" section). Secondly the graphical
engine then has to combine the background pixel with the pixel of the transparent element and write
the result to the framebuffer. This calculation takes considerably more time than just writing the
calculated pixel.

Box, Image, rotated Image, and circle. Solid elements in the first row. Transparent elements below.

Transparency always gives you an extra layer. But putting solid pixels on top of other solid pixels does
not always increase the number of layers. The graphical engine tries to not draw pixels that are
covered by other solid pixels, as this would be a waste of precious time.

The more expensive elements in the invalidated area, the longer the render time.

Remember that is only the elements that are part of the invalidated area, that adds to the rendering
time. Elements outside of the invalidated areas do not impact the rendering time.

Read more about ui components and performance here.

Hardware Support for Rendering
Some STM32 microcontrollers contain a graphical accelerator called Chrom-ART (or DMA2D). This
accelerator can reduce the rendering time. As the accelerator runs in parallel with the microcontroller
core, the microcontroller is free to run other tasks while the accelerator renders graphics.

Chrom-ART is mainly useful for images and text. It is automatically used by the graphics engine when
available.

When Should You Consider Rendering Time
Rendering time is not equally important all the time. You should pay attention to the rendering time
when a slow frame rate is visible to the user. This is typically the case when you have an animation
running on part of the screen (like a rotating icon) or when you move or slide something across the
screen. If the update frequency is low it will appear step-wise instead of fluent to the user. If this is the
case you should check the rendering time.

On the other hand, if you replace the whole screen with a new screen, it is normally not visible to the
user if the frame rate dropped significantly during the change. This is because the user cannot see
when the rendering started, but only when it finished.

These two rules mean that for animated elements (e.g. moving) you should use few layers and refrain
from using complex elements and many layers. For other parts of the screen, this could be
unproblematic.

Analog clock and a scroll list

In this example we have an analog clock on the left. The three clock hands are rendered by rotating
small elongated images. This is normally fine as the hands do not move all the time. But if we wanted
to move the clock around on the screen, they would be redrawn in every frame and that could be
problematic, as drawing rotated images is typically time consuming.

On the right we have a scroll list. The user can move this list of numbers up and down, so we need a
high framerate for the user interface to appear responsive. Therefore it is important that we consider
the rendering time of the elements in the scroll list or reduce the size of the scroll list.

Tips To Get Good Performance
We end this section with a summary of the tips to obtain a good performance:

Do not redraw unchanged things Make sure that you do not accidentially invalidate unnecessary
parts of the display. This reduces the performance without any benifit.
Find balance between quality and speed Reducing the complexity of the elements can improve
the performance. A good balance between this and the performance is often the key.
Utilize hardware capabilities The capability of a microcontroller with hardware acceleration
(Chrom-ART) is often higher than a microcontroller without. Consider using a microcontroller with
Chrom-ART.
Replace calculated graphics with images The calculated circle is slower than an image of a circle.
In general images can replace many static elements.
Adjust display refresh rate As we discussed in the beginning of this section is the refresh rate a
hard limit for the rendering time. If the rendering time exceeds the refresh rate, the frame rate
drops. If your rendering time is just a little above the refresh rate, it may be possible to lower the
refresh rate of the display to e.g. 55 Hz (corresponding to 18.2 ms), and keep the high frame rate.

Version: 4.16

Operating Systems
Introduction
In this section we will discuss the use of an operating system in graphical user interface applications.

Embedded devices are becoming more and more advanced. The majority of the systems are not only
handling the graphical user interface, but often also complex control algorithms and tasks.

These tasks can for example be motor control, data aquisition, or security related tasks. Many modern
devices contain communication protocol stacks like TCP/IP, for communication with data centers; or
radio stacks like Bluetooth for communication with other local devices.

Interleaving other tasks with the user interface
In a simple device with the graphical user interface and only a few simple support tasks, like an egg
timer, it is possible to structure the whole application around the user interface code. The application
does very little besides the regular user interface updates, so the execution of the other tasks can with
fair success be embedded into the user interface code.

As soon as the device contains more advanced functionality that "runs in the background" with
separate timing requirements like regulating a motor, it quickly becomes difficult to integrate the two
tasks in one while supporting the requirements.

As we discussed in the previous articles the graphics engine must keep drawing new frames to support
a fluent user interface. If the graphics engine pauses this while running other tasks, the frame rate will
decrease. Likewise, if the other tasks only run between the frames, in the idle time, then these tasks will
suffer when the user interface is rendering complex scenes where there is less idle time. These effects
makes it difficult to manually interleave the ui task with other complex tasks.

An example
Assume for the rest of this section that we are building a bluetooth speaker with a display. We have 3
major tasks: run the graphical user interface, feed music to the speaker, and handle the bluetooth
stack for communication with other devices.

It is not difficult to see that an application architecture centered on the user interface is not good:
Imagine e.g. that we blend the music code with the user interface and put the code for starting

playback in the eventhandler for a button in the user interface. Now the user interface is locked for the
time it takes to start the music. Any animation running will be stopped meanwhile.

In general, the responsiveness of the user interface becomes dependant on the execution time of the
music tasks (start, stop, next, etc.). This is a general problem, that we will come back to.

And what happens if we also want to be able to start music from Bluetooth? Should the user interface
somehow be involved in that?

And how do we give priority to the music tasks, so that the music is without pauses? At the same time
we also want the user interface to run with the highest performance when there is no music tasks to
run.

All this can be solved by using an operating system with tasks, communication means, and
synchronization.

RTOS
A real-time operating system is a small piece of software that supports applications with various
services and distributes computing resources to the tasks in the application.

Using an RTOS allows you to structure your application in a number of independent, but coorporating
tasks. These tasks are then executed concurrently by the RTOS when they have work to do and
according to their priority.

We can even split a job into a high priority and a low priority task. Assume that we have to read
bluetooth data from a buffer very fast when it arrives, and put it into a larger application buffer. The
handling of the data can be postponed a little. This way we end up with two bluetooth tasks.

For our example we will start 4 tasks from main:

A similar split can be done with the music task: A high priority task to feed data to the speaker, and a
low priority task to control what song is playing and sending notifications to the user interface.

int main() {
 ...
 os_start_task(gui_task, medium_priority);
 os_start_task(music_task, low_priority);
 os_start_task(bt_comm_task, high_priority);
 os_start_task(bt_appl_task, low_priority);
 os_start_scheduler();
}

The result using different priorities as above is that the bt_comm_task is running when there is data to
handle and the user interface task runs otherwise. When the user interface task is waiting for the
display, the two low priority task can run. The operating system scheduler will handle this time
distribution for us.

In a typical TouchGFX application the user interface is waiting for the display in every frame, and it is
also regularly waiting for the graphics accelerator, ChromArt, to finish drawing elements. This means
that there will be many small pauses where the lower priority task can run. The operating system
scheduler will automatically change the MCU to run these tasks when the higher priority tasks are
waiting.

Task communication
When we use multiple tasks we also need a safe way of communicating between the tasks. One simple
case is from the user interfaced to the music task. Here we need, among other cases, the music task to
wait until the gui_task asks it to start playing a song. A simple way to implement that is to use a
message queue. The music task sleeps until there is a message in the queue. The scheduler wakes the
task when there is a message in the queue and when the higher priority tasks are not busy.

In the user interface, when "Play" is pressed, we send a message to the music task's queue:

The music task can wait for a message by reading the queue. This will block the task until a message
arrives:

After putting the message into the queue of the music task, the user interface is continuing to run and
rendering the frame as fast as possible. We are not wasting time on handling the play message
immediately. But, when the rendering is done and the ui task is waiting before rendering the next

 ...
 music_task_input_queue = os_create_queue(10); //10 element queue
 ...

void ScreenMusic::handlePlayPressed()
{
 os_send_message(music_task_input_queue, play_message);
}

...
Message message;
os_receive_message(music_task_input_queue, &message);

frame, the scheduler will change the execution to the music task, which will handle the incoming
messages.

Similary we can also give the user interface an input queue. The music task can then send a
notification message e.g. when the song has ended. The user interface task should not wait for a
message, but quickly check if a message is available without blocking, and read it in case.

This setup gives a very loose connection between the tasks in the system. We can actually test the
music task without using the user interface, and we can also easily start music from the bluetooth task.

Handling interrupts
Some tasks needs to run as a response to an interrupts. In our example the bluetooth communication
task is such an example. We want that task to run when the bluetooth chip has a new package for us.
Assuming that we can get an interrupt in that case, we can send a message from the interrupt handler:

Other synchronization primitives than queues are also available. Semaphores and mutexes for example
are found in many operating systems.

FreeRTOS
TouchGFX is tested with the FreeRTOS operating system during development. TouchGFX has very little
requirements and can run on many other operating systems, but FreeRTOS is a good starting point
unless you have some specific requirements.

FreeRTOS is a simple operating system that is free to use in commercial application. It is supplied in
source code with the STM32 Cube firmware with ready to use examples for all STM32 microcontrollers.

See freertos.org for further information and license terms for FreeRTOS.

TouchGFX OS Wrappers
TouchGFX in its default configuration runs on FreeRTOS and uses a single message queue to
synchronize with the display controller and a semaphore to guard the access to the framebuffer.

This is handled by the OSWrappers class defined in touchgfx/os/OSWrappers.cpp . This class has the
following methods:

void BT_DataAvailable_Handler(void)
{
 os_send_message(bt_data_queue, data_available_message);
}

Method Description

signalVSync() This method should be called from the display driver when the
display is ready for the next frame.

waitForVSync() Called by the graphics engine to wait. Should not return until
signalVSync is called.

isVSyncAvailable() (Optional)Returns true if VSync has occured. Can be used to avoid
blocking in the waitForVSync.

signalRenderingDone() (Optional)Remove any outstanding VSync signals.

takeFrameBufferSemaphore() Called by the graphics engine and the accelerator to gain direct
access to the framebuffer

giveFrameBufferSemaphore() Called to release the direct access again.

The default implementation uses a message queue to implement the VSync (frame) synchronization.
The graphics engine task is sleeping until the next VSync arrives.

This OSWrapper class is generated by the TouchGFX Generator. Read more about the Generator here.

No RTOS
TouchGFX can also run without an operating system. In this case you must start the graphics enging
main loop directly in your main:

Not using an RTOS does not lower the performance of TouchGFX. It may increase the MCU load and it
will make it more difficult to run other tasks together with TouchGFX.

As described above you now need to drive any other task manually while the user interface is running
in your main.

Model::tick

int main()
{
 ...
 touchgfx::HAL::getInstance()->taskEntry();

 //never returns
}

One way is to perform a task check in the Model class once in every frame:

Model.cpp

Using this method all tasks will be executed once in every frame. The time consumed by the tasks will
be added to the rendering time of the user interface. This is a simple and acceptable solution for
simple systems, where all tasks can terminate quickly.

OSWrappers
Another method is to use the hooks in the OSWrappers class. As explained above the graphics engine
calls method on this class when it needs to wait for events. You can use this to do other work while
waiting for said events:

OSWrappers.cpp

Using this method the idle task between the frame can be fully used by the other tasks, but the
amount of time the tasks get will vary.

Another solution is to use the OSWrappers::isVSyncAvailable and OSWrappers::signalRenderingDone
functions. This will allow the application to avoid having multiple while-loops. These functions are used
by the TouchGFXGenerator when a No-operating-system configuration is selected.

void Model::tick()
{
 //run other tasks here
 music_task_tick();
 bluetooth_task_tick();
}

static volatile uint8_t vsync_sem = 0;

void OSWrappers::signalVSync()
{
 vsync_sem = 1;
}

void OSWrappers::waitForVSync()
{
 vsync_sem = 0; //clear the flag, so we wait for the next vsync
 do {
 // Perform other work while waiting
 music_task_tick();
 bluetooth_task_tick();
 } while(!vsync_sem);
}

It is important that the tasks can divide their work in to small steps of maybe 1 millisecond. Otherwise
it will hurt the user interface performance.

Version: 4.16

Memory Usage
Introduction
In this section we will discuss the memory usage of a TouchGFX application. A typical TouchGFX
application uses 4 types of memory, but this will depend on the hardware used:

Memory Type Usage

Internal RAM

Internal RAM is used for configuration data like coordinates and colors of all the
Widgets. A few objects for the current screen is allocated here.
The operating system memory including the runtime stack of the UI task is also
in internal RAM. All data for other software components like filesystems and
display drivers is also placed in internal RAM.

Internal Flash Internal flash is used for program code for the application, the TouchGFX library,
and other libraries used.

External RAM External RAM is typically used for framebuffers and maybe a bitmap cache.

External Flash External flash is used to store images, fonts and texts.

Static Memory Allocation
TouchGFX only uses static memory allocation. This means that all memory is preallocated. No memory
is allocated by TouchGFX at runtime. This ensures that you will never run out of memory, if the
application could fit into memory at start.

Screens and Widgets
In TouchGFX the user interface is created by developing a number of C++ classes. The classes are
created by TouchGFX Designer when you design the screens. For each screen designed in TouchGFX
Designer you automatically get a number of classes (the MVP architecture).
When you show a screen on the display objects of the classes is automatically allocated by TouchGFX
in internal RAM.

When you change from one screen to another screen, the objects allocated for the previous screen are
not used anymore, only the objects for the new screen. Therefore the new objects are allocated in the

place in internal RAM where old objects were allocated (the old objects are overwritten). The internal
RAM only holds objects for one screen at one point in time.

Based on the classes defined it is possible for the C++ compiler to calculate the size of the largest
screen classes, and reserve memory for those classes.

The memory usage in internal RAM thus does not depend on the number of screens in the application,
but on the size of the largest screen.

The memory set aside for these objects is called the FrontendHeap.

TouchGFX

Application code
The application code is normally placed in the internal flash. The application code consists of the
program code you write, the code generated by TouchGFX Designer, code from the TouchGFX library
and other libraries you use.

The amount of application code will of course increase when you write more code and add more
screens to your application. The amount of code taken from libraries increases the first time you use a
feature. For example, the first time you add a Button to a screen, the Button code from the TouchGFX
library is included in your application which therefore grows. The second time you add a Button to the
same or another screen, no additional code is taken from the TouchGFX library, and the application
only grows by the amount of code you write or TouchGFXDesigner generates.

Assets
Assets like images, texts, and fonts are converted to c++ files and linked into your application. The
data for the assets are normally put in the external flash, but can also be put in internal flash. This is
controlled by the linker script.

When you add an image, the application size will grow proportionally to the size of the image.

When you add texts the application will grow two bytes for each character in the text. If you use the
same string of character twice it is only included once.

Only the characters used by the application are taken from the font files. This means that if you only
use the upper case letters A-Z in your application, the lower case letters a-z in the font are not
included in your application. If you later add texts that use these letters, the font data in your
application will grow in size.

The size of the characters in flash depends on the selected font size. In you increase the font size, the
application size will increase.

Checking memory usage
Memory usage of a specific application can be found by examining the map file generated by the
linker.

Here we examine a map file generated by the IAR Embedded Workbench. Other compilers produce
similar map files.

We start by creating an empty project in TouchGFX Designer for the STM32F746Discovery evaluation
kit:

STM32F746 project with a Box and a Button

After opening the project in IAR, we check in the properties that IAR generates a .MAP file:

Generate a linker map file

After compilation in IAR we can check the linker map file, STM32F746G_DISCO.map, found in the
EWARM/STM32F746G_DISCO/List folder.

The IAR linker map files contain a nice summary. Look for MODULE SUMMARY:

*** MODULE SUMMARY

 Module ro code ro data rw data
 ------ ------- ------- -------
command line/config:
 --
 Total:

C:\TouchGFXProjectsDocumentation\STM32F746MemoryUsage\EWARM\STM32F746G_DISCO\Obj: [1]
 ApplicationFontProvider.o 20
 BitmapDatabase.o 12 40
 Blue_Buttons_Round_Edge_small.o 40'800
 Blue_Buttons_Round_Edge_small_pressed.o 40'800
 Font_verdana_10_4bpp_0.o 24
 Font_verdana_20_4bpp_0.o 72
 Font_verdana_40_4bpp_0.o 280
 FrontendApplication.o 46 60
 FrontendApplicationBase.o 706 816
 GeneratedFont.o 84 84

This table has three columns of numbers. ro code and ro data is read-only and is placed in flash. rw
data is non-const read-write variables and which are placed in RAM.

The rows in the table are divided into 7 blocks. The first block is all the .cpp files in the project. The
next six blocks are the libraries used in the project (.a files). The last one is the TouchGFX library.

We can see that the TouchGFX library (the "touchgfx_core.a: [7]" section) adds 12.728 bytes of code to
the application (and 4.286 bytes of constant data).

Internal RAM

 Kerning_verdana_10_4bpp.o 4
 Kerning_verdana_20_4bpp.o 4
 Kerning_verdana_40_4bpp.o 4
 Model.o 10
 OSWrappers.o 156 1 9
 STM32DMA.o 898 176
 STM32TouchController.o 162 24 4
...
 heap_4.o 444 32'792
...
touchgfx_core.a: [7]
 AbstractButton.o 136
 AbstractPartition.o 8
 Application.o 2'218 290 28
 Bitmap.o 1'064 604 36
 Box.o 108 104
 Button.o 276 308
 ConstFont.o 62
 Container.o 510 396
 DMA.o 558 252
 DisplayTransformation.o 192
 Drawable.o 418
 FontManager.o 12 4
 Gestures.o 364 60
 HAL.o 1'758 544 18
 LCD24bpp.o 2'732 1'604 80
 Screen.o 1'924 124
 TouchCalibration.o 252 76
 TypedText.o 14
 --
 Total: 12'728 4'286 256

 Gaps 4 3
 Linker created 36 2'560
--
 Grand Total: 38'676 88'973 42'731

To find the total internal RAM usage we look in the Grand Total row in the bottom of the Module
Summary table. The third column is the internal RAM. This means that the project uses 42.731 bytes of
internal RAM. Looking at the total for the TouchGFX library we see that 256 bytes are used by the
TouchGFX library [7]. 32.792 bytes are used by heap_4.o. This is the dynamic memory heap reserved
for FREERTOS. 32Kb is the default value, but the heap size can be configured in CubeMX. A typical
TouchGFX program uses a few Kb from this heap, mainly to allocate a stack for the user interface task.

By searching for the FrontendHeap, we can find the size of the screen objects:

The objects required for the user interface occupies 0x240 bytes = 576 bytes.

Internal Flash
We see from the Grand Total row that this application uses 38.676 bytes code + 88.973 bytes data.
Only some of this is the internal flash. At least the two images for the Button is in external flash.

To find out how much code and data that is going into the internal flash we start by checking the
PLACEMENT SUMMARY (a few details removed):

The internal flash is starting at address 0x08000000. It is covered by the two regions "A0" and "P1".

Looking a bit further in the map file we can see what is placed in these regions:

FrontendHeap::getInstance()::instance
 0x2000'95d0 0x240 Data Gb TouchGFXConfiguration.o [1]

*** PLACEMENT SUMMARY

"A0": place at address 0x800'0000 { ro section .intvec };
"P1": place in [from 0x800'0000 to 0x80f'ffff] { ro };
"P2": place in [from 0x2000'0000 to 0x2004'ffff] { rw };
"P3": place in [from 0x9000'0000 to 0x90ff'ffff] {
 section ExtFlashSection, section FontFlashSection,
 section TextFlashSection };

 Section Kind Address Size Object
 ------- ---- ------- ---- ------
"A0": 0x1c8
 .intvec ro code 0x800'0000 0x1c8 startup_stm32f746xx.o [1]
 - 0x800'01c8 0x1c8

"P1": 0xb05d

This means that 0x1c8 bytes = 456 bytes are used by "A0", and 0xb05d bytes = 45.149 bytes by "P1".
The total usage of the internal flash is thus 45.605 bytes.

External Flash
The external flash is the "P3" region (starting at address 0x90000000). Here is the content of that
region:

We see that the total usage of the external flash is 0x14076 bytes = 82.038 bytes. The majority of that
is used by the two images for the Button (two times 0x9f60 bytes = 40.800 bytes). The rest of the data
is for 3 fonts. They don't use much space in this example as they only contain the '?' character,
because we do not use any texts in this example.

Summary
The only thing placed in external RAM is the framebuffers. These cannot be found in the linker script
as they are not defined as variables in the application. The resolution is 480x272 pixels in 24 bit. We
have two framebuffers to the total usage is 480 * 272 * 3 * 2 = 786.360 bytes.

 .text ro code 0x800'01c8 0x9b8 main.o [1]
 .text ro code 0x800'0b80 0x14 memset.o [5]
...
 .text ro code 0x800'b17a 0x2 AbstractButton.o [7]
 .rodata const 0x800'b17c 0x1 unwind_debug.o [6]
 .rodata const 0x800'b17d 0x0 zero_init3.o [5]
 .rodata const 0x800'b17d 0x0 lz77_init_single.o [5]
 Initializer bytes const 0x800'b17d 0xa8 <for P2-1>
 - 0x800'b225 0xb05d

"P3": 0x1'4076
 ExtFlashSection const 0x9000'0000 0x9f60 Blue_Buttons_Round_Edge_small.o [
 ExtFlashSection const 0x9000'9f60 0x9f60 Blue_Buttons_Round_Edge_small_pre
 FontFlashSection const 0x9001'3ec0 0x118 Font_verdana_40_4bpp_0.o [1]
 FontFlashSection const 0x9001'3fd8 0x48 Font_verdana_20_4bpp_0.o [1]
 FontFlashSection const 0x9001'4020 0x18 Font_verdana_10_4bpp_0.o [1]
 FontFlashSection const 0x9001'4038 0x10 Table_verdana_10_4bpp.o [1]
 FontFlashSection const 0x9001'4048 0x10 Table_verdana_20_4bpp.o [1]
 FontFlashSection const 0x9001'4058 0x10 Table_verdana_40_4bpp.o [1]
 FontFlashSection const 0x9001'4068 0x4 Kerning_verdana_10_4bpp.o [1]
 FontFlashSection const 0x9001'406c 0x4 Kerning_verdana_20_4bpp.o [1]
 FontFlashSection const 0x9001'4070 0x4 Kerning_verdana_40_4bpp.o [1]
 TextFlashSection const 0x9001'4074 0x2 Texts.o [1]
 - 0x9001'4076 0x1'4076

Memory Type UsageMemory Type Usage

Internal RAM 42.731 bytes

TouchGFX Screen objects 576 bytes

Internal Flash 45605 bytes

TouchGFX Framework 12.728 bytes code

External RAM 786.360 bytes

External Flash 82.028 bytes

Demo 1
To give another example here are the numbers for the TouchGFX Demo1 which can be found in
TouchGFX Designer. It contains 5 screens and more than 100 images:

STM32F746 Demo 1

Summary

Memory Type Usage

Internal RAM 51.387 bytes

TouchGFX Screen objects 10.772 bytes

Internal Flash 187.768 bytes

Memory Type Usage

TouchGFX Framework Code 85.174 bytes code

External RAM 786.360 bytes

External Flash 5.281.812 bytes

Version: 4.16

Development Introduction
Main Activities
A TouchGFX project involves a set of activities that you will be addressing during the development
phase. The effort in each of them are dependent on what the goal of your project is. If you are doing a
UI prototype you can use premade code for major parts of the application and thus speed up your
project development by skipping most of these activities. If you are doing a full project based on a
custom made board, you will be addressing each of these activities in your project.

A TouchGFX projects main activities

Main Components
Your TouchGFX project is made up of five main software and hardware components. Each of the
activities will generate one of the main component for your TouchGFX project. The TouchGFX Engine is
not an output of any main activity, this is the starting point for your TouchGFX project and is available
when you have downloaded and installed.

A TouchGFX projects main components

The following sections will give an overview of each of the activities and components. Each of the
activities are further described in full details in this chapters remaining sections.

Hardware Selection

This activity is the initial activity in your TouchGFX project. Selecting the hardware on which your
application will run. Deciding on which hardware components you need and what influences these
have on your TouchGFX application. When you are done with this step you have a Display Board
available for your TouchGFX project.

Prototyping
If you are doing a UI prototype an STM32 Evaluation Kit will be the perfect choice to get up and
running quickly. Here there are no considerations to be done about the hardware components, how to
connect to the board or similar issues. In this case the Hardware Selection activity is only a matter of
selecting an available STM32 Evaluation kit, which is the best match with your final product in terms of
MCU performance, memory setup and display size.

Custom Hardware
If you are creating your own hardware solution there are a lot of choices to be made and issues to
consider. The section Hardware Selection will help you in this task, answering a lot of questions and
describe how your choices influence a TouchGFX application.

Often in your project you will not have the final hardware ready before late in the project. In this case
it is very common to select an STM32 Evaluation Kit that resembles your final board and use this in the
first steps of UI Development. If you do not have such board, you can also start out by just using the
TouchGFX Simulator that runs on your PC.

A full description of this step can be found in the Hardware Selection section.

Board Bring Up

This activity is a central task to enable TouchGFX to be executed on your board. The output
component is called Board Initialization Code which is a general initialization code that setup your
MCU and all peripherals, preparing it for application execution. This initialization code is independent
of TouchGFX, it is only handling pure hardware setup.

CubeMX
The main tool for this activity is CubeMX. It helps you configuring the MCU and generate general
startup code. For peripherals, such as external RAM and Display, you will add initialization code and
specific peripheral drivers yourself. It is also possible to do the entire Board Initialization Code without
use of CubeMX, but is not recommended unless you have expert knowledge on STM32 and board
bring up.

Application Templates (ATs)
If you are doing a UI Prototype or just want to try out TouchGFX you can base your application on an
existing Application Template (AT) for one of the standard STM32 Evaluation Kits available in TouchGFX
Designer. These include all the Board Initialization Code needed. The ATs are based on a CubeMX
configuration, so it is possible for you to modify the configuration if you want to experiment or add
access to more peripherals.

A full description of this step can be found in the Board Bring Up section.

TouchGFX AL Development

This activity is key in making the TouchGFX Engine run on top of your fully initialized Display Board
(Display Board + Board Initialization Code). The output component is called TouchGFX Abstraction
Layer (AL) and is a software layer that is an abstraction of your hardware and enables the TouchGFX
Engine to run on your board.

TouchGFX Generator
The main tool in this activity is TouchGFX Generator which is a CubeMX plugin that allows you to
configure and generate most of the TouchGFX AL code. You will most probably also write some part of

the TouchGFX AL in code by yourself. The TouchGFX Generator will assist you in this step by creating
empty functions for you to implement.

It is important to notice that for your TouchGFX AL to work it is important that your Board Initialization
Code is done correctly and that the MCU, External RAM, Display and so on is configured correctly.

If you are doing a UI Prototype or just want to try out TouchGFX you can base your application on an
existing Application Template (AT) for one of the standard STM32 Evaluation Kits available in TouchGFX
Designer. This includes all the TouchGFX AL code you need. The ATs are based on a CubeMX and
TouchGFX Generator configuration, so it is possible for you to modify the configuration if you want to
experiment later on.

A full description of this step can be found in the TouchGFX AL Development section.

UI Development

This activity is where you probably will spend most of your project development time. Here you will
create the User Interface code that will make up the visible part of your TouchGFX project, the
component which is called the TouchGFX UI Application.

TouchGFX Designer
The main tools in this activity are TouchGFX Designer and your favorite IDE or text editor. In TouchGFX
Designer you will setup, design and create the screens in your application and generate main parts of
the UI Application as C++ code. For the application logic (handling events, communicating with the
non-UI part of the system) you will use an IDE or text editor to write C++ code, that coexists and
interacts with the generated code from TouchGFX Designer.

Application Templates
If you are doing a UI Prototype or just want to try out TouchGFX and do not want to spend time doing
the other activities, you can either base your application on the PC based TouchGFX Simulator or you
can use one of the existing Application Template (AT) for one of the standard STM32 Evaluation Kits. In
any case you are ready to start developing your UI Application right away.

UI templates
If you just want something to run or want to be inspired you can select one of the TouchGFX demos or
examples which can be found as UI Templates when creating a new project in TouchGFX Designer. IF
you do so, nothing has to be done, just compile, flash and run.

Custom Hardware
If you have already done all the other activities and thus have a running board ready for a TouchGFX
UI Application you can either start from scratch or select one of the examples or demo. If the
resolutions of your custom board and the example match then they should run on your custom board
as well.

A full description of this step can be found in the UI Development section.

Workflow
As you can see TouchGFX development involves a lot of activites and tools. It is, however, important to
notice that you do not need to do them all at once, and you do not necessarily need your Display
Board, Board Initialization Code and TouchGFX AL before starting your UI development. This can be
done using STM32 Evaluation Kits or the TouchGFX Simulator.

Select Application Template

Select UI Template

Modify / Create UI

Run PC Simulator Run Target

TouchGFX Designer

TouchGFX Designer workflow

Generated Code and User Code
In each of the three software activities, Board Bring Up, TouchGFX AL Development and UI
Development, you will use tools that generate code for you. Common for these tools is that they do
not generate all the code you need, you will be adding user written code to the project as well. For all
three tools you can go back and forth between using the tool and writing code. The generated code
and the user code are independent and can be updated separately.

Sometimes you will also be switching back and forth between the activities and thus using different
tools. This is often the case when doing TouchGFX AL Development, where you have a very simple
TouchGFX UI to test your TouchGFX AL. There is, however, no problem shifting between activities, as
the tools, the generate code and your user code coexists and can be updated without any problem.

Change of Compiler/IDE
During the activities you will have to compile your code for your target board. The compilers
supported by TouchGFX are IAR, ARMCC, ARMCLANG and GCC(CubeIDE). The toolchain selected for
your TouchGFX project is configured in CubeMX, so if you want to change it you should open the
TouchGFX project .ioc file in CubeMX and change the toolchain setting. When selecting an Application
Template (AT) in TouchGFX Designer it will have one toolchain preselected, so you will only find a
project file for one of the toolchains. As the AT comes with an .ioc as well, you can open it and change
the toolchain to match your needs.

Version: 4.16

Hardware Selection
Introduction

Project activity

Project component

There are many parameters to consider and evaluate when choosing the hardware platform for
running a graphical user interface. This article attempts to address considerations about the MCU,
display, external memories, UI performance, etc.

It is recommended to read the section on preliminary considerations before hardware components, as
there are several parameters and decisions which will impact the choice of hardware.

Preliminary Considerations - contains several pointers to considerations you should take into
account before moving on finding the right hardware.
Hardware Components - contains information on the different components that makes up a
hardware solution and what impact they have on a TouchGFX application.

Version: 4.16

Preliminary Considerations
The purpose of this section is to give some pointers to what considerations should be accounted for
before deciding upon hardware. Every product is different and as such has different criteria and
requirements, so let the following serve as a source of inspiration for what questions you should ask
yourself before making a decision.

Topics being covered in the following are related to the appearance of the display, the needs of
memory in the system, the desired performance of the UI and the physical design of the product.

Display Resolution
Displays come in many different resolutions and aspect ratios. In general, TouchGFX is not dependent
on any of these parameters. The display resolution is one of the major factors when selecting suitable
hardware and, a higher resolution often equals more pixels, and therefore more data to render and
transfer.

STM32 microcontrollers generally support up to XGA resolutions (1024*768) in 16/24 bpp, and also
support non-standard resolutions like wide or round displays. For resolutions above XGA one must
typically compromise on color depth, frames per second, ...

Below is 3 examples of standard resolutions:

Display resolution examples

Pixel density should also be considered, as a larger display size warrants a higher resolution to be
perceived as sharp, though higher pixel density often correlates with higher cost.

Some of the questions you should ask yourself when picking a resolution for your application is:

What is the end-user target segment? Often consumers demand higher pixel density while some
industrial applications can compromise this for lower cost or easier integration.
Are you going to be using a lot of small text in your application? Large blocks of small text are
usually a lot more readable on higher resolution displays due to greater pixel density.
Are you generally going to be showing a lot of different elements on a screen at a time?
Larger displays allow showing more elements, or making certain elements more clear, as more
inches are available.

Color Depth
Second major factor is the color depth (bits per pixel) which dictates the amount of information which
can be stored per pixel in an image, which thereby means how many different colors you are able to
assign to a single pixel.

1 bit per pixel and 24 bits per pixel applications

Displays are supporting different color depths, and running a 16bpp GUI application on a 24bpp
display is possible, but there will be an impact the other way around running a 24bpp application on a
display only capable of showing 16 bit colors.

Displaying complex images with a lot of nuances in color demands a higher color depth to be as close
to the source image as possible. The chosen color depth has an impact on the amount of memory
needed.

Do not underestimate what you can achieve on lower color depths, as a lot of modern UI design
philosophy revolves around flattened and less color intensive applications (for example Google's

Material Design). TouchGFX can help in making complex images useful on lower color depths, by
applying one of a set of dithering algorithms. Below you can see some examples of what you can
achieve at lower color depths:

Low color depth application examples

Some of the questions you should ask yourself when picking a color depth for your application is:

Do you need to display real life images? If using real life images or multi-layered composed
images, it is recommended to use 24 bpp pixels both in the application and the display, as 16bpp in
some cases is insufficient in showing all needed colors. 16bpp can in many cases be sufficient
enough and is still one of the industry standards.
Is grey scale colors or simple 6/8 bpp perhaps all you really need to convey what your
application needs? Perhaps your application does not need sprawling colors to convey its
functionality properly and as such lower color depths can be chosen. This is also decreasing the
framebuffer size and thereby the RAM needs.
Do you have a limitation on RAM and/or flash? Limiting the color depth will decrease the size of
both bitmaps and framebuffer (RAM) needs.

Framebuffer Size Calculation
A framebuffer is the location where pixel data for a frame is stored, rendered and transferred to the
display. The size of the framebuffer is important as a higher pixel amount and higher color depth calls
for a higher throughput on RAM and display interface.

The size in bytes of a framebuffer is calculated by:

display width * display height * (bits per pixel / 8)

As an example, an 800x480 application with a color depth of 16bpp and a single framebuffer would
need a framebuffer allocated with a size of:

800 * 480 * (16 / 8) = 768.000 bytes (768.000/1024 = 750Kbytes)

So when you decide on a resolution and color depth, be sure you have enough RAM to support it.
Some applications requires 2 framebuffers, so in the above example the needed RAM is 750 Kilobytes
* 2 = 1500 Kilobytes.

Framebuffer calculations

FURTHER READING

Note that the memory needed to support the framebuffer also heavily relies on the chosen framebuffer
strategy (single, double, partial) which you can read more about in the Framebuffer strategy article
Framebuffer. Some STM32 microcontrollers supports up to HVGA resolutions running only internal RAM, for
a very cost-effective solution.

Display
Interface
It is possible to select displays with different display interfaces (such as SPI, LTDC, MIPI-DSI), which all
have different impacts on number of pins needed, bandwidth, supported resolutions and potentially
also the amount of external RAM needed. Read more about this and the pros and cons of each in the
Display section.

Size
The physical size of the display is also important to consider. Larger displays are generally easier to
operate and easier to give precise touch commands, but also require a larger resolution to be easy on
the eyes, thus impacting the need for more memory and throughput. If the information on the display
is being shown 1-2 meters away, the text, icons etc. needs to be large enough.

Touch
There are two main types of touch displays:

Capacitive

Capacitive touch displays have much higher touch sensitivity which is important if the application
requires more advanced touch operations such as dragging, swiping etc. and is also the most used in
modern devices due to this fact.

However, they are also more expensive and can often not operated with gloves, so if this is important,
perhaps resistive is the solution.

Resistive

This cheaper alternative is much less sensitive and has poor visibility in sunlight, but can be operated
with gloves as it is less sensitive to unintended interactions, and is generally more resistant.

So if all your touch operations consist of simple button presses, perhaps a resistive display is enough.
The STM32F429-DISCO board is using a Resistive touch display.

Animations
Running complex animations, like full screen transitions, rotation, and scaling, can have a significant
impact on performance if the throughput and calculation power of the hardware is not sufficient.

Some of the questions you need to ask yourself when deciding on the level of animation in your
application are:

Do you need high speed full screen transitions? Full screen transitions need to render the full
framebuffer and are as such dependent on enough MCU cycles, and fast enough access and
transfer of pixel data. The needed system performance also depends on resolution and color depth.
High resolution full screen transition are mostly recommended to be used on STM32 high
performance products. Some transitions require additional storage, and might therefore result in a
larger amount of memory needed.
Do you need complex texture mapper animations like rotation and scaling? Animating a
texture mapper can be quite intensive on the system when it comes to calculations and transferring
bitmaps and as such generally needs higher MHz, and high memory throughput.

Animations

Mechanical Design Requirements
Physical casing requirements of a product will vary greatly and can have an impact on the hardware
chosen. Home appliances will have other requirements to hazardous industrial usage and therefore,
some of the questions you should ask yourself when unveiling the physical limitations could be:

Is your product required to be very small? An example could be a smart watch, which will have a
limited casing size, which is limiting the size of the PCB, and therefore choosing the correct
components is important. STM32 is offering a wide variety of MCU packages, like a WLCSP package.
Is your product going to be subject to extreme temperatures? Capacitive displays can under
perform during extraordinary heat or extraordinary cold. So perhaps if you're installing your
product in for example cold storage, a resistive display will be a better user experience. The STM32
product portfolio offers microcontrollers with ambient temperature range up to 85, 105 and 125
degrees.
Does your product need to be very resistant to outdoor environmental factors such as water
or dust? Different technologies offer different quality and features, and adding a cover lens for
protection purposes could be one option.
Is visibility in high sunlight important? Displays varies in candela and lumen, and the higher
lumen and candela of the display the higher readability of the display. Adding a special cover lens
can also improve this. Or using a another display technology which may also offer reflective
features.

Frames Per Second

A higher and stable Frames Per Second (FPS) count is often preferable since this makes an application
seem much smoother.

Sometimes FPS is less important. For instance in a static GUI with minimum display animation updates.
In such cases lower cost hardware might be suitable.

But having a pretty and smooth application with a lot of flashy animations can also be a huge selling
point depending on the targeted user segment, so as with anything related to hardware selection, it is
all about meeting the end-users expectations, and providing a good user experience.

The overall performance of a graphical user interface comes down to the performance at system level,
accounting for components like the MCU, RAM, Flash, display, interfaces throughput, and also
hardware capabilities like the STM32 Chrom-ART.

The figures below paint a very generalized picture of the impact of some different parameters. To
select the right hardware, these parameters need to be considered. Also taking into consideration that
the STM32 Chrom-ART is offloading the MCU, and thereby in some cases decreases the importance of
a high MCU frequency.

The impact on FPS of different parameters

Version: 4.16

MCU
The microcontroller unit (MCU) is at the core of any embedded solution and there are a wide variety of
options in both costs and features.

When selecting an MCU for graphics, one should consider the supported display interfaces, the MCU
package, size and the achievable graphics performance which depends on two main points:

Image composition

The availability of graphics accelerators integrated in the MCU.
The availability of cache memory in the system.

Memory access and bandwidth

The clock frequency and the subsystem bus frequency.
The access to the internal flash and RAM memories.

It is also important to consider the other aspects of the application (motor control, wireless, etc.),
which are running in addition to the graphics. These can influence the choice of MCU.

This page will go through the different MCU options and which parameters should be considered
when deciding on the STM32 MCU you should select for your GUI driven application.

STM32 MCU

FURTHER READING

For a more complete overview of all product lines, peripherals, prices etc., the ST MCU Finder is available
here.

Frequency
The core frequency has a major impact on the performance of a graphical application in terms of
screen refresh, fluidity of screens and animations.

It impacts the amount of data that can be transferred from an internal or external memory to the
display framebuffer and also the calculations and animations possible.

The higher the frequency, the more data it is possible to transfer within a given timeframe and the
more complex animations can be made.

The core frequencies of the STM32 products is up to 480MHz.

NOTE

The higher the frequency, the greater the power consumption.

Graphic Subsystem Frequency
It is important to differentiate the core CPU frequency from the graphic subsystem frequency. The
graphic subsystem frequency includes the frequency of the internal busses, the frequency of the
graphics accelerator as well as the access speed of the internal and external memories.

The graphic subsystem frequency also has a major impact on the overall graphic performance.

Example
An example of assessing the theoretical core and subsystem performance when running from internal
RAM on an STM32H7 can be seen next:

The CPU core is running at 480MHz.
The 64-bit AXI bus frequency at 240MHz.
The LCD-TFT display controller (LTDC) uses the 64-bit AXI bus, and does 8 transfers in 10 cycles.
The internal RAM poses no significant latency, i.e. 0 wait states.

The bandwidth of the internal RAM when accessed by the LTDC peripheral is then:

Bandwidth = 240 MHz x 8/10 x 8 bytes = 1.536Mbytes/s.

With such bandwidth, the internal RAM can ensure 1000 frames per second (fps) for 800x480
resolution at 32bpp color depth. Typically one would limit the transfer to the display (by adjusting
pixel clock, porches, ...) to 60 frames per second, so the bandwidth of the LTDC and internal RAM is not
a bottleneck.

Embedded Hardware Acceleration Features
Different STM32 MCUs have different built-in hardware acceleration features that help in achieving
high performing graphics applications.

Chrom-ART
Chrom-ART is an advanced DMA that aids in doing graphical operations. It is also known as DMA2D.

The Chrom-ART accelerator, integrated in many STM32 platforms, is able to manipulate and transfer
images without CPU load. It has the capability to accelerate the majority of the graphic operations,
such as color filling, image copying, blending, and pixel format conversions.

The Chrom-ART accelerator is able to perform blending of two layers and convert the initial pixel
formats to the desired output pixel format and transfer the result to the memory destination in only
one operation.

The Chrom-ART accelerator also supports color formats with color look up tables (CLUT). This can help
with saving memory.

Example of an application running on the STM32F496-EVAL board where the CPU load is decreased
from 82% to 4% when the Chrom-ART is enabled:

Bird-Eat-Coin Chrom-ART example

In addition, the capability to convert from YCbCr format to RGB format is added with STM32H7
products to the Chrom-ART peripheral. This feature, combined with the JPEG hardware codec can
offload the CPU when encoding and decoding JPEG images.

YCbCr to RGB Hardware performance

The Chrom-ART accelerator, with the features listed above, offers a huge advantage for graphical
applications. If available in the chosen MCU, TouchGFX handles all Chrom-ART features and redirects
all possible drawing operations to the Chrom-ART peripheral instead of the CPU.

The Chrom-ART peripheral is available with high performance STM32 families.

FURTHER READING

Refer to AN4943 application note for more information:, Chrom-ART Hardware acceleration.

JPEG Hardware Codec
The STM32H7 and STM32F7 families provide a hardware JPEG codec to encode and decode images
and videos.

This feature is important if the UI application needs to play a video file or display JPEG images.

JPEG images generally take up less memory. The JPEG hardware codec ensures that the images can be
decoded at runtime without CPU overload.

Some TouchGFX demos utilizes the JPEG hardware codec, offloading the CPU while playing an MJPEG
video.

Hardware JPEG codec performance

FURTHER READING

Refer to AN4996 application note for more information: Hardware JPEG codec.

Chrom-GRC
The STM32 Chrom-GRC™ (GFXMMU) is a peripheral in some STM32 microcontrollers that aims to
efficiently support the emerging trend towards non-rectangular displays.

The Chrom-GRC™ peripheral enables applications to reduce the amount of RAM needed for storing
the framebuffer when addressing non-rectangular displays.

In the case of a round display, the peripheral reduces the memory requirements by 20%.

The Chrom-GRC™ peripheral is not mandatory when controlling non-square screens, but it is
recommended.

Memory optimization with Chrom-GRC peripheral

FURTHER READING

Refer to AN5051 application note for more information: Graphic memory optimization.

Internal Flash
A graphical user interface application using bitmap resources needs non-volatile memory to store the
data. The execution from and access to internal flash is in some cases up to two times faster than
external flash.

As the internal flash is limited in size, in many cases it is often used for storing the TouchGFX
framework, screen definitions and UI logic while the bitmap data is stored in external flash.

The portfolio of STM32 products used for graphic applications is between a few Kbytes and a few
Mega bytes of internal flash memory.

External memory may be required when the amount of bitmap data does not fit within internal flash.

FURTHER READING

Refer to External Memories for more details.

TouchGFX flash memory requirement:

Framework: 60kbytes to 100kbytes.
Screen definition and GUI logic: 1 to 100Kbytes.

These numbers depend on the framework features used and the size and complexity of the
application.

Internal RAM
Internal RAM can be used for storing the framebuffer(s), when the size of these fit within the available
memory. Alternatively one might add external memory to the setup.

Calculating the size of a framebuffer depends on the width, height and color depth. For example, a
display with HVGA resolution (480x320) and 16 bit colors, the memory needed for one framebuffer is:

Size of 1 framebuffer = 480 x 320 x 2 = 307.200 bytes

The STM32 products used for graphic applications ranges from a few Kbytes and a few Mega Bytes
of internal RAM.

FURTHER READING

Refer to the External Memories section for more details on framebuffers in external memory.

TouchGFX RAM requirement:

Framework: 10Kbytes to 30Kbytes
Widgets: 1Kbytes to 15Kbytes

Memory requirements may vary from application to application.

LCD Controller
The choice of the MCU also depends on the display interface that will be used and the resolution. The
800x480 resolution for example can only be achieved with an efficient interface in terms of data
transfer speed. RGB-TFT and MPI-DSI interfaces are often used for higher resolutions, as the
bandwidth is in many cases higher than SPI or parallel 8080/6800. Small resolution displays often
embed controller and GRAM and so can be connected through simple SPI or 8080/6800 interfaces.

High resolution displays (WQVGA and above) often don’t embed controller and GRAM, therefore the
controller needs to be at the microcontroller side. On STM32 MCUs embedding RGB-TFT and MIPI DSI
interfaces the controller is present.

The picture shows 4 examples of different display interfaces with/without GRAM and display controller.

FURTHER READING

Refer to the Display section for more information.

Packages & I/O
The number of I/Os needed is dependent on the chosen display and external memories. Running a
parallel display with parallel RAM/flash can require a high number of I/Os resulting in a larger
package.

Memory Interfacing
When internal flash and RAM in the microcontroller is not sufficient, choosing the right MCU with the
most suitable external memory interface becomes important. The STM32 products provide different
memory controller peripherals to interface with the NOR, NAND, SRAM, SDRAM, LPSDR SDRAM, and
PSRAM memories.

Flexible Memory Controller & Flexible Static Memory Controller
(FMC/FSMC)
In addition to the support of the static RAM, the FMC adds dynamic RAM support (SDRAM) to the
FSMC. The flexible memory controller (FMC) with its high external access speed and 8, 16 and
especially 32 bit data bus, allows for higher throughout from and to external RAM and hence better
support of higher resolution. The FMC has an independent chip select for each memory bank. The
FMC can control an external flash memory for the data and an external RAM memory for the
framebuffer and heap extension for the graphical stack.

Serial Memory Interface
Depending on the STM32 product, the serial memory interface is embedded and allows interfacing
with single, double, quad, octo, and hyperBus flash memories alongside QSPI, PSRAM, OPI PSRAM,
and Hyper RAM memories. The serial high speed memory interface can control up to 256 Mbytes
when in memory mapped mode and 4Gbytes in indirect mode.

Compared to parallel interfaces, the serial memory interface permits the connection of a lower cost
external flash memory to small packages and reduces the number of used pins.

FURTHER READING

Refer to AN4760 application note for more information: Quad-SPI interface on STM32 microcontrollers.

STM32 Value Line products
For price optimization, STM32H7 and STM32F7 platforms offer value line products with limited
amount of internal flash. With these products, the graphic resources will be stored in the external flash.

Cortex®-M Cores
STM32 MCUs comes in different ARC Cortex®-M architectures. Below are the most used cores for
running graphics on STM32.

Cortex®-M0+
The Cortex®-M0+ is characterized by its simple architecture and low price. It is recommended for
smaller static graphic applications, running at lower resolutions.

Cortex®-M4
The Cortex®-M4 contains more functionalities than the M0+ and accelerates calculations. It includes
a DSP instruction set and a single precision FPU unit. These instructions offload the CPU and increases
the speed of calculations.

Cortex®-M7
The Cortex®-M7 contains a more complex architecture but also a DSP instruction set, and comes
with a more efficient FPU unit with double precision and a level1 cache memory with up to 16KB for

data and instructions. The cache memory gives the possibility of having data and instructions close to
the calculation unit in order to optimize the fetch time.

Feature overview

Feature Cortex-M0+ Cortex-M4 Cortex-M7

DMIPS/MHz range 0.95-1.36 1.25-1.95 2.14-3.23

Core Mark®/MHz 2.46 3.42 5.01

Digital Signal Processing (DSP)
extension No Yes Yes

Floating Point Hardware No Yes (SP) Yes (SP + DP)

Built-in-caches No No Yes (option 4-64KB), I-Cachen
D-Cache

Bus Protocol AHB Lite,Fast
I/O

AHB Lite,
APB AXI4, AHB Lite, APB, TCM

Dual Core Lock-Step Support No No Yes

Level 1 cache:
The STM32H7 and STM32F7 families include up to 16 Kbytes of L1-Cache both for instructions and
data. An L1-Cache stores a set of data or instructions near the CPU, so the CPU does not have to keep
fetching the same data that is repeatedly used.

FURTHER READING

Refer to AN4839 application note for more information: Level 1 Cache.

Dual core
The STM32H7 series includes the dual-core line:

Arm® Cortex®-M7 and Cortex®-M4 cores can respectively run up to 480 MHz and 240 MHz enabling
more processing and application partitioning. Dual-core STM32H7 product lines are available with an
embedded SMPS for improved dynamic power efficiency.

The second Cortex®-M4 can offload heavy calculations to open up the M7 core for the
drawing/graphic operations.

NOTE

The TouchGFX Generator tool is not available as additional software for STM32H7 dual-cores

Bus architecture
The majority of STM32 microcontrollers provide a 32-bits multi-AHB bus matrix interconnecting all
the masters (CPU, DMAs, etc.) and the slaves (flash memory, RAM, FSMC, AHB and APB peripherals).
This ensures seamless and efficient operations even when several high-speed peripherals work
simultaneously.

In addition to multi-AHB interconnect, some STM32 (Cortex®-M7) products embed 64-bit AXI to
expand bandwidth. This yields the best compromise between performance and power consumption.

Price
The size of the internal flash, internal RAM, and number of pins available in the package influence the
price of the MCU. Considering the requirements of the interface, resolution, performance, etc., the user
can ultimately find suitable MCUs and estimate price.

FURTHER READING

See STM32 32-bit Arm Cortex MCUs for available STM32 microcontrollers.

Version: 4.16

Display
Products are getting richer with enhanced user experiences, embedding newer larger displays, and
replacing older segment displays with low and high color displays.

This chapter focuses on some considerations that should be included when selecting the right display
for your embedded GUI product.

Different types of displays

NOTE

Generally, TouchGFX runs on any kind of display, and is not dependent on display technologies, interfaces,
viewing angles, brightness etc.

Examples of Displays
Selecting the right display technology can be complicated as key factors in each display are different.
The following chapter is high-level addressing the different technologies, and can hopefully help you
in the right direction.

Each kind of display consists of rows and columns of pixels, which can be driven in different ways,
having internal and/or external display controller and RAM for framebuffers. In some technologies,

each pixel needs to be updated frequently compared to other technologies where this is not
necessary, as updates only happens when something changes in the GUI.

There is a vast amount of different display technologies. Some of the most used display technologies
are described in the following.

LCD-TFT
TFT stands for thin-film-transistor and is a variant of LCD displays with an active matrix. LCD-TFTs are
widely used in embedded products as they are available in many different resolutions, sizes, interfaces,
price ranges, etc.

Some variants of TFT-LCDs are TN and IPS panels. Examples of IPS TFT-LCDs, is the STM32F769 DISCO
and STM32H747 DISCO, both running a 800*480 MIPI-DSI TFT IPS LCD display. Examples of TFT-LCD
TN displays are the STM32F746G DISCO and STM32H7B3I-DK. Both technologies come in different
qualities, but some differences can be the color presentation and viewing angles, where IPS panels
often are the best.

LCD-TFT layers example

MIP
MIP means memory in pixels, which uses a pixel technology which only needs power/data when
something changes on the screen. MIP displays are low power and runs low to full color GUIs.

ePaper/eInk
eInk displays are low color displays, ideal for applications with low power consumption needs, wide
viewing angles, and easy readability. TouchGFX Implementer SDATAWAY demonstrates an eInk display
running an TouchGFX application on a STM32F412 here: https://www.touchgfx.com/cases/e-ink/

E-Ink

Display Interface Overview
The display is connected to the MCU via different types of interfaces. The display interfaces vary on
different parameters, and the section below addresses the graphics related parameters like number of
pins needed, max bandwidth supporting different resolutions.

TouchGFX can use any display interface, and STM32 microcontrollers offer a wide range of display
interfaces connecting to Motorola 6800, Intel 8080, SPI, RGB-TFT, and MIPI-DSI.

Interface # of pins Target resolutions Max bandwidth Benefits Disadvan

SPI 4* Up to 480*272 16 MHz
Simple hardware
interface, faster
than I2C,

Parallel
8080/6800
(FMC)

8/16* Up to 480*272

RGB-TFT
(LTDC) 8/18/24* Up to 1280*800

High
performance, low
cost

High pin
parallel
commun
can cause
issues, ca
require h
clock freq

*Additional pins can be needed for: touch, power, controls signals etc.
** a bridge is needed for interfacing with a LVDS display.

Brightness and Backlight
Brightness is often measured in candela/m². Backlights can be the most power consuming part of the
display. In sunlight one would need around 600 cd/M2. Often higher brightness increases the
temperature, minimizing the lifetime of the LEDs.

Viewing Position and Color Inversion
When embedding a display into a product, it is important to anticipate and know which viewing
positions the user can have. In some displays from certain viewing positions, a color inversion can
happen. This means that installing the display in the right position, allowing the user to operate and
experience the GUI while seeing the right colors designed by the graphics designer, can be tricky.

The color inversion can happen on TN panels. Adding a SWV film can help increasing viewing angles.

Interface # of pins Target resolutions Max bandwidth Benefits Disadvan

MIPI-DSI
(LTDC) 4/10 Up to 1280*800 80Mbps-

1.5Gbps
High
performance, low
pin count,

Complex
protocols
drivers

LVDS** 1366*768
Low
EMC/interference,
high speed

Bridge ne

Resulting colors from different viewing position

Display Lifetime
The lifetime is defined as the time until the display reaches half brightness at 25 degrees. If your
product has a long life cycle, then this parameter must be taken into consideration.

Pixel density
Pixel density defines how many pixels are shown per inch or square inch. Choosing the right pixel
density can depend on the expectations from the end user, environment, design needs etc. Putting
this into perspective, a high-end mobile phone runs a 6.1” 2340x1080 with a pixel density per square
inch of 178,500, while a commonly used 5” TFT display running 800x480 has 34.816 Pixels per square
inch.

Low, medium and high pixel density

Some standard resolutions, display sizes and pixel densities measured in pixels per square inch (PPI2):

QVGA 320*240 2.4” (27,777 PPI2) 3.5” (13,061 PPI2)

WQVGA 480*272 4,3” (16,462 PPI2) 5” (12,175 PPI2)

HVGA 480*320 3.5” (27,167 PPI2)

VGA 640*480 5,7” (19,698 PPI2) 6.4 (15,625 PPI2)

WVGA 800*480 4” (54,400 PPI2) 5” (34,816 PPI2)

WSVGA 1024*600 7” (28,746 PPI2) 10,1” (13,808 PPI2)

For some applications it can be difficult seeing any difference, unless the display is being looked at
very closely. Examples of pixels densities are: STM32F476DISCO with 16,462 PPI2 and
STM32F769DISCO with 54,400 PPI2.

The example above of different pixel densities can in some cases impact the dynamic color range and
anti-aliasing:

Dynamic color range

The dynamic color range is the ratio between two contrasting colors, like black and white. In the
example above, the blue and white contains different levels of white and blue. The image on the left
has lower pixel density, and the picture on the right has more pixels to show all the colors represented,
creating a smoother transition between different colors and edges.

Anti-aliasing

When the pixel density is too low, a staircase effect can appear. Using anti-aliasing in the application
can smooth out these staircase edges in an image. When looking at the first two blue circles, the
staircase effect appears, as the pixel density does not allow the display to represent enough pixels to
have a high enough color range enabling high enough anti-aliasing.

Anti-aliasing

Environment
When deciding which display to use, the environment is a vital part to consider. Some questions to ask
yourself are:

Is the display in direct sunlight?
Is it being used in rugged environments where it needs to be impact resistent?
Is it being handled by one wearing gloves?
Does it need vandal proofing?
Is it being operated with physical buttons only?

Answering these questions will give you an better idea of which touch technology to select or even if
touch is required.

NOTE

TouchGFX runs on both touch and non-touch displays, and the TouchGFX GUI can be controlled by buttons,
hand and voice gestures also.

Touch / Non-touch displays
There are different touch technologies available in the market today and some examples are: resistive,
capacitive (surface, projected), SAW touch, infrared touch. This section will only address some of these
technologies:

Capacitive Touch

This is one of the most popular touch technologies. It comes in two sensing technologies:

Self capacitance is for single finger touch
Mutual capacitance allowing multi touch but more challenged when exposed to water/moist
(TouchGFX does not support multi touch).

Most STM32 DISCO boards are using capacitive touch, some examples are the STM32H7B3I DISCO,
STM32H750 DISCO, STM32F746G DISCO.

Resistive Touch

Resistive touch is a simple technology activated by mechanical pressure, and only requires ADC - or a
simple touch controller. It is often low price due to maturity. The surface is more protected to
scratches and tearing, so more difficult to vandal proof. It also has lower sunlight readability. The
STM32F429 DISCO board uses resistive touch, available with a TouchGFX application.

Non-touch

Often if the GUI is being controlled by buttons, just displaying images/video or controlled externally
by another device, then adding touch to the product might not even be relevant. By not adding a
touch layer to the display, this will decrease the price.

Displays with RAM
Displays with either Motorla 6800, Intel 8080, SPI, or MIPI-DSI interfaces usually embed RAM (GRAM),
which has the size of 1 full framebuffer. These types of displays can connect to the MCU via SPI, FMC
or DSI-host(LTDC). A second RAM (framebuffer) is required externally to the display RAM and this can
be in the MCU or in external RAM.

MIPI-DSI display

In some cases the need of external RAM (external to the MCU) for storing the framebuffer is not
needed, and thereby the available internal RAM in the MCU is used. If the MCU RAM is lower than 1

full framebuffer size, using the TouchGFX partial framebuffer feature is an option, allowing a very small
framebuffer footprint.

FURTHER READING

Read more in the Partial Framebuffer section

SPI display

Non-square pixels / Pixel aspect ratio
The most common pixel shape is square, but some displays use non-square pixels. Pixel ratio is the
ratio between the width of a pixel and the height of a pixel. The aspect ratio using a square pixel with
100 pixel width and 100 pixel height is therefore 1/1. But non-square pixels result in a different pixel
aspect ratio. If a graphics designer does not take this into account, the displayed bitmaps may be
stretched like the example below.

Stretched bitmaps

Cover lense
As the display is the face of your embedded graphical user interface product, adding a cover lens
could improve the look and feel. The cover lense can improve the design, scratch resistance, impact

strength, colors, etc.

Version: 4.16

External Memories
This chapter focuses on helping you choose the external memories for your embedded graphical user
interface. Before reading this chapter, it is recommended to read the Preliminary Considerations and
MCU so you are aware of some of the dependencies which are important when choosing the right
external memories.

Running a TouchGFX GUI application sometimes requires external memories for storing the
framebuffer(s), bitmaps, fonts, translations, etc. A TouchGFX GUI is not dependent on external
memories to run, but needs either internal RAM (in MCU) or external RAM for storing the
framebuffer(s), and internal and/or external flash for storing data.

The overview below shows some external memories which can be used with an STM32 MCU. Some of
the different memory examples are available with both serial and parallel interfaces.

Memory overview

The different STM32 microcontrollers come with different external memory interfaces, allowing to
connect different external memories.

Non-volatile Memories
In a GUI application, the non-volatile storage (flash) is mainly used for storing some or all graphical
data assets, such as bitmaps, fonts, translations, and TouchGFX application code. The non-volatile
memories are supported by the STM32 products and can be connected with different types of MCU
interfaces using either parallel or serial memories and different configurations.

Non-volatile memories

The choice of the non-volatile storage depends on:

Density
Performance
Type of the interface (parallel/serial)
Bill of Material

NOR Flash
The NOR flash is a non-volatile memory that allows random access to any area in the memory.

NOR flash ranges typically between 128 Mbits to 2 Gbits.

For example, for 480x320 resolution and 16 bits per pixel as color depth, the user interface needs
~300Kbytes for a full screen background image. This does not take into account the additional
bitmaps needed for buttons, sliders, icons, fonts used, number of languages, etc. A 256 Mbits (32 MB)
NOR flash can store up to ~100 unique full screen images, and less when adding the rest of the
graphical assets needed.

The NOR flash can be used in memory mapped mode where the external flash is seen as an internal
memory for read operations. This mode allows the system masters (such as DMA, LTDC, DMA2D,
GFXMMU or SDMMC) to access the memory autonomously even in low-power mode when the CPU is
stopped, which is ideal for mobile and wearable applications.

The NOR flash memory is available with different interface options:

Parallel NOR flash (with x8 or x16 interfaces)
Serial NOR flash (single, dual, quad and octo data lines for serial memories, and hyperbus flash)

Serial NOR Flash Memories

Serial NOR flash memory is widely used as storage in graphical applications.

This type of memory has benefits such as:

High frequency
Simplifying and reducing the printed circuit board (PCB) area
Memory mapped mode up to 256Mbytes of addressable area
Number of needed pins is between 4 to 12 pins

NOR Single, Dual, Quad, Octo Flash Memories

The NOR flash memories are available with different data lines configurations.

Single
Dual
Quad
Octo

Switching to the serial NOR flash memories with more data lines enhances the performance and the
bandwidth of the memory interface, but also requires more pins to interface with the STM32 products.

Below is an overview of the different SPI memories depending on the number of data lines:

Serial interface overview

Parallel NOR Flash Memories

Parallel NOR flash memory has the same advantages as the serial flash memory in term of
performance and configuration. The parallel NOR flash can be configured in memory mapped mode
and can be accessed as if it was an internal memory. The differences between the parallel and serial
NOR flash is the number of pins and the complexity of the printed circuit board (PCB).

Up to 47 pins are needed for the NOR flash memory with up to 24 pins for allocation and 16 pins for
data.

NAND Flash Memories
NAND flash memory is ideal for graphical applications requiring a high volume of graphical assets and
faster write and erase operations. The NAND flash memories cannnot be configured in a memory
mapped mode and as a consequence, the NAND flash memories are not recommended for code
execution.

NAND flash ranges between 1 Gbit to 512 Gbits.

Using a cache in RAM is often necessary when using NAND flash. This enables moving the currently
used graphics assets to RAM and drawing them from the cache.

NAND flash memory

eMMC Memories
eMMC (Embedded Multi Media Card), established by the MMC Association, is equivalent to a NAND
flash in addition to a master integrated controller. One obvious advantage of eMMC is the integration
of a controller in the package that provides standard interfaces and management for the flash
memory, allowing manufacturers to concentrate on other parts of product development and shorten
the time to market.

The eMMC flash ranges between 2 Gbits to 128 Gbits.

The eMMC has relatively lower random read performance compared to NAND and NOR. eMMC can
require adding a cache to overcome slow random read.

Up to 10 pins are needed for the eMMC flash memory with 8 pins for data and 2 pins for control.

eMMC memory

Volatile Memories
External volatile memory is mainly used for storing the framebuffer(s), if the internal MCU RAM is
insufficient, and in some cases to cache assets from non-memory mapped flash. This section focuses
on SRAM, SDRAM and PSRAM as they are commonly used in embedded systems running a GUI. But
there are other available variants, and the memory manufactures are using different naming schemes
for their memories for example "hyper RAM", "IoT RAM", "octal RAM". Common for most of them is
that it is possible to find an STM32 MCU which supports it.

Volatile Memories

When selecting the right external RAM, we recommend having the following in mind:

Density
Performance
Power consumption
Interface / pin size

Framebuffer strategy

SRAM
SRAM is a static random-access memory which retains the bit data as long as the power is supplied.
Generally SRAM provides faster access, but can be more expensive than DRAM and it comes in smaller
densities. SRAM typically has a faster access time compared to DRAM and is therefore more suitable
for GUIs needing more animations, scaling, rotation etc. SRAM comes in both synchronous and
asynchronous modes, where the synchronous modes offers higher bandwidth capabilities, but also a
more complex interface.

NOTE

Also available as a non-volatile random-access memory called nvSRAM which also has the ability to store
and recall data.

SDRAM
SDRAM is a dynamic random-access memory and stores each bit of data on capacitors, which requires
less physical space to store the same amount of data compared to SRAM. As it requires constant
refresh in order to keep the data, it requires more power compared to SRAM.

SDRAM densities typically come in 16 Mbits up to 512 Mbits, available in 8, 16, and 32 bit interfaces,
running frequencies between 100-200 MHz.

A suitable SDRAM for storing two framebuffers running a 24bpp 800*480 resolution would be a 32
Mbits SDRAM as a double framebuffer strategy requires ~18Mbits of RAM.

PSRAM
PSRAM is pseudo static random access memory, with an internal structure of a DRAM (control logic)
with an SRAM interface. It typically comes in 8-256 Mbits densities. PSRAM compared to traditional
SDRAM and SRAM has the advantages of higher speed and lower power consumption.

Additional memories
New octal RAM and Hyper RAM memories use serial 8 bit interfaces in a single and dual data rate
mode, offering high throughput speed and good integration.

Selection of External RAM Density

If your strategy is to place the framebuffer(s) in external RAM, this table gives you an overview of
different RAM densities available in the market.

It also provides you with an overview of needed RAM for running double framebuffer setup in 1, 2, 4,
8, 16, and 24 bits per pixel (dividing by 2 gives you the required density for a single framebuffer).

In some cases the single framebuffer setup is sufficient and in some STM32 microcontrollers, you have
enough internal RAM for placing the framebuffer(s).

SDRAM and OctoSPI Densities

Required RAM for double framebuffer setup

Version: 4.16

Board Bring Up Introduction

Project activity

This chapter will help you through the board bring up phase of starting TouchGFX programming on a
new platform. Bringing up the board means making sure that all necessary parts of the board and
corresponding drivers are working correctly before TouchGFX is added to the mix.

If you already have a working board with a display, many of the activities in this phase will be easy. If
you have a completely new custom made board, you should expect that this phase will take some days
to complete. The work does normally pay off as an unstable platform makes it difficult to write good
applications. A stable and proven platform on the other hand allows you to concentrate on the
application.

This chapter is for you if are a developer with the task of ensuring that your hardware and low-level
software components on the board are working as expected. This chapter is not for you if you are
concerned only with developing the actual UI of your application.

In bringing up your board, you should have a thorough understanding of the components and
peripherals on your board, the connections between all these, the protocols they communicate via and
the driver code available and/or needed for each one.

The next chapter TouchGFX AL Development discusses how to create the abstraction layer that allows
TouchGFX to run on top of your hardware and drivers.

Tools of the trade
Some important tools when bringing up an STM32 based board are listed in the table below.

Tool Description

STM32CubeMX An easy to use tool for configuration of the MCU and generation of initialization
source code for a project and internal peripherals.

Tool Description

STM32Cube
Firmware
Package

The Cube Firmware for your MCU family contains many example projects and
applications that show how to use various peripherals.

Vendor
datasheets

The datasheets for your external devices, like the display or flash, contain
important information such as timing and voltage for correct initialisation of
both MCU (e.g. through CubeMX) and the external device.

Vendor driver
code

To save time you should request example code for your external devices from
the vendor. The driver code often needs to be ported to your STM32 MCU, but
this is often simpler than writing driver code from scratch.

All the work done in board bring up phase is not dependent on TouchGFX and should not involve any
TouchGFX code. Instead the work and the resulting code will serve as a solid foundation for
developing the TouchGFX Abstraction Layer.

The primary goal is to make sure that your hardware and lower-level software is in fact working in
accordance with your expectations for the final application.

Verification of Functionality
The code produced during the board bring up, in form of one or more test projects will serve two
purposes:

Abstraction
Layer

The board initialization code is the foundation upon which we will build the
TouchGFX AL and ultimately the working UI application

Test code

The verification code written accompanying the board initialization code, will be the
ultimate place to go to if/when things do not act as expected. During the board
bring up phase you will create a number of small verification programs ensuring
that the board and each particular component are working as expected. These
verification programs will be of great value when progressing, they can be revisited
and enhanced if/when things become uncertain.

Due to the above two reasons it can be very beneficial to save the verification programs systematically.
This will allow you to use the test programs again later. For example to test new revisions of your
hardware or to find the root cause, when your larger applications are unexpectedly failing. It is also
recommended to make systematic notes of any measurements, e.g. memory bandwidth, done during
development.

Board Initialisation Code is the bases for the TouchGFX AL

Overall Process
Since we cannot know the concrete makeup of your hardware the following How To guide will be a
general step-by-step guide to bring up and prepare boards to run TouchGFX.

Each step of the guide will be concerned with one particular part of your hardware and/or software
components and the bring up of this. One example of a custom component part of your hardware
could be the touch controller. The overall goal is to communicate with the touch controller to get
information on any touches on the display. The specific commands to send to the touch controller
depends on the specific controller you are using on your hardware, so the guide cannot provide the
complete driver. For this you need to combine the guide with the information in your touch controller
datasheet.

NOTE

When reading and performing the step-by-step guide for your custom board bring up, we recommend that
you:

do one step at the time
verify each step thoroughly before moving on
use the guide as a means for debugging, when something is not working as intended, or go back and
revisit previous steps to make sure you did not break those steps
do not be alarmed if you experience unexpected behaviour - bringing up a board is a non trivial task

Each step in the guide will follow the following structure:

Motivation
This part will explain the step and motivate why the step is an important step in preparing for
running TouchGFX on your hardware.
Goal
The goal part lists the goals for this step. A list of verification points details the specific tests that
you should perform. These verification points ensures that your software implements the
requirements needed to running TouchGFX sucessfully on your hardware.
Prerequisites
Here we list items that are required to perform the tasks.

Do
This part explains as concrete as possible how to write the software required to configure and use
the hardware. For some steps it is not possible to be very precise as the software depends a lot on
the hardware you use. In that case this part lists the steps on a higher level and you must find the
details relevant for your hardware yourself.

The individual how-to steps are:

Step Content

Create Project Create an empty project in CubeMX

CPU Running Ensure that the MCU is running at the desired speed

Framebuffer in internal RAM Allocate a framebuffer in internal RAM and transmit it to the
display

External RAM Enable the external RAM

Framebuffer in external
RAM

Move the framebuffer to external RAM and transmit it to the
display

External addressable flash Enable external memory-mapped flash

External block mode flash Enable external block-mode flash

Hardware acceleration Enable the Chrom-ART graphics accelerator

Touch controller Setup communication to the touch controller

Physical buttons Configure access to physical buttons

Flash loader Develop a way to write data to the external flash

Version: 4.16

1. Create Project
Motivation
In this section we will use CubeMX to generate a working project for a specific MCU. This project will
be the basis for the rest of the steps in this how-to guide.

We will refine the project using CubeMX in coming steps and write and integrate code to make all
required peripherals work.

This project will be long lived and should be kept. You should now decide on a strategy to keep the
different versions available, so that you can go back and run them again. Either on new hardware or
just to recheck the hardware.

Maybe you need many small test programs. In that case this project is a good starting point.

Goal
The goal is to create a project in CubeMX that can be flashed to your board and executed. If you have
an IDE with a debugger (e.g STM32CubeIDE or IAR Embedded Workbench) you should also check that
you can debug and step through your project on the MCU.

If you do not have a debugger you should find a way to print out debug statements from various
places in your project. E.g. on a serial port.

Verification
Here are the verification points for this section:

Verification Point Rationale

Project opens in
IDE

The project was generated correctly by CubeMX and can be used as starting
point for further board bring up development.

Project compiles The project is setup correctly with drivers and include paths. We can write
more code and recompile the project repeatedly.

Breakpoints are
hit

The project can be debugged and stops at breakpoints. We can examine the
project state and investigate errors.

Prerequisites
The following are the prerequisites for this step:

STM32 based board
Programming / debugging interface - ST-LINK, JLINK or similar
CubeMX installed
IDE installed - STM32CubeIDE, IAR Embedded Workbench, Keil uVision or similar

Do
We will now go through the steps of creating a new project in CubeMX. In this example we will use the
STM32F429 MCU. You should of course select the MCU on your hardware.

In CubeMX click "ACCESS TO MCU SELECTOR" in the "Start My Project from MCU":

Create new Project

It is also possible to start a new project based on a STM32 evaluation kit, e.g. the STM32F429Discovery
board. You can/should do this if your hardware design is based on one of the evaluation kits.

We then select the relevant MCU. Here we select the STM32F429ZIT6U:

Select the MCU

Change to the "Project Manager" tab, and give your project a name. You can of course also select a
new project location. Under "Application Structure", select Advanced. Under "Toolchain / IDE" you
must select your IDE. For this example we select IAR:

Set project name and IDE

Now click the "Generate Code" button in the upper right corner. If this is your first project for the
selected MCU family (F4/F7/H7) CubeMX automatically proposes to download the relevant Cube
Firmware package. Accept that to get the latest version for later use.

CubeMX can download Cube Firmware

Click "Open Project" to open the project in your IDE:

The project is generated

The project is opened in IAR Embedded Workbench

The project generated by CubeMX contains startup code specific to the MCU, interrupt table, system
initialisation code, and HAL drivers for all the peripherals in the MCU.

The project can now be compiled and debugged from your IDE. In IAR we click Project->Make to
compile the project, and Project->Download and Debug to debug the project:

Debugging the project in IAR Embedded Workbench

The IAR project is setup to use the STLink debugger. If you are using something else, then change the
Debugger properties for the project in your IDE.

The main loop is running continuously

The while loop in main is typically important in projects running without an operating system. Check
that you get there by setting a breakpoint and maybe add some code to the loop.

It is recommended to browse the project in your IDE to get familiar with the structure. Try also to step
from SystemInit to main.

User Code sections
At this step it is important to understand the concept of "User Code sections" used by CubeMX before
you start editing your project. All of the source files in the Core/Src folder in your project are
generated by CubeMX. When you later change the project configuration in CubeMX, e.g. to enable a
UART, some of these files will be regenerated. You have probably also inserted code in some of these
files. Your code will be lost when CubeMX regenerates the project unless you follow one single rule:

Only write code in User Code sections

Any code that you write outside of a User Code section will be deleted by CubeMX.

As an example, let us look at the first few lines in Core/Src/main.c:

main.c

int main(void)
{
 /* USER CODE BEGIN 1 */

If you want to insert code here in the beginning of the main function, you must put it between USER
CODE BEGIN 1 and USER CODE END 1. If you put code outside this block it will be deleted by CubeMX.

CAUTION

Do not write code outside User Code sections. Such code will be removed when CubeMX generates code.

Further reading
The documents linked here contains more information about CubeMX:

FURTHER READING

STM32CubeMX User Manual
STM32CubeIDE resources
Massive Open Online Course on STM32CubeMX and STM32Cube

 /* USER CODE END 1 */

 /* MCU Configuration--*/

 /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
 HAL_Init();
 ...
}

Version: 4.16

2. CPU Running
Motivation
In this section we will make sure that the MCU core, internal RAM and flash are running at the desired
clock speed.

TouchGFX can run on any MCU speeds, but a wrong clock configuration can lead to lower than
necessary performance. Later in your board bring up you need to configure specific timing
parameters, e.g. an I2C clock for the Touch Controller. This is impossible without ensuring that the
MCU runs with the correct speed.

For STM32 microcontrollers you setup up a system clock. This clock is then divided down to generate
the FCLK core clock and various peripheral clocks like APB1 peripheral clock.

Goal
The goal for this section is to modify your project to get the correct clock configuration. You should
also verify that your internal RAM and flash are running at the expected speed.

Verification
Here are the verification points for this section:

Verification Point Rationale

SystemCoreClock variable's
value is correct The microcontroller is configured to run at the desired frequency.

Internal RAM is readable The microcontroller has the expected amount of internal RAM, it is
readable, and the speed is measured

Internal Flash is readable The microcontroller has the expected amount of internal flash, it is
readable, and the speed is measured

Caching is disabled Running with caches disabled makes the system less complex and
easier to understand.

Prerequisites
The following are the prerequisites for this step:

Information about the clock source on your hardware. It is common to use a crystal, but other
solutions are also possible.

Do
We will now go through the steps of adjusting the clock configuration of our project to get the
required MCU frequency. Afterwards we will discuss how to measure read speed of the internal flash.

System Clock
In CubeMX click on the "Clock Configuration" tab. This gives you an overview of the clock tree for your
specific MCU:

Clock Configuration

In this example the clock source is selected to be HSI. Many projects use an external crystal and must
use HSE with a suitable divider (/M) and multiplier (/N). It is out the scope of this guide to advice on
the clock configuration. After you have changed the clock configuration you must regenerate the
project in CubeMX (click Generate Code in upper right corner).

The core clock (HCLK) can be calculated at runtime by the generated code and saved in a variable. This
variable can be used by application code to correctly convert between clock cycles and seconds, and
e.g start timers. To get the variable recalculated you must call the SystemCoreClockUpdate() function.
Insert a call in main.c (in a user code section):

SystemCoreClockUpdate

If we set a breakpoint at the end of that function we can see the core clock (according to the
configuration):

SystemCoreClock

Another important point to test is the System Timer. This timer is running on HCLK divided down to
give an interrupt every 1 ms. This timer is used by the Cube Firmware to implement millisecond delays.

We can test this by inserting a delay of e.g 5 seconds in main. Verify this with a stop watch or similar
means:

Measure delay

Flash and RAM size and speed
It is easy to check the reading speed of memory by using the System Timer. The System Timer
interrupt increments a variable each millisecond. By reading this variable before and after a piece of
code, we can measure the running time of the code (with 1 ms resolution). This scheme can be used to
measure a time period in many different places in your application. It is not very precise, but can be
done without external devices like oscilloscopes.

To do that we first need two volatile variable to save the result. If we don't save the result here, the
optimizing compiler will in some case remove the measuring code:

Global volatile variables to hold measurement results

Here is an example where we read the flash from 0x08000000 to 0x08020000 (128 Kb) and time the
code:

Timing a read loop

You can use code like this to verify the speed of your different memories. Once you have created a
setup in CubeMX you can measure the read speed and make a note of the result. The measurements
can then be repeated later and verified. If you want to measure the bandwidth of your memory (the
read speed in kb/s), you can compare the amount of data with the time measured.

On a 16 MHz STM32F429 the code runs in 12 ms giving us a read speed of the internal flash (using
this method) of 128kb/0.012s = 10,666 kb/s.

The same loop above can easily be changed to verify that all the internal flash is enabled and readable.
Just change the start and end addresses.

The code can also check the internal RAM. On the F429 the RAM starts at address 0x20000000. The
core coupled memory is at 0x10000000. Check the datasheet for your specific MCU for the relevant
memory addresses.

You should make a few measurements on your different memories and make a note of the result. For
RAM test both the read and write speed.

Linker script
Another thing to look at is the linker script. This configuration file tells your linker what are the
addresses of the RAM and flashes in your system. The linker script is generated by CubeMX together
with the project, but it can be good to study it. Later you will in most cases have to modify it to suit
your project's needs.

Cache on F7 and H7

The ARM Cortex-M7 based STM32F7 and STM32H7 microcontrollers include data and instruction
caches. It is recommended to disable at least the data cache until you have a stable platform. The data
cache improves the performance significantly in many cases, but it also introduces complexity during
testing.

When you have a stable platform, you can enable the data cache. It is easier at that point to identify
that a given problem originates from data cache management, since the platform is otherwise
functional.

The complexity of the data cache comes from the fact that the MCU core reads and writes to the
cache, whereas peripherals like DMA2 and LTDC read directly from memory (and not in the cache). For
this reason, you can be in a situation where you write data to e.g. your framebuffer, but some of the
data is not seen on the display. This is because the LTDC did not find the new data in the RAM because
it is only written to the cache so far. The solution is to flush the cache at certain points in your project,
but we recommend to deal with this at a later point.

Caching can be disabled/enabled in CubeMX in the System Core section.

TouchGFX internal DCache State Machine

TouchGFX engine keeps track of the current and last rendering operation, there are two states
HARDWARE and SOFTWARE . The initial state is set to HARDWARE as the mijority of draw operations are

done by hardware. When a state switch occurs the state machine will call the appropriate virtual
function to handle cache invalidation. When the state transit from HARDWARE to SOFTWARE it will call
the virtual method void touchgfx::HAL::InvalidateCache() and when the state transitions from
SOFTWARE to HARDWARE it will call the virtual method void touchgfx::HAL::FlushCache() . The

functionality of these two functions is left for the user to implement in the derived HAL class.

HW Rendering SW Rendering

Render SW[Last!=SW]/Invalidate Cache

Render HW[Last!=SW]/Flush Cache

Render HW[Last==HW] Render SW[Last==SW]

TouchGFX engine internal DCache State Machine

If using TouchGFX Generator the implementation of these derived methods will be created in the
TouchGFXGeneratedHAL class with function calls to DCache invalidation and no further action is
needed.

Further Readings
The documents linked here contains more information about CubeMX and the STM32 caches:

FURTHER READING

Section on Clock configuration in the STM32CubeMX User Manual
Level 1 cache on STM32F7 and STM32H7

Version: 4.16

3. Framebuffer in internal RAM
Motivation
In this step we will see the display come to life by transferring pixel data from the internal RAM to the
display. This step ensures that we can transmit data to the display and that we can continuously
update the contents of the display.

In addition to transferring image data to the display we must also make sure that we can continuously
send new data to the display without seeing errors on the display. We are also going to measure the
speed of the transfer as this has influence on the frame rate we can obtain with the display.

We will place a framebuffer in internal RAM as we know from last section that this RAM is both
readable and writable. We will update and transfer this framebuffer to the display repeatedly.

Recall that the size of the framebuffer is calculated by this formula:

width x height x bpp

So, for example, a common 16 bit display with resolution 480 x 272 will take up 480x272x16/8 bytes =
261120 bytes.

If the display size implies a framebuffer too large to be stored in internal RAM, you should not skip
this step. Instead configure the display controller to only update a part of the display. This way we can
tune the amount of RAM needed for the framebuffer and make it fit internal RAM.

The type of display interface has a large impact on the setup and code needed to transfer the
framebuffer. In this section we will first target a display connected to the LTDC. If you are using e.g. a
SPI display, the code will be very different, but the tasks and goals are the same.

Goal
The goal in this section is to transfer a framebuffer to the display. You should also verify that you can
modify the framebuffer content and resend the framebuffer continuously.

Verification
Here are the verification points for this section:

Verification Point RationaleVerification Point Rationale

Framebuffer is shown Display controller or SPI is configured and running

Updated framebuffer is
shown We know how to repeatedly transmit the framebuffer

Colors are correct The GPIOs are correct (LTDC) or the data format of the display matches
our framebuffer

Framerate is correct The pixel clock and porches are configured to get the required
framerate

Prerequisites
The following are the prerequisites for this step:

Information about the display, typically a datasheet
Information about the connections between the MCU and the display.

Do
Depending on the display type, the needed setup differs. But for all display types we need a
framebuffer in internal RAM. An easy way to allocate that memory is to just declare a global array with
the correct size:

main.c

If your internal RAM is not big enough to hold the array, declare a array corresponding to a smaller
resolution, say 480x200.

The method to transfer the framebuffer to the display depends on the display type. We will look at this
now.

Parallel RGB Displays
We will first discuss a parallel RGB display connected to the LTDC controller on the MCU.

The configuration tasks for a display like this are:

uint16_t framebuffer[480*272]; //16 bpp framebuffer

Configure the GPIO connections to the display
Configure the LTDC controller
Configure the LTDC pixel clock
Setting the framebuffer address
Check the framerate

As an illustrative example we will use a STM32F746Discovery evaluation kit. This board features a
480*272 display.

Display GPIO

This display is running in 24 BPP mode, so we configure the 24 GPIOs for the connection between the
LTDC and the display. This is most easily done in CubeMX under Multimedia -> LTDC -> GPIO
Settings:

Configuring display GPIOs

Besides the 24 GPIOs for the pixel transfer (e.g. LTDC_B0) we also configure the 4 display control
signals:

Signal Function

LTDC_CLK Pixel clock. Signals to the display when to sample the pixels from the 24 lines

LTDC_DE Data enable. Pixels are transferred when active

Signal Function

LTDC_HSYNC Horizontal synchronisation. Allows the display to find the pixel line start

LTDC_VSYNC Vertical synchronisation. Allows the display to find the frame start

Check your hardware design and make the corresponding configurations.

LTDC Configuration

The LTDC configuration is found in CubeMX under Multimedia -> LTDC -> Parameter Settings:

Configuring LTDC Parameters

The active width and height corresponds to the resolution of your display. Check your display
datasheet for the synchronization pulse widths and the porch widths. Also pay attention to the signal
polarities. The values shown in grey are computed from the other values. These values are written to
the LTDC registers (and can be found in the code).

Now go to the LTDC Layer configuration under Multimedia -> LTDC -> Layer Settings:

Configuring LTDC Layer Parameters

For this test and in TouchGFX in general we will only use one layer. The resolution of Layer 0 should
match the framebuffer dimension. The framebuffer address needs to be set later, so just leave the
address unchanged here.

If you declared a framebuffer array smaller than the display resolution, then adjust the layer size to
match the framebuffer dimension. The LTDC will transmit the background color for the display pixels
not available in the framebuffer. It is recommended to set the background color to something
recognisable like red (Blue: 0x00, Green: 0x00, Red: 0xFF).

Clock Configuration

The clock configuration is also important. The clock must be enabled for all the GPIOs and the LTDC.
The pixel clock must be in the range acceptable by the display.

Clock configuration

The LTDC depends on 3 clocks: HCLK, PCLK2, and LCD_CLK.

Setting the Framebuffer Address

In CubeMX we configured the framebuffer address of layer 0 to 0xC0000000. We need to change that
to the address of our array in internal RAM. This is easily done by using one of the Cube Firmware HAL
functions:

main.c

Layers are numbered 1, 2, in the HAL functions, but 0, 1 in CubeMX. The LTDC is otherwise fully
configured by the code generated by CubeMX in the function MX_LTDC_Init(void).

The LTDC controller transmits the framebuffer to the display repeatedly. The image displayed depends
on the values in the framebuffer. Try different values or patterns in the framebuffer. Use e.g. memset
to clear the framebuffer to 0xFF to get a white display.

NOTE

 /* USER CODE BEGIN 2 */
 HAL_LTDC_SetAddress(&hltdc, framebuffer, LTDC_LAYER_1);
 /* USER CODE END 2 */

On some displays backlight must be turned on to make the frame visible.

Check the Framerate

The LTDC controller raises an interrupt for each frame. This interrupt will be used to drive the
application forward.

You should use a debugger to check that this interrupt is raised.

The time between these interrupts is the sum of clocking all the pixels and the porches. You can adjust
the porches to adjust the framerate. The porches were part of the LTDC configuration. It is custom to
lower the framerate by enhancing the vertical front porch.

An easy way to measure the framerate is to use the HAL_GetTick() in the interrupt handler:

stm32f7xx_it.c

Remember 60 frames per second should have 1000 ms / 60 = 16 ms between each frame.

SPI Display
We will now discuss a display connected with an SPI bus.

The configuration tasks for a display like this are:

Configure the SPI peripheral and GPIOs
Check the clocks
Write or find the necessary driver code

SPI Configuration

Start in CubeMX and enable the SPI. The images here are from an STM32G081 project:

volatile int last = 0;
volatile int diff = 0;
void LTDC_IRQHandler(void)
{
 /* USER CODE BEGIN LTDC_IRQn 0 */
 int now = HAL_GetTick();
 diff = last - now;
 last = now;
 /* USER CODE END LTDC_IRQn 0 */
 HAL_LTDC_IRQHandler(&hltdc);
 ...

SPI configuration

Check the display datasheet for SPI format used (data size and bit order). Remember the 16 bit words
are stored in little endian byte order in the framebuffer. Check if you can configure the display to
accept this format. If not, then you have to convert data during transmission.
Also pay attention to the clock polarity and clock phase. These are also specified in the display
datasheet.

The SPI clock (the bit rate) is controlled by a divider to the FCLK. The minimum divider is 2. If the MCU
is running e.g. 64 MHz, the maximum SPI bit rate will be 32 MBit/s.

On the GPIO tab you can check the GPIO selection for the SPI peripheral:

SPI GPIO configuration

Select the GPIOs on Pinout view on the right:

SPI GPIO selection

What is left now is to configure the display and transfer the framebuffer on the SPI channel. CubeMX
cannot generate this code for you, as it depends heavily on the display.
For many displays it is necessary to send a sequence of commands and follow a specific power up
sequence. After that you typically set the color mode and turn the display to ON. All this should be
specified in the datasheet or examples provided by the vendor.

The Cube Firmware contains examples using SPI communication. The Cube HAL contains various
helper functions. The basic function to send data is:

stm32g0xx_hal_spi.h

We recommend using these functions until communication is running stable. Afterwards performance
can sometimes be improved by writing dedicated functions.

An SPI aware oscilloscope or SPI to usb logger can be very helpful in the process of writing a SPI
display driver.

NOTE

HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size,

Start with a low frequency on SPI to avoid noise problems.

Checking the Display Colors
At this point where you can transmit a framebuffer to the display, it is adviceable to thoroughly check
the display colors.

The idea is to write a color to the framebuffer and check the display by visual inspection. Here are a
few examples:

Test Description

Red Set red color in the framebuffer. The display must be red also.

Green Set green color in the framebuffer. The display must be green also.

Blue Set blue color in the framebuffer. The display must be blue also.

Dark color A dark color (e.g. 0x8000) for 50% red, must be dark on the display.

Changing color Change the framebuffer every second and see that the display also updates.

To put a color in the RGB565 framebuffer, the following scheme can be used:

For a 24BPP display the code is better formulated using byte pointers (colors are stored in BGR order):

uint8_t r = 0xff, g = 0x00, b = 0x00; // Solid red
uint16_t col = ((r>>3)<<11) | ((g>>2)<<5) | (b>>3); // Convert colors to RGB565
// put colors into the framebuffer
for(int i = 0; i < W*H; i++) {
 framebuffer[i] = col;
}

uint8_t* framebuffer[480*272*3]; //24 bit framebuffer
...
uint8_t *fb = framebuffer;
while(fb < (uint8_t*)(framebuffer + (480*272*3))) {
 *fb++ = 0x00; // Write blue color and increment pointer by one byte
 *fb++ = 0x00; // Write green color
 *fb++ = 0xFF; // Write red color
}

Showing a colored framebuffer

Version: 4.16

4. External RAM
Motivation
In this step we will enable the external SDRAM. External RAM is often required in graphical
applications as the framebuffer is too big to fit into the internal RAM in many resolutions. Some
applications use two or three framebuffers, making external RAM even more a necessity.

NOTE

Skip this step if external RAM is not relevant for your board bring up.

When the framebuffer is to be placed in external RAM it is important that we ensure that the external
RAM

Can be read and written.
Runs at desired (typically maximum) speed.

Goal
The goal in this section is to enable the external RAM and read and write data from it.

Verification
Here are the verification points for this section:

Verification Point Rationale

External RAM is readable External RAM can be used for framebuffer location

External RAM writable External RAM can be used for framebuffer location

External RAM
Performance

Graphics performance is acceptable with framebuffer in external
RAM

Prerequisites
The following are the prerequisites for this step:

Information about the RAM, typically a datasheet
Information about the connections between the MCU and the external RAM

Do
The external SDRAM controller is configured in CubeMX under Connectivity -> FMC -> SDRAM1:

Configuring SDRAM

The AHB clock (HCLK) is reference clock for the FMC memory controller. Check the clock frequency
under "Clock Configuration" and use that to calculate the various SDRAM clock cycles.

Remember to configure all the GPIOs used for the SDRAM:

Configuring SDRAM GPIO

Further configuration
For some RAM chips it is necessary to do additional device specific configuration. This cannot be
configured in CubeMX, but must be done in the C code. The Cube HAL contains functions to send
commands to the device. Here is an example:

main.c

Testing the RAM
After configuring the external RAM it is important to test it. We should test at least the following:

FMC_SDRAM_CommandTypeDef Command;

/* Step 1: Configure a clock configuration enable command */
Command.CommandMode = FMC_SDRAM_CMD_CLK_ENABLE;
Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
Command.AutoRefreshNumber = 1;
Command.ModeRegisterDefinition = 0;

/* Send the command */
HAL_SDRAM_SendCommand(&hsdram1, &Command, SDRAM_TIMEOUT);

RAM is visible in the debugger
RAM is readable and writeable in the whole range
Performance is as expected

The memory controller uses a fixed address mapping of external memories based on their type. Check
the datasheet for your microcontroller for the addresses. SDRAM is typically mapped to 0xC0000000
(bank1) or 0xD0000000 (bank2).

Test RAM is visible in the debugger.

The first test when the RAM is enabled is to access it from the debugger. This will easily show if you
can read and write to the memory. Just open a memory viewer on the address:

Testing memory in Bank2 at 0xD0000000 in the debugger

RAM is readable and writeable in the whole range

The next test is to write small programs to write more data to the external memory. Preferably test the
whole memory. Here is a starting point:

uint32_t *externalRAM = 0xC000000;
const uint32_t size = 1000;

//write external RAM
for(int i = 0; i < size; i++)
{
 externalRAM[i] = i;

Now check the memory again in the debugger. This can reveal some types of error, for example if
some of the address pins are not connected or exchanged. You should also try with different value
patterns. Writing low numbers like 0, 1, 2, 3, will not reveal if some of the data pins are bad.

We can also read the memory with a little program:

Remember that a test like this will not tell if the addresses are incorrect.

Test all memory cells. Either by running a longer loop, or by changing the starting address.

Performance is as expected

We need now to test the performance of the external RAM. The performance is important when the
framebuffer is in external memory. A slow memory will degrade the graphics performance of your
system.

Test the speed of reading, writing, and modifying the RAM. Typically, a graphics application copies a
lot of data from one memory to another. There will be a lot of writing to the framebuffer during draw
operations, and a lot of reading when transmitting to the display. We can mimic that in our test
programs:

}

uint32_t *externalRAM = 0xC000000;
const uint32_t size = 1000;

//read external RAM
for(int i = 0; i < size; i++)
{
 ASSERT(externalRAM[i] == i, "external RAM not as expected");
}

volatile uint32_t *externalRAM = 0xC000000;
uint32_t sourcedata[10000];
const uint32_t size = 10000;

int begin = HAL_GetTick();
//write external RAM
for(int i = 0; i < size; i++)
{
 externalRAM[i] = sourcedata[i];
}
int end = HAL_GetTick();

Graphics software reads and writes data in the framebuffer when e.g. blending an image on a
background.

Depending on your memory speed and the accuracy you would like, you may like to loop the tests, say
100 times, to make the results more reliable.

If the external RAM is clocked too fast it can result in incorrect values during read or write operations.
This can be difficult to see with these simpler tests, but will be visible on the display.

int begin = HAL_GetTick();
//Read external RAM
for(int i = 0; i < size; i++)
{
 sourcedata[i] = externalRAM[i];
}
int end = HAL_GetTick();

//Time modifying external RAM
int begin = HAL_GetTick();
for(int i = 0; i < size; i++)
{
 externalRAM[i] += 2;
}
int end = HAL_GetTick();

Version: 4.16

5. Framebuffer in external RAM
Motivation
In this step we will move the framebuffer from internal to external RAM, and make sure that the
framebuffer can still be transferred to the display.

NOTE

Skip this step if external RAM is not relevant for your board bring up.

This step will stress test the external RAM since the display controller has certain expectations on the
transfer speed. This might result in errors. Common errors are LTDC underrun, because the bandwidth
of the external RAM is not high enough, or pixel errors because the RAM is configured incorrectly and
is running "out of spec".

Goal
The goal in this step is to remove the framebuffer array from internal RAM and use a framebuffer in
external RAM.

Verification
Here are the verification points for this section. These are similar to the verification points when the
framebuffer is in internal RAM, but should be checked again, as the speed on the external memory
may influence the transmission of the framebuffer to the display.

Verification Point Rationale

Framebuffer is shown Display controller or SPI is configured and running

Updated framebuffer is
shown We know how to repeatedly transmit the framebuffer

Framerate is correct The pixel clock and porches are configured to get the required
framerate

Prerequisites

q
The following are the prerequisites for this step:

Address of the framebuffer in the external RAM

Do
We have these two tasks:

Place the framebuffer in external RAM
Setup the display controller to read from the external RAM

When the frambuffer is in external RAM, it is common practice to not allocate an array for it. You just
declare a pointer to the correct address. The address in external RAM is then manually selected. It can
be anywhere in the external RAM, but the start of the RAM is commonly used:

main.c

You can reuse the small test programs you created in the steps in Display Internal.

LTDC Layer configuration
Remember to change the configuration of the LTDC Layer. Since we now have a specific address for
the framebuffer, we can insert that address in CubeMX (Color Frame Buffer Start Address):

uint16_t* framebuffer = (uint16_t*)0xC0000000; //16 bpp framebuffer

Configuring LTDC Layer Parameters

Remember to remove this line from your program and the framebuffer array:

main.c

If the LTDC Layer size was setup to only update a part of the display in step 03 (due to the amount of
internal RAM), now is the time to redo that. Reconfigure the LTDC Layer such that the entire display is
covered.

 /* USER CODE BEGIN 2 */
 HAL_LTDC_SetAddress(&hltdc, framebuffer, LTDC_LAYER_1);
 /* USER CODE END 2 */

Version: 4.16

6. External addressable flash
Motivation
In this step we will enable an external quad or octo SPI flash in memory mapped mode. An external
flash is recommended for most project as it allows the application to use many and large images. The
internal flash will quickly be full even for modest applications.

NOTE

Skip this step if external flash is not relevant for your board bring up.

When data is to be placed in external flash it is important that the external flash can be read by the
MCU. The external flash should run at desired (typically maximum) speed to get the best performance.

Goal
The goal for this section is to enable the external flash, change it to memory mapped mode, and read
data from it. As the read speed of the external flash is very important to graphics, you should also test
the reading speed.

Verification
Here are the verification points for this section:

Verification Point Rationale

External flash is
readable External flash can be used for image storage

External flash
performance

Graphics performance depends a lot of the performance of the image
memory

Prerequisites
The following are the prerequisites for this step:

Information about the flash, typically a datasheet

Information about the connections between the MCU and the external flash

Do
The QSPI controller is configured in CubeMX under Connectivity -> QUADSPI:

Configuring QSPI flash

In the mode section you can configure the flash to single/dual/quad data lines. Quad lines are the
fastest. Similar to the external RAM, you also here need to select and configure the GPIOs used for the
data lines, chip select and clock signal.

Block Mode
After enabling the flash, we can test it by reading data from it. The Cube Firmware package contains
examples for that.

Memory Mapped mode
After enabling the flash and testing it in block mode, it is necessary to change it to memory mapped
mode. This will allow the CPU to fetch data directly from the flash.

The STM32 Cube HAL contains functions to change to memory mapped mode. An example is given
here. It is necessary to consult the datasheet for the configuration data. The Cube Firmware package
for your MCU contains more examples.

main.c

If you are using the same flash as one of the STM32 evaluation kits, then the BSP packages for these
boards (also in the Cube Firmware) contains valuable examples that can be modified for your
hardware.

When the flash is in memory mapped mode, you can test it with code similar to what we used for
external RAM (find the address in your MCU datasheet):

Reuse the memory performance tests you did in earlier steps to also test the performance of the
external flash.

QSPI_CommandTypeDef s_command;
QSPI_MemoryMappedTypeDef s_mem_mapped_cfg;

/* Configure the command for the read instruction */
s_command.InstructionMode = QSPI_INSTRUCTION_1_LINE;
s_command.Instruction = QUAD_INOUT_FAST_READ_CMD;
s_command.AddressMode = QSPI_ADDRESS_4_LINES;
s_command.AddressSize = QSPI_ADDRESS_24_BITS;
s_command.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
s_command.DataMode = QSPI_DATA_4_LINES;
s_command.DummyCycles = N25Q128A_DUMMY_CYCLES_READ_QUAD;
s_command.DdrMode = QSPI_DDR_MODE_DISABLE;
s_command.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
s_command.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;

/* Configure the memory mapped mode */
s_mem_mapped_cfg.TimeOutActivation = QSPI_TIMEOUT_COUNTER_DISABLE;

if (HAL_QSPI_MemoryMapped(&QSPIHandle, &s_command, &s_mem_mapped_cfg) != HAL_OK)
{
 return QSPI_ERROR;
}

volatile uint32_t *externalFlash = 0x90000000;
const uint32_t size = 1000;
volatile uint32_t result = 0;

//read external Flash
for(int i = 0; i < size; i++)
{
 result += externalFlash[i];
}

Version: 4.16

7. External flash in block mode
Motivation
When working with Non-Memory-Mapped Flash memory, such as NAND flash, a driver must be
developed in order for TouchGFX to use the assets stored within.

Read more about this topic in the Using Non-Memory Mapped flash for storing images section.

NOTE

Skip this step if nonaddressable external flash is not relevant for your board bring up.

Goal
The goal of this step is to create a driver that can read a number of bytes from a location in the non-
mapped flash memory and store it in an array.

Verification
The verification points for this section are:

Verification Point Rationale

Ensure contents of flash Ensure that the contents read from the flash are correct.

Verify performance Ensure that read performance is in accordance with MCU configuration.

Prerequisites
Information about the flash, typically from a datasheet.
Information about the connections between the MCU and the external flash.
The flash speed.

Do

Typically, the NAND flash is configured via the FMC on your MCU.

Remember to configure the GPIOs that are connected to the flash.

A non-memory-mapped QSPI flash is configured in CubeMX like a memory-mapped QSPI flash.

Code
Write code that can read a number of bytes from a specific address of the flash. An example of how
this might look is provided below. The implementation of the driver depends on your flash chip.

This code will be used later to develop the TouchGFX abstraction layer.

void readNonaddressableFlash(uint32_t from, uint8_t *into, uint32_t n)
{
 ...
}

uint8_t bytes[1000];

//read external Flash
readNonaddressableFlash(0xab001212, bytes, 1000);

Version: 4.16

8. Hardware acceleration
Motivation
The Chrom-ART (DMA2D) graphics accelerator is capable of transferring parts of image data from
memory and drawing it into or composing it onto the framebuffer. Chrom-ART can read data from
internal or external memory. Similarly it writes to internal or external memory. This can be utilized
when doing graphics, and has the possibility of drastically improving the graphical performance and at
the same time significantly lowering the MCU usage of your application.

Many STM32 controllers contain the Chrom-ART accelerator, but not all. Check your datasheet.
DMA2D is the code name for Chrom-ART and is used in the code and documentation.

NOTE

Skip this step if hardware acceleration using Chrom-ART is not relevant for your board bring up.

Goal
The goal of this step is to enable Chrom-ART and read and write data using it. The goal is not to
examine the functionality of the Chrom-ART chip, but to verify that memory interfaces are functional
from a Chrom-ART perspective.

Verification
Here are the verification points for this section:

Verification Point Rationale

Chrom-ART is configured Chrom-ART can be used for drawing the desired graphics

Chrom-ART can read memory Chrom-ART can be used for drawing graphics (M2M)

Chrom-ART can write memory Chrom-ART can be used for drawing graphics (M2M and R2M)

Chrom-ART performance Chrom-ART yields the desired performance for graphics

Prerequisites
The following are the prerequisites for this step:

MCU with Chrom-ART.

Do
The Chrom-ART is configured in CubeMX under the Multimedia -> DMA2D category. Activate DMA2D
and configure Transfer mode and Color mode according to your display.

In the figure below DMA2D is activated and configured for Memory to Memory transfer mode and
RGB565 Color Mode. Select the color mode that matches your display.

Configuring Chrom-ART

The DMA2D global interrupt is important for the syncronization of framebuffer access in a TouchGFX
application. Ensure that the global interupt is enabled (NVIC tab) and that code generation for
interrupt handlers is enabled (Code Generation tab) in the CubeMX NVIC settings as shown below. The
priority is not important at this stage.

Enabling the Chrom-ART interrupt

Enabling the Chrom-ART interrupt handler code generation

Write to Framebuffer Memory
Here is an overview of code that fills a specific color in a rectangle in target memory (register to
memory). Check Cube Firmware packs for a concrete project for your MCU.

main.c

If the Transfer Completed setup is configured correctly in CubeMX, a custom handler can be assigned
to handle this event:

And the handler can be defined as follows to verify the Transfer Completed interrupt configuration:

Memory-to-Memory can be tested by supplying a pointer to memory with pixel data.

Performance is as expected

#include "stm32f7xx_hal.h"
#include "stm32f7xx_hal_dma2d.h"
...

uint32_t color = 0xF800; //Red in RGB565

hdma2d.Init.Mode = DMA2D_R2M;
hdma2d.Init.ColorMode = DMA2D_RGB565;

MODIFY_REG(hdma2d.Instance->CR, DMA2D_CR_MODE, DMA2D_R2M);
MODIFY_REG(hdma2d.Instance->OPFCCR, DMA2D_OPFCCR_CM, DMA2D_RGB565);
MODIFY_REG(hdma2d.Instance->OOR, DMA2D_OOR_LO, displayWidth - rectangleWidth);

hdma2d.LayerCfg[1].InputColorMode = CM_RGB565;
hdma2d.LayerCfg[1].InputOffset = 0;

HAL_DMA2D_ConfigLayer(&hdma2d, 1);

HAL_DMA2D_Start_IT(&hdma2d, color, (unsigned int)dstPtr, rectangleWidth, rectangleHeight);

 hdma2d.XferCpltCallback = DMA2D_XferCpltCallback;

extern "C" {
 static void DMA2D_XferCpltCallback(DMA2D_HandleTypeDef* handle)
 {
 //Ensure that you this callback is called
 }
}

HAL_DMA2D_Start_IT(&hdma2d,
 (unsigned int)srcPtr,
 (unsigned int)dstPtr,
 displayWidth - nrOfPixels);

Compare the performance of the Chrom-ART with the performance results from previous steps of
reading and writing memory. It is expected that the code utilizing Chrom-ART will be more performant
than the previous CPU read/write operations.

TIP

Use the value of the `CCSTEP` clock cycle register to get a more precise measurement of clock cycles spent
between breakpoints than the millisecond counting sysTick.

Version: 4.16

9. Touch Controller
Motivation
Touch coordinates must be readable from a touch controller for the user to be able to interact with the
application. The code developed in this step will be used later to develop the TouchGFX abstraction
layer at a later stage.

NOTE

Skip this step if a touch controller is not relevant for your board bring up.

Goal
The goal of this step is to ensure that touch coordinates can be read from the touch controller on your
display.

Verification
Here are the verification points for this section:

Verification Point Rationale

Touch controller
and MCU are
configured

MCU must be configured to read from the touch controller over e.g. I2C.

Touch controller
registers can be
read

The TouchGFX abstraction layer can use this code to get the touch
coordinates from the controller.

Reading performs
as expected

Polling is a part of application render time. If polling takes too long touch
polling should be moved to a different thread or made interrupt based.

Prerequisites
Display with touch controller
Drivers to read from touch controller

Do
This step consists of two elements: Configure the MCU to communicate with the touch controller, and
write driver code to talk to the touch controller.

Most touch controllers are connected to a I2C bus. The I2C communication is configured in CubeMX
under Connectivity -> I2C1:

Configuring I2C

Many STM32 MCUs have more than one I2C controller, so select the one connected to your touch
controller. Remember to configure the relevant GPIOs also.

If you do not have driver code for your touch controller you need to write it from scratch. The Cube
Firmware for your MCU contains examples for I2C communication. These can be a start. Check the
datasheet for the touch controller what registers to read to get the touch coordinates. The first thing
to check is the I2C address of the touch controller and then read a "device id" registers for testing.

When you have the basic I2C running you need to develop a driver function that we will need when
integrating with TouchGFX later. The function should return true if there is a touch, false if not, and
also provide the coordinates.

The code example below shows how this code might look, driver code being abstracted by the
function myTouchController_GetState :

main.c

 uint16_t x;
 uint16_t y;

Check with your debugger that the correct x and y values are received from the touch controller.

Some touch controllers are able to report multiple touch points. This is not supported by TouchGFX
and can be ignored. Most often you just select the first touch point.

In the "TouchGFX AL Development" article Abstraction Layer it is explained how to send these values
to TouchGFX.

Performance is as expected
Sampling touch should be possible within 1 ms if the code is executed in the same thread as the
TouchGFX Application. If not fast enough, consider moving the code to a separate task, at a later
stage.

 TouchControllerState state;
 if (myTouchController_GetState(&state))
 {
 x = state.touchY;
 y = state.touchX;
 //break point here
 }

Version: 4.16

10. Physical Buttons
Motivation
Physical buttons can function as external events usable as triggers from the TouchGFX Designer during
application development, or simply used as events in the application backend.

NOTE

Skip this step if physical buttons are not relevant for your board bring up.

Goal
The goal of this section is to develop code that can be used in subsequent TouchGFX HAL- and/or
application development.

Verification
Here are the verification points for this section:

Verification Point Rationale

MCU is
configured

MCU GPIOs must be configured to read the state of connected physical
buttons.

Connected GPIO
can be read

Once code has been developed to read the physical button state from a
GPIO this can be used in sub-sequent TouchGFX HAL development.

Reading performs
as expected

Polling is a part of application render time. If polling takes too long this
should be moved to a different thread or made interrupt based.

Prerequisites
Physical buttons must be connected to GPIOs on the MCU

Do

The following images show how the schematics might look for a physical button and how it is
connected to the MCU

In CubeMX GPIO Port C Pin 13 (PC13) can be configured as an input and configured as a pull-down in
the GPIO section of the System Core category.

The code generated by CubeMX will setup the appropriate GPIO port(s) which can now be read:

main.c

Performance is as expected

uint8_t key;
if (HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_13) != GPIO_PIN_RESET)
{
 key = 1;
}

Polling the state of physical buttons should be possible within 1 ms if the code is executed in the same
thread as the TouchGFX Application. If not fast enough, consider moving the code to a separate task,
at a later stage or making it interrupt based.

Version: 4.16

11. Flash Loader
Motivation
In this step we will discuss loading data to the external flash. The compiler will compile the text, fonts,
and images in your project and produce a binary or hex file with this data. This data is typically put
into the external flash. The internal flash is then reserved for code.

During development we need a way to write data to the external flash, but this is not necessary during
runtime where we only read from the flash.

Two ways are common for writing data to the external flash:

Write a flashloader for STM32CubeProgrammer
Use a proprietary application-based solution

NOTE

Skip this step if external flash is not present

Goal
The goal in this section is to select and develop a mechanism for loading data to the external flash.

Verification
Here are the verification points for this section:

Verification Point Rationale

Data can be flashed External flash can be used for image storage

Prerequisites
The following are the prerequisites for this step:

Information about the flash, typically a datasheet

Information about the connections between the MCU and the external flash

Do
Flash loader for STM32CubeProgrammer
The STM32CubeProgrammer comes with flash loaders for the various STM32 Evaluation kits. The flash
loaders are small programs that are loaded to the RAM of the MCU and facilitate the programming of
the flash.

The flash loader consists of two parts: Configuration of the GPIOs and flash interface that are required
to communicate with the flash The flashing algorithm that knows the sequence of commands required
to write in the flash

These parts can often be based on an existing flash loader. If you can find a flash loader for the same
flash that you are using, take that as starting point and modify the GPIO part. If you design your
hardware by copying the flash circuit from an evaluation kit, then you can use the flash loader for that
kit directly. This is the recommended way.

The flash loader projects provided with STM32CubeProgrammer are found in the installation folder,
typically here: C:\Program
Files\STMicroelectronics\STM32Cube\STM32CubeProgrammer\bin\ExternalLoader

A few flash loaders are provided as source code projects for IAR Embedded Workbench, Keil, and
TrueStudio.

Proprietary application-based solution
Another solution is to include flash loading into the application itself. The idea is that you already have
the flash configuration inside your application (to be able to load from it), and maybe you know how
to write a block to the flash from your previous testing. You then just need a way of transferring the
new flash data to your application. One way is through a UART. The application receives the data
stream, and writes the data to the flash, block by block.

The flash cannot be in memory mapped mode while this is running, so the application must typically
be put in a special mode.

Open source solutions for the transmission of bytes can be found on the Internet. The Y-modem
protocol for example provides 16-bit CRC on the data.

Testing

After the data has been written to the flash, test that it can be read correctly. Use the small test
programs developed in the previous sections.

It is advised to test the whole flash thoroughly now, to find any bugs early.

Version: 4.16

TouchGFX AL Development
Introduction

Project activity

The TouchGFX Abstraction Layer (AL), in a TouchGFX application, is the software component that sits
between the Board Initialization Code, developed during the Board Bring-Up phase, and the TouchGFX
Engine. Its main task is to tie together the Engine with the underlying hardware and operating system.
This is done by abstracting the specifics of the underlying hardware and OS such that it can be treated
in a unified way by the Engine.

The AL consists of two different parts, the Hardware Abstraction Layer (HAL) and the Operating System
Abstraction Layer (OSAL).

Project component

In this section you will get a general introduction to the principles and responsibilities of the
abstraction layer and how it interacts with the TouchGFX Engine. Details on how this is achieved for
particular hardware is described in the following sections.

Abstraction Layer Architecture details the architecture of the AL and shows you how to implement
each of the interaction points, called hooks, between the TouchGFX Engine and the AL.
Generator User Guide shows you how to use TouchGFX Generator to create the basis for your AL
implementation as well as details on more complex issues.
Scenarios gives you concrete detailed examples on how to create ALs for specific hardware setups.

Responsibilities of the Abstraction Layer

As explaned in the Main Loop section in the Basic Concepts chapter, the TouchGFX Engine has a main
loop that performs three basic steps.

1. Collect input (Touch coordinates, Buttons)
2. Update the Scene Model
3. Render the Scene Model to the Framebuffer

These three steps ensure the main responsibility of the TouchGFX engine, which is to update the
framebuffer to reflect the current state of the application.

The actual transfer of framebuffer data to the display as well as the collection of external input is not
directly handled by the engine, but instead delegated from the engine to the TouchGFX AL.

The main loop will continuously update the framebuffer(s) over and over again. This process must be
synchronized with the actual update frequency and readyness of the display to ensure that all frames
will be transferred and displayed correctly on the display. If no synchronization takes place the main
loop will continuously update and potentionally overwrite the framebuffer(s) before it has been
transferred. This synchronization is the responsibility of the AL.

The TouchGFX AL also has the responsibility of controlling the framebuffer memory area and the
access to it. This means that all accesses of the framebuffer will go through the AL.

To detail, the responsibilities of the TouchGFX AL are:

Responsibility Description

Synchronize
TouchGFX
Engine main
loop with
display
transfer

When the next frame has been calculated and rendered in the available
framebuffer, the engine main loop must be halted to make sure that it does not
overwrite the newly assembled framebuffer before it has been transferred to the
display.

Report touch
and physical
button events

Sample if a touch event has occurred and the corresponding coordinates hereof.
Sample whether or not any physical button or similar has been activated. Report
these events to the engine.
Note that other external events are to be propagated to the TouchGFX
application through a different mechanism. Read more on this in the section on
backend communication.

Synchronize
framebuffer
access

The framebuffer memory is the responsibility of the TouchGFX AL and since it
can be accessed by different actors, like the main loop thread and the DMA,
TouchGFX AL must offer a way to protect this memory.

Responsibility Description

Report the
next available
framebuffer
area

The AL must be able to answer which part of the current framebuffer can be
updated next. In a standard two framebuffer setup, this will always be the
complete framebuffer, since in that case you always have one entire framebuffer
dedicated for rendering and one for transferring to the display. In a one or
partial framebuffer setup this is more complex.

Perform
render
operations

While rendering the scene model, the engine main loop will ask the AL to render
parts hereof. A specific TouchGFX AL implementation will utilize the underlying
hardware to render graphics primitives. One example is rendering bitmaps on
MCUs with the Chrom-ART graphics accelarator. TouchGFX comes with
optimized rendering methods built-in for all available platforms, so no need to
customize this.

Handle
framebuffer
transfer to
display

The engine informs the AL which part of which framebuffer must be transferred.
The AL should initiate this transfer making sure that the pixels eventually end up
on the physical display.

Since TouchGFX AL is a passive software module, not having its own thread or similar, it must perform
its actions through certain hooks (functions) called from the TouchGFX Engine main loop or through
interrupts.

The available set of hooks and interrupts are depicted below.

Available hooks and interrupts

It is up to the AL developer to implement these hooks so that the responsibilities of the AL are
covered given the underlying hardware and operating system. If the AL developer needs other means
to support the responsibilities, the developer can setup interrupts to activate at certain points.

Examples of this is LTDC vertical synchronization interrupt and a hardware timer. The I1: Display ready
interrupt is an example of a vertical synchronization interrupt. Note that the setup of these interrupts
is considered a part of the AL development.

Example setup: Two framebuffers - MCU with
LTDC
One common setup is having two framebuffers with an MCU with LTDC. The AL actions for each hook
will in this setup most often be as follows.

Setup the AL to react to the LTDC VSYNC interrupt such that I1 is executed each time the display is
ready to receive a new frame. This is used to synchronize the main loop with the display.

Hooks and Interrupts Actions

I1: Display ready
Setup the LTDC VSYNC interrupt to trigger this.
Unblock the main loop and initiate framebuffer transfer of the
framebuffer prepared in previous frame

H1: Report touch and
physical button events Return any information on touch events or physical button clicks

H2: Get next available
framebuffer area

Using the double buffer setup simply return the entire framebuffer area
of the framebuffer not currently being transferred to the display

H3: Perform render
operations

Depends on the capabilities of the MCU. Perform the hardware assisted
render operations and software fallback for the rest

H4: Rendering of area
complete No action

H5: Rendering done Block the main loop

This setup gives the following execution flow:

Execution flow in setup with two framebuffers and an MCU with LTDC

This describes the overall design of the AL for this setup. The following sections goes into depth on
how to implement Abstraction Layers.

Version: 4.16

Abstraction Layer Architecture
As described in the previous section, the TouchGFX AL has a particular set of responsibilities.
Responsibilities are either implemented in the hardware part of the AL (HAL) or the part of the AL that
synchronizes with TouchGFX Engine, typically through an RTOS (OSAL). The following table
summarizes these responsibilities which were outlined in the previous section:

Responsibility Operating system or Hardware

Synchronize TouchGFX Engine main loop with display transfer Operating system and hardware

Report touch and physical button events Hardware

Synchronize framebuffer access Operating system

Report the next available framebuffer area Hardware

Perform render operations Hardware

Handle framebuffer transfer to display Hardware

Each of the following subsections highlight what should be done to fulfill the above responsibilities.
For custom hardware platforms the TouchGFX Generator, inside STM32CubeMX, can generate most of
the AL and accompanying TouchGFX project. The remaining parts, that the AL developer must
implement manually, are pointed out through code comments and notifications through the
TouchGFX Generator. Read more about the TouchGFX Generator in the next section.

Abstraction Layer Classes
The HAL is accessed by the TouchGFX Engine through concrete sub-classes of HAL . These sub-classes
are generated by the TouchGFX Generator. The generator, which is the primary tool for creation of the
Abstraction Layer, can generate both the part of the HAL that reflects configurations from CubeMX, as
well as the OSAL for CMSIS V1 and V2. Please read the section on TouchGFX Generator for further
details. Generally, the architecture of the HAL is in the following figure.

Hierarchy of generated code

Synchronize TouchGFX Engine main loop with
display transfer
The main idea behind this step is to block the TouchGFX Engine main loop when rendering is done,
ensuring that no further frames are produced. Once the display is ready the OSAL signals the blocked
Engine main loop to continue producing frames.

In order to fulfil this responsibility the typical way of a TouchGFX AL is to utilize the engine hook
Rendering done and the interrupt Display Ready, as outlined in the previous section. The OSAL defines
a function OSWrappers::signalVSync in which developers can signal the semaphore that the engine
waits upon when it calls OSWrappers::signalVSync

TIP

The TouchGFX Generator can create a complete OSAL for CMSIS V1 and V2.

Rendering Done
The Rendering done hook, OSWrappers::waitForVSync , is called by the TouchGFX Engine after
rendering is complete.

When implementing this AL method, the AL must block the graphics engine until it is time to render
the next frame. The standard method to implement this block is to peform a blocking read from a

message queue. The HAL developer is free to use any method to implement the block if this is not
feasible.

TIP

The TouchGFX Generator can also generate an empty OSAL that uses spinlocks to wait, rather than RTOS
primitives if such software is not available.

When OSWrappers::signalVSync is signaled (or the semaphore/queue used in
OSWrappers::waitForVSync is signaled) TouchGFX will start rendering the next application frame. The

following code based on CMSIS V1 causes the TouchGFX engine to block until an element is added to
the queue by another part of the system, typically an interrupt syncronized with the display.

RTOS_OSWrappers.cpp

If not using an RTOS, the TouchGFX Generator provides the following implementation for
waitForVSync using a volatile variable.

NO_OS_OSWrappers.cpp

TIP

While TouchGFX Engine is waiting to produce the next frame other tasks can do important work.

Display ready

static osMessageQId vsync_queue = 0; //Queue identifier is assigned elsewhere

void OSWrappers::waitForVSync()
{
 //Wait for next VSYNC to occur, by reading from the queue
 osMessageGet(vsync_queue, osWaitForever);
}

static volatile uint8_t vsync_sem = 0;

void OSWrappers::waitForVSync()
{
 while(!vsync_sem)
 {
 // Perform other work while waiting
 ...
 }
}

The Display ready signal to unblock the main loop should come from an interrupt from a display
controller, from the display itself or even from a hardware timer. The source of the signal is dependant
on the type of display.

The OSWrappers class defines a function for this signal: OSWrappers::signalVsync . The
implementation of the function must unblock the main loop by satisfying the wait condition used in
OSWrappers::waitForVSync .

Continuing from the above CMSIS RTOS example, the following code puts a message into the
message queue vsync_queue which unblocks the TouchGFX Engine.

RTOS_OSWrappers.cpp

This OSWrappers::signalVSync method must be called at hardware level from an interrupt for e.g. an
LTDC, an external signal from the display, or a hardware timer.

If not using an RTOS use a variable and assign a non-zero value to break the while-loop.

NO_OS_OSWrappers.cpp

Report touch and physical button events
Before rendering a new frame, the TouchGFX Engine collects external input from the
TouchController and ButtonController interfaces.

Touch Coordinates
Coordinates from the touch controller are translated into click-, drag- and gesture events by the
engine and passed to the application. The following code is generated by the TouchGFX Generator:

void OSWrappers::signalVSync()
{
 if (vsync_queue)
 {
 osMessagePut(vsync_queue, dummy, 0);
 }
}

void OSWrappers::signalVSync()
{
 vsync_sem = 1;
}

TouchGFXConfiguration.cpp

During the TouchGFX Engine render cycle, when collecting input, the engine calls the sampleTouch()
function on the tc object:

The implementation, provided by the AL developer, should assign the read touch coordinate values to
x and y and return whether or not a touch was detected (true or false).

TIP

The TouchGFX Generator will generate a class that defines the TouchController interface functions as empty.
The HAL developer must fill in the implementation.

There are multiple ways of implementing this function:

1. Polling in sampleTouch(): Read touch status from the hardware touch controller (typically I2C) by
sending a request and polling for the result. This impacts the overall render time of the application
as the i2C round-trip is often up to 1ms during which the graphics enging is blocked.

2. Interrupt based: Another possibility is to use interrupts. The I2C read command is started regularly
by a timer or as a response to an external interrupt from the touch hardware. When the I2C data is
available (another interrupt) the data is made available to the STM32TouchController through a
message queue or global variables. The code below from STM32TouchController.cpp (created by
TouchGFX Generator) shows how sampleTouch could look for a system with an RTOS:

STM32TouchController.cpp

static STM32TouchController tc;
static STM32L4DMA dma;
static LCD24bpp display;
static ApplicationFontProvider fontProvider;
static Texts texts;
static TouchGFXHAL hal(dma, display, tc, 390, 390);

bool STM32TouchController::sampleTouch(int32_t& x, int32_t& y)

bool STM32TouchController::sampleTouch(int32_t& x, int32_t& y)
{
 if (osMessageQueueGet(mid_MsgQueue, &msg, NULL, 0U) == osOK)
 {
 x = msg.x;
 y = msg.y;
 return true;
 }
 return false;
}

The location of this file will be outlined in the next chapter on TouchGFX Generator

Other External Events
The Button Controller interface, touchgfx::ButtonController , can be used to map hardware signals
(buttons or other) to events to the the application. The reaction to these events can be configured
within TouchGFX Designer.

The use of this interface is similar to the Touch Controller above, except that it is not mandatory to
have a ButtonController. To use it, create an instance of a class implementing the ButtonController
interface, and pass a reference to the instance to the HAL:

MyButtonController.cpp

TouchGFXConfiguration.cpp

The sample method in your ButtonController class is called before each frame. If you return true, the
key value will be passed to the handleKeyEvent eventhandler of the current screen.

FURTHER READING

See the Interactions article for further information on how to use values sampled through the
ButtonController as triggers for interactions in the designer.

Synchronize framebuffer access

class MyButtonController : public touchgfx::ButtonController
{
 bool sample(uint8_t& key)
 {
 ... //Sample IO, set key, return true/false
 }
};

static MyButtonController bc;
void touchgfx_init()
{
 ...
 hal.initialize();
 hal.setButtonController(&bc);
}

Multiple actors may be interested in accessing the framebuffer memory.

1 CPU Reads and writes pixels during rendering

2 DMA2D* Reads and writes pixels during hardware assisted rendering

3 LTDC Reads pixels during transfer to parallel RGB display

4 DMA Read pixels during transfer to SPI display

The TouchGFX Engine synchronizes framebuffer access through the OSWrappers interface and
peripherals (e.g. DMA2D) that also wish to access the framebuffer must do the same. The normal
design is to use a semaphore to guard the access to the framebuffer, but other synchronization
mechanisms can be used.

The following table shows a list of functions in the OSWrappers class (OSWrappers.cpp) that can be
generated by the TouchGFX Generator or manually by the user.

Method Description

takeFrameBufferSemaphore
Called by graphics engine to get exclusive access to the
framebuffer. This will block the engine until the DMA2D is
done (if running)

tryTakeFrameBufferSemaphore
Ensure that the lock is taken. This method does not block,
but ensures that the next call to
takeFrameBufferSemaphore will block its caller

giveFrameBufferSemaphore Releases the framebuffer lock

giveFrameBufferSemaphoreFromISR Releases the framebuffer lock from an interrupt context

TIP

The TouchGFX Generator can generate a ChromART driver that synchronizes using the OSWrappers interface
as well as implementations for functions that perform this synchronization depending on choice of RTOS.

Report the next available framebuffer area
Regardless of rendering strategy TouchGFX Engine must know, in each tick, which memory area it
should render pixels to. Using single- or double framebuffer strategies the TouchGFX Engine will write

pixel data to a memory area according to the full width, height, and bit depth, of the framebuffer. The
graphics engine takes care of swapping between the two buffers in a double buffer setup.

It is possible to limit the access to the framebuffer to part of the framebuffer. The method
HAL::getTFTCurrentLine() can be reimplemented in your HAL subclass. Return the line number

above which it is save for the graphics engine to draw.

Using a Partial Framebuffer strategy the developer defines one or more blocks of memory that
TouchGFX Engine will use when rendering. Read more about that here.

TIP

TouchGFX Generator can provide configurations for all supported framebuffer strategies.

Perform Render Operations
Rendering and displaying graphics are rarely the sole purposes of an application. Other tasks also
need to use the CPU. One goal of TouchGFX is to draw the user interface using as few CPU cycles as
possible. The HAL class abstracts the DMA2D found on many STM32 microcontrollers (or other
hardware capabilities) and makes this available to the graphics engine.

When rendering assets such as bitmaps to the framebuffer, the TouchGFX Engine checks if the HAL has
the capability to 'blit' a portion of- or all of the bitmap into to the framebuffer. If so, the drawing
operation is delegated to the HAL rather than being handled by the CPU.

The engine calls the method HAL::getBlitCaps() to get a description of the capabilities of the
hardware. Your HAL subclass can reimplement this to add the capabilities.

When the engine is drawing the user interface it will call operations on the HAL class, e.g.
HAL::blitCopy , that queue the operations for the DMA. If the HAL does not report the required

capability, the graphics engine will use a software rendering fallback.

TIP

Many STM32 MCUs have a ChromART chip which can move data from e.g. external Flash memory into the
framebuffer while alpha blending pixels.
For many MCUs, TouchGFX Generator can generate a ChromART driver which adds the capability of several
'blit' operations using the ChromART chip.

Handle framebuffer transfer to display

In order to transfer the framebuffer to the display the hook "Rendering of area complete" is often
utilized in a TouchGFX AL. The engine signals the AL once rendering of a part of the framebuffer has
been completed. The AL can choose how to transfer this part of the framebuffer to the display.

Rendering of area complete
In code this hook is the virtual function HAL::flushFrameBuffer(Rect& rect) .

On STM32 microcontrollers with LTDC controllers we don't need to do anything to transmit the
framebuffer after every rendering. This happens continuously with a given frequency after the LTDC
has been initialized and therefore we can leave the implementation of this method empty.

For other display types like SPI or 8080 you need to transfer the framebuffer manually.

The implementation of this function allows developers to initiate a manual transfer of that area of the
framebuffer to a display with GRAM:

FURTHER READING

Read through the scenarios for concrete examples of how to support various display interfaces.

void TouchGFXHAL::flushFrameBuffer(const touchgfx::Rect& r)
{
 HAL::flushFrameBuffer(rect); //call superclass

 //start transfer if not running already!
 if (!IsTransmittingData())
 {
 const uint8_t* pixels = ...; // Calculate pixel address
 SendFrameBufferRect((uint8_t*)pixels, r.x, r.y, r.width, r.height);
 }
 else
 {
 ... // Queue rect for later or wait here
 }
}

Version: 4.16

Generator User Guide
TouchGFX Generator, a part of X-CUBE-TOUCHGFX, is a CubeMX Additional-Software component that
helps developers configure TouchGFX to run on their hardware platform. Based on existing CubeMX
settings and user input TouchGFX Generator will generate the files required to configure a working
TouchGFX application. They include files for TouchGFX HAL, TouchGFX OSAL and TouchGFX
Configuration.

Once code is generated through CubeMX, the TouchGFX project can be opened through TouchGFX
Designer where the UI is developed. TouchGFX Designer automatically adds any additional generated
code files to the target IDE project that was configured for the project in CubeMX.

Enabling TouchGFX Generator
The following figure shows a project with TouchGFX Generator already enabled under the Additional
Software category. Users gain access to adding functionality from X-CUBEs by pressing the "Additional
Software" button.

Selecting Additional Software in CubeMx

The following figure shows how TouchGFX Generator can be enabled for a project:

Enabling TouchGFX Generator

Generated Code Architecture
Before describing the features of TouchGFX Generator it is important to understand the architecture of
the generated code and how developers can use it to customize configuration and behavior.

Handwritten user code in files generated by CubeMX is protected through the use of User Code
sections placed strategically throughout the code generated by CubeMX (C code). In the code
generated by TouchGFX Generator (C++ code) this flexibility is accomplished through inheritance.

When TouchGFX Generator is added through Additional Software and enabled, CubeMX will always
create a TouchGFX folder for the project. The folder always contains the same files, regardless of
configuration, while the content of the files changes according to CubeMX and User configuration.

The listing below shows an overview of the content of a CubeMX project with TouchGFX Generator
enabled, with emphasis on TouchGFX related files. The table following the list outlines the
responsibility of the most important entries.

TouchGFX Folder

│ .mxproject
│ myproject.ioc
├───Core

Folder Responsibility

myproject.ioc CubeMX Project file

Core main.c and startup code

Drivers CMSIS and MCU family drivers

EWARM IDE project folder. Can be EWARM, MDK-ARM or
STM32CubeIDE

Middlewares Contains TouchGFX library/headerfiles and third party
software like FreeRTOS.

ApplicationTemplate.touchgfx.part
The .part file is updated by CubeMX with information that is
relevant to TouchGFX Designer project, e.g. screen
dimensions and bit depth

App
X-CUBE interface to CubeMX. app_touchgfx.c contains
definitions for the functions MX_TouchGFX_Process(void)
and MX_TouchGFX_Init(void) which are used to initialize
TouchGFX and start its main loop.

├───Drivers
├───EWARM
├───Middlewares
└───TouchGFX
 │ ApplicationTemplate.touchgfx.part
 ├───App
 │ app_touchgfx.c
 │ app_touchgfx.h
 └───target
 │ STM32TouchController.cpp
 │ STM32TouchController.hpp
 │ TouchGFXGPIO.cpp
 │ TouchGFXHAL.cpp
 │ TouchGFXHAL.hpp
 │
 └───generated
 OSWrappers.cpp
 TouchGFXConfiguration.cpp
 TouchGFXGeneratedHAL.cpp
 TouchGFXGeneratedHAL.hpp

Folder Responsibility

target/generated

This sub-folder contains the read-only files that get
overwritten by CubeMX when configurations change.
TouchGFXGeneratedHAL.cpp is a sub-class of the TouchGFX

class HAL and contains the code that CubeMX can generate
based on its current configuration. OSWrappers.cpp (The
OSAL) contains the functions required to synchronize with
TouchGFX Engine, and finally TouchGFXConfiguration.cpp
which contains the code to construct and configure
TouchGFX, including the HAL.

target

Contains the bulk of files that can be modified by the user to
extend the behavior of the HAL or to override configurations
generated by CubeMX. STM32TouchController.cpp contains
an empty touch controller interface. TouchGFXHAL.cpp
defines a sub-class, TouchGFXHAL , of
TouchGFXGeneratedHAL .

It is important to know that TouchGFXConfiguration.cpp contains a function that constructs the HAL
and a function that starts the main loop of TouchGFX. Additional configuration can be done in the
editable user-class TouchGFXHAL . The general architecture of the HAL is seen below:

Hierarchy of generated code

Feature Overview
Having enabled TouchGFX Generator, three groups exist in the user interface:

Dependencies - This group contains notifications to the developer about dependencies, warnings
or concrete errors in the configuration. The group is hidden if no entries exist.
Display - This group contains settings related to display such as interface, framebuffer bitdepth,
width and height. These settings directly impact the size of the canvas of the TouchGFX project as
well as the code generated for assets.
Driver - This group allows the user to opt-in for a number of ready-made drivers related to the tick
source of the application, graphics acceleration and RTOS. Since CubeMX supports FreeRTOS
(CMSIS RTOS v1 and v2) configurations, TouchGFX Generator provides drivers for each of these
options.

TouchGFX Generator has three groups: Dependencies, Display, Driver

Display
The Display group contains configurations related to display, such as interface, dimensions and
buffering strategies.

Interface and dimensions
Multiple display interfaces are usable today with STM32 microcontrollers, e.g.:

Parallel RGB
MIPI DSI
FMC
SPI

In the case of MCUs with an LTDC TouchGFX Generator can generate a driver to transfer the
framebuffer to the connected display. For DSI, FMC and SPI interfaces drivers must be implemented by
developers themselves.

FURTHER READING

See section Scenarios for concrete examples of drivers for different display interfaces.

Buffering Strategies
The following frame buffer strategies can be configured through TouchGFX generator:

Single Buffer - Use only one application frame buffer. Possibly limits performance but uses less
memory. Can be used with the "Buffer Location" configuration to place it in internal RAM. For
further optimization the user can define a function that returns the current line being processed by
the display controller. This method is used by the framework to allow updates to memory that has
already been transferred to the display during this frame.
Double Buffer - Use two frame buffers. Usually allows for better performance at the cost of
memory.
Partial Buffer - Use one or more user defined chunks of memory as the frame buffer. This strategy
is targeted at low cost solutions that do not rely on external RAM, but have displays for which a full
frame buffer would exceed available memory.

In the case of Single Buffer and Double Buffer users are allowed to configure their location through
the "Buffer Location" configuration which offers the following options:

By Allocation - Lets the linker place frame buffer memory according to linker script. Default is in
internal RAM.
By Address - Allows the user to define one (Single) or two (Double) frame buffer addresses.

The Partial Buffer strategy allows the user to define the following parameters:

Number of blocks (always placed in internal RAM)
Block size (bytes)

To understand some core concepts regarding the Partial Buffer strategy please read the dedicated
article on Lowering Memory requirements using partial Frame Buffers. The article shows, conceptually,
how to achieve partial frame buffers and the code shown in this article will differ slightly from what is
generated by TouchGFX Generator. Please see Frame Buffer Strategies for concrete examples of the
generated code for these strategies.

Driver
The driver section allows developers to select drivers for various responsibilities of a TouchGFX AL.

Application Tick Source
The application tick source for an application defines how to drive an application forward. The
developer has the following options:

LTDC - If LTDC is selected as the Interface in the "Display" group the Application Tick Source can be
"LTDC". This means that TouchGFX Generator will install a driver function (LTDC interrupt handler) in
TouchGFXGeneratedHAL class that drives the application forward by calling
OSWrappers::signalVSync() .

Custom - In this case, the developer is required to implement a handler that drives the application
forward by calling OSWrappers::signalVSync() repeatedly.

Graphics Accelerator
The developer has three options when it comes to graphics acceleration:

None - The application uses only the CPU to render frames.
Chrom-ART (DMA2D) - The application uses the Chrom-ART chip when possible to move and
blend pixels, freeing up CPU cycles. The driver is installed by TouchGFX Generator and does not
require any action from the developer.

The Chrom-ART (DMA2D) driver supplied by TouchGFX Generator supports two ways of receiving a
TransferCompleteInterrupt.

1. Uses the STM32Cube HAL driver where it registers a callback funtion to the dma2d handle
hdma2d.XferCpltCallback .

2. Uses the DMA2D_IRQHandler() interrupt handler directly.

Switching between these two is done by enabling or disabling the DMA2D global interrupt in the NVIC
Settings in CubeMX for DMA2D IP. Enabling the global interrupt generated code for option 1),
disabling the global interrupt generates code for option 2).

NOTE

When using global interrupt for DMA2D, ensure that the "IRQ handler" calls the "DMA2D HAL handler",
this is default behaviour.

If disabling "IRQ handler" and "Call HAL handler" for DMA2D while global interrupt is enabled will cause
the registered callback to never be called.

Real-Time Operating System
Developers can use any RTOS with TouchGFX (even No OS). As described in the Abstraction Layer
Architecture the TouchGFX Engine uses the OSWrappers interface to synchronize its main event loop
as well as framebuffer access with the users choice of RTOS.

FreeRTOS can be configured directly from within CubeMX and the TouchGFX Generator granting the
user generated code for both task definitions and TouchGFX RTOS driver. TouchGFX Generator can
generate CMSIS V1 and CMSIS V2 compliant RTOS drivers which work with any CMSIS compliant
RTOS. In this case, developers cannot rely on CubeMX for code generation of task definitions and this
must be done in user code.

The following figure shows the options available through the TouchGFX Generator.

RTOS driver options

The TouchGFX main loop is entered when calling the following function.

Developers are required to call this function in the task handler for the task they intend to run the
TouchGFX application in. If the user configured a FeeRTOS task from CubeMX called DefaultTask
then the following example shows how MX_TouchGFX_Process() is called to start TouchGFX in the
user code section of its task handler.

void MX_TouchGFX_Process(void);

void StartDefaultTask(void *argument)
{
 /* USER CODE BEGIN 5 */
 MX_TouchGFX_Process();
 /* USER CODE END 5 */
}

When FreeRTOS is enabled, CubeMX will also generate a call to osKernelStart(); which starts the
scheduler.

Other CMSIS compliant OS

When developers require a different CMSIS compliant OS than what CubeMX can offer (FreeRTOS) he
must perform RTOS configuration and task definition manually. Generally, the following manual steps
are required:

1. Configure the RTOS
2. Define a task to run TouchGFX (MX_TouchGFX_Process)
3. Start the scheduler

Here's an example of how to perform steps 2 and 3 for Azure RTOS. Since CubeMX cannot help with
any of this configuration everything must be done in the provided user code sections to avoid code
being overwritten. The following code shows pseudo code for the GUI task definition. Generally, any
code that is not generated by CubeMX should be placed in user code sections that are scattered
throughout the file main.c .

Call MX_TouchGFX_Process to start the TouchGFX Engine Main Loop inside the task handler.

/* BEGIN USER CODE SECTION */
#include "tx_api.h"

#define GUI_THREAD_STACK_SIZE 1024
TX_THREAD gui_thread;
void gui_thread_entry(ULONG thread_input); //Thread prototype
/* END USER CODE SECTION */

int main()
{
 /* BEGIN USER CODE SECTION - Choose an appropriate one from main.c */
 /* Allocate the stack for gui thread */
 tx_byte_allocate(...);

 /* Create the gui thread. */
 tx_thread_create(&gui_thread, "GUI Thread", gui_thread_entry, 0,
 pointer, GUI_TASK_STACK_SIZE,
 1, 1, TX_NO_TIME_SLICE, TX_AUTO_START);

 /* END USER CODE SECTION*/

/* BEGIN USER CODE SECTION */
void gui_thread_entry(ULONG thread_input)
{
 MX_TouchGFX_Process();

Start the scheduler to start the GIU task and your TouchGFX Application.

Additional features
External Data Reader

For the RGB565 Framebuffer Pixel Format touchgfx supports a so called Data Reader interface that
allows developers to read data directly from a non-memory-mapped serial flash instead of caching
which comes at the cost of an additional buffer in memory. Please see the SerialFlash article for a
example on how to implement a DataReader to retrieve application assets from a non-memory
mapped flash chip.

The Data Reader option is typically used for low cost solutions (e.g. STM32G0) that do not have
enough memory for additional buffers. It cannot be enabled if DMA2D is also enabled.

Once RGB565 is selected as the Framebuffer Pixel Format, Additional Features group becomes
available.

}
/* END USER CODE SECTION*/

/* BEGIN USER CODE SECTION */
tx_kernel_enter();
/* END USER CODE SECTION*/

Additional Features: Data Reader

The following configurations can be made by the developer:

External Data Reader: Enable or Disable the feature. Enabling will cause TouchGFX to retrieve data
for assets directly through the generated interface. If disabled, developers are then required to
cache images to a buffer in memory instead.
External Data Reader: Line Buffer Size: Creates two buffers for blending images or text into the
framebuffer. Default value is one screen width*4 bytes to support full size images in ARGB8888
pixel format.
External Data Reader: Minimum DMA transfer size: Set minimum required bytes to start a DMA
transfer. If fewer bytes are requested, DMA will not be used.

After generating code with External Data Reader enabled, the following, additional files are created to
support the retrieval of assets directly from a non-memory mapped flash.

TouchGFX/target/generated/TouchGFXGeneratedDataReader.cpp

TouchGFX/target/generated/TouchGFXGeneratedDataReader.hpp

TouchGFX/target/TouchGFXDataReader.cpp

TouchGFX/target/TouchGFXDataReader.hpp

As usual, for code generated by TouchGFX Generator, TouchGFXGeneratedDataReader is read-only
and user modifications should be made inside the TouchGFXDataReader class.
TouchGFXGeneratedDataReader is of type touchgfx::FlashDataReader .

Modifications will be made to the following files to configure TouchGFX HAL to use the DataReader .

TouchGFX/target/generated/TouchGFXConfiguration.cpp

TouchGFX/target/generated/TouchGFXGeneratedHAL.cpp

TouchGFX/target/generated/TouchGFXGeneratedHAL.hpp

NOTE

The DataReader Additional Feature is only available if DMA2D and LTDC are disabled.

8bit LTDC Color Look-up Table

When the LTDC is configured to read the framebuffer in L8 format and TouchGFX renders in either
ABRG2222, ARGB222, BGRA2222, or RGBA2222, TouchGFX Generator will provide a CLUT which is
loaded into the LTDC during TouchGFXHAL::initialize() . Please refer to the STM32 MCU reference
manual for more details on usage of LTDC and CLUT.

Generated project
TouchGFX works with (at least) the following IDEs when generating code using the Generate Code
button in CubeMX:

1. EWARM
2. MDK-ARM
3. STM32CubeIDE

For optimal project structure select the following options for project generation:

Application structure: Advanced
Disable Generate under root (STM32CubeIDE only)

For optimal project structure select the following options for project generation:

Application structure: Advanced
Disable Generate under root (STM32CubeIDE only)

Select Advanced application structure and deselect Generate under root

CubeMX will also generate a *TouchGFX* folder with the following structure:

TouchGFX folder structure

The App folder which contains code to initialize and start TouchGFX.
The target folder which contains read-only, generated code (inside generated/) and modifiable user
classes (STM32TouchController.cpp , TouchGFXGPIO.cpp and TouchGFXHAL.cpp)
The .part file which is opened using the TouchGFX Designer in order to create a full TouchGFX
project complete with TouchGFX header files and libraries The part file contains relevant application
information such as pixel format, and canvas dimensions that the designer uses when generating
TouchGFX application code.

TouchGFX Designer Project
The following code is an example of the contents of the .part file mentioned in the Generated Code
Architecture section. The post-generate command, seen below, will update the project selected in
CubeMX (e.g. EWARM) when new files are created by the TouchGFX designer (e.g. new screens and
assets).

When opening the .part file with TouchGFX Designer developers are presented with the option to load
a concrete UI or start from a blank template.

{
 "Application": {
 "Name": "my_project",
 "TouchGfxPath": "../Middlewares/ST/touchgfx",
 "AvailableColorDepths": [16],
 "AvailableLCDs":
 {
 "16": "LCD16bpp"
 },
 "AvailableResolutions" :
 [
 {
 "Width": 320,
 "Height": 240
 }
],
 "PostGenerateTargetCommand" : "touchgfx update_project --project-file=../my_project.ioc -
 },
 "Version": "4.13.0"
}

Choose UI

After pressing Generate Code in TouchGFX Designer the structure of the TouchGFX folder now looks
like the following. The following image shows a concrete example of a TouchGFX folder structure and
highlights the files and folders that are new after generation.

Generate Code

TouchGFX Folder Structure

TouchGFX will detect the selected IDE from the .ioc CubeMX file (For STM32CubeIDE, EWARM, MDK-
ARM) and update the project file with new, generated files like files for screen definitions, image- and
font assets.

At this point, developers can work interchangeably in CubeMX, TouchGFX Designer and toolchain/IDE
where:

CubeMX updates the IDE project with drivers
CubeMX updates the TouchGFX .part file with UI related changes that are instantly picked up by the
designer
CubeMX generates HAL code (TouchGFX/target/generated/) based on TouchGFX Generator
Configuration necessary for TouchGFX to work on a specific platform.
The TouchGFX designer updates the project with generated code.

Modifying Generated Behavior
It important to know that, due to the class hierarchy of the HAL, users can override HAL configuration
or behavior that was generated by CubeMX. In the example below, developers can modify the
initialize function to configure TouchGFX additionally or to modify an existing configuration set in
TouchGFXGeneratedHAL .

TouchGFXHAL.cpp

Upgrading Projects
TouchGFX Generator parameters are stored in .ioc files (CubeMX project). When a new version of
TouchGFX Generator is released the parameters of the old version may be incompatible with the new
version and may require migration.

void TouchGFXHAL::initialize()
{
 // Calling parent implementation of initialize().
 //
 // To overwrite the generated implementation, omit call to parent function
 // and implemented needed functionality here.
 // Please note, HAL::initialize() must be called to initialize the framework.

 TouchGFXGeneratedHAL::initialize();

 //Overriding configurations
 hal.lockDMAToFrontPorch(true);
 hal.setFingerSize(4);
 hal....
}

Since cubeMX does not support upgrading between X-CUBE versions the upgrade is automatically
performed by TouchGFX Designer when Generate Code is pressed due to the following command in
the PostGenerateTargetCommand section of the .touchgfx file.

.touchgfx

The command will read the .ioc file and update the parameters to fit the current version of X-CUBE-
TOUCHGFX. Below is an example of running the script (X-CUBE-TOUCHGFX 4.14.0) by hand on an .ioc
file created with X-CUBE-TOUCHGFX 4.13.0.

Upgrade example using STM32F746 DISCO Application Template from 4.13.0 to 4.14.0

Opening the updated project with CubeMX prompts the user to install the version of X-CUBE-
TOUCHGFX that is represented by the .ioc file (if not already installed). Clicking Download now will
download and install X-Cube-TouchGFX-4.14.0.

Additional Software Component Missing: TouchGFX Generator 4.14.0

All configurations in TouchGFX Generator will be kept during the upgrade procedure and a backup of
the .ioc file will be placed beside the original on prepended with backup_ .

NOTE

To use the new features provided by TouchGFX Generator, Generate Code must be performed in CubeMX.

CAUTION

If upgrading X-CUBE-TOUCHGFX through CubeMX for an existing TouchGFX Project and the upgrade
process is not run by TouchGFX Designer, TouchGFX Generator parameters will be reset to default since they
are applicable to a different version.

"PostGenerateTargetCommand" : "touchgfx update_project --project-file=../upgrade.ioc --pla

$ touchgfx update_project --project-file=../STM32F746G_DISCO.ioc
 TouchGFX Generator 4.13.0 found
 Creating backup of ../STM32F746G_DISCO.ioc as ../backup_STM32F746G_DISCO.ioc
 Performing upgrade 4.13.0 -> 4.14.0 ... OK

Version: 4.16

LTDC/Parallel RGB
For MCUs with a TFT controller (e.g. STM32F429, STM32F746, STM32H7), the TouchGFX Generator can
generate the part of the HAL that configures the LTDC to transfer pixels from the framebuffer memory
to the display. The generated code both starts the correct framebuffer transfer and unblocks the
TouchGFX Engine main loop by calling OSWrappers::signalVSync() once a VSYNC interrupt is raised
by the LTDC.

Display Interface
As opposed to a "Custom" display interface, where the developer must implement the whole driver by
hand, for LTDC the TouchGFX Generator can generate all the code necessary for the TouchGFX HAL to
support an LTDC configuration.

For "Parallel RGB (LTDC)" to be a selectable option through the TouchGFX Generator the LTDC must be
enabled from the Multimedia group in the CubeMX category list.

Once LTDC is enabled, the Parallel RGB (LTDC) option becomes available through the Display section
of the TouchGFX Generator.

Even after LTDC is enabled through CubeMX, some work is required in order to:

1. Configure LTDC (GPIO and timings) to match connected display specifications
2. Configure LTDC to match desired TouchGFX application specifications.

The TouchGFX Generator can read various configurations from CubeMX and provide a list of warnings,
recommendations or errors that are called Dependencies. The image below shows the list of
dependencies present when initially enabling LTDC in CubeMX for any MCU (in this example we used
an F429):

NOTE

LTDC recommendations, warnings and errors will be visible in the TouchGFX Generator interface as soon as
LTDC is enabled through CubeMX.

Dependency Description

Unsupported
pixel format

The framebuffer drivers of TouchGFX are only available in RGB565 (16-bit) and
RGB888 (24-bit). The pixel format of the LTDC must match the chosen driver for
the TouchGFX HAL.

Dependency Description

Additional
layers
configured

TouchGFX is only capable of utilizing a single layer. While TouchGFX applications
can work with two layers enabled, this is a warning to the user that the LTDC is
potentially misconfigured. Change the number of layers in the LTDC block.

Blending
factors
should be
PAxCA

By default, the blending factor is Alpha Constant.

This should be Alpha Constant x Pixel Alpha

Alpha
Constant is 0

By default, the alpha constant of LTDC layers is 0. This should be > 0 and
preferably 255 unless there is an intent to have a global alpha at all times in an
application.

Remember to actually select the Parallel RGB (LTDC) display interface after enabling the LTDC
peripheral in the Multimedia section.

The following image shows the LTDC configuration that satisfies the conditions of the warnings,
causing the Dependencies group to disappear from the TouchGFX Generator interface.

Reading settings from CubeMX
By selecting Parallel RGB (LTDC) as the display interface through TouchGFX Generator, the width and
height of the framebuffer is inherited from the LTDC configuration horizontal start/stop and vertical
start/stop.

Defining the dimensions of Layer 0 according to the display and application dimensions a new entry in
the Dependency window appears.

Ensuring that Framebuffer Image Width and Image Height match the size of the window, which is
usually desired, will satisfy the warning.

CAUTION

TouchGFX Generator inherits the Width and Height values from the LTDC configuration, if LTDC is enabled.
However, Width and Height can still be modified from the TouchGFX Generator interface. Changing these
values can lead to a configuration mismatch if they do mot respect the Window LTDC Layer configuration.

TouchGFX Driver / VSYNC Signal
Once Parallel RGB (LTDC) is selected as Display Interface, developers gain access to the LTDC
Application Tick Driver or TouchGFX Driver.

The following code is the interrupt handler (STM32F7) for the LTDC interrupt generated according to
LTDC configuration. The generated handler automatically unblocks the TouchGFX Engine main loop.

NOTE

For the LTDC driver to work, users must enable the LTDC global interrupt through the LTDC NVIC settings or
through Global NVIC settings, and also enable generation of handler code.

extern "C"
irq void LTDC_IRQHandler(void)
{
 if (LTDC->ISR & 1)
 {
 LTDC->ICR = 1;
 if (LTDC->LIPCR == (LTDC->AWCR & 0x7FF) - 1)
 {
 //entering active area
 OSWrappers::signalVSync();
 }
 }
}

Conclusion
Enabling the Parallel RGB (LTDC) display interface option through TouchGFX Generator allows all
required HAL code to be generated.

Sets the width, height and pixel format of the TouchGFX application in accordance with the CubeMX
LTDC configuration. The LTDC layer width and height impact the size of the canvas in TouchGFX
Designer and the LTDC Pixel Format impacts the required TouchGFX framebuffer driver and also the
format for generated assets.
Allow the LTDC application tick source to be selected which generates a handler to drive the
TouchGFX Engine Main loop. Usually, with LTDC Configurations developers would always use the
provided Application Tick Driver.

Version: 4.16

FMC and SPI Display Interface
The following scenario shows, generally, the steps involved in writing a TouchGFX driver when
selecting Custom display interface in the TouchGFX generator using an LCD connected to either an
FMC or through SPI.

FURTHER READING

the STM32L496-DISCO Application template available from the designer uses FMC and can be inspected for
inspiration on how to implement a TouchGFX display driver.

The process of writing a TouchGFX display driver for MCUs without embedded display controllers over
FMC or SPI is identical. The scenario described in this section uses an ST7789H2 LCD Controller to
exemplify.

Once FMC or SPI is configured according to board specifications in CubeMX the TouchGFX Generator
can be used to generate a HAL, selecting the Custom display interface, which allows developers to
write custom code to transfer the updated parts of the application framebuffer to a connected display.

The figure below shows a TouchGFX Generator configuration with Custom Display Interface selected.
This instructs the TouchGFX Generator that the developer would like to configure and transfer pixels
from the framebuffer memory to the display manually and generates the handles to accomplish this.

NOTE

The driver code shown in this section for the ST7789H2 would have been developed during the Board
Bringup phase and, once working, can more or less be copied to the HAL class generated by the TouchGFX
Generator.
The driver must be able to transfer pixels to the display, and to control the memory writing position of the
display. Check its datasheet to find appropriate commands, outlined below, and further details.

TouchGFX Generator Configuration

Generally, for displays with embedded GRAM such as 8080 or SPI displays, the driver works as follows:

1. Based on the area of the framebuffer to be redrawn, move the "display cursor" and "active window"
to a place in GRAM that matches this area.

2. Prepare to write incoming pixel data to GRAM.
3. Send pixel data.

Transferring the framebuffer
When an area of the framebuffer has been updated, the TouchGFX Engine calls
HAL::flushFrameBuffer(Rect r) . This function can be overridden when developers must implement

a driver for a "Custom" display interface.

void TouchGFXHAL::flushFrameBuffer(const Rect& rect)
{
 /* Set Cursor */
 __ST7789H2_SetDisplayWindow(rect.x, rect.y, rect.width, rect.height);

 /* Prepare to write to LCD RAM */
 ST7789H2_WriteReg(ST7789H2_WRITE_RAM, (uint8_t*)NULL, 0);

 /* Send Pixels */
 this->copyFrameBufferBlockToLCD(rect);
}

The following function __ST7789H2_SetDisplayWindow sets the x and y coordinates for the virtual
"cursor" in GRAM by writing to specific registers, which is usual for displays using GRAM.

The following function TouchGFXHAL::copyFrameBufferBlockToLCD is a private function that sends
one line of the updated area (Rect) at a time, ensuring to progress the framebuffer pointer
accordingly.

Instead of advancing ptr manually, the TouchGFX Generator will generate a function
advanceFrameBufferToRect that advances ptr according to the position of Rect in the

framebuffer.

extern "C"
void __ST7789H2_SetDisplayWindow(uint16_t Xpos, uint16_t Ypos, uint16_t Width, uint16_t He
{
 uint8_t parameter[4];

 /* CASET: Column Address Set */
 parameter[0] = 0x00;
 parameter[1] = Xpos;
 parameter[2] = 0x00;
 parameter[3] = Xpos + Width - 1;
 ST7789H2_WriteReg(ST7789H2_CASET, parameter, 4);

 /* RASET: Row Address Set */
 parameter[0] = 0x00;
 parameter[1] = Ypos;
 parameter[2] = 0x00;
 parameter[3] = Ypos + Height - 1;
 ST7789H2_WriteReg(ST7789H2_RASET, parameter, 4);
}

void TouchGFXHAL::copyFrameBufferBlockToLCD(const Rect& rect)
{
 __IO uint16_t* ptr;
 uint32_t height;

 // This can be accelerated using regular DMA hardware
 for (height = 0; height < rect.height ; height++)
 {
 ptr = getClientFrameBuffer() + rect.x + (height + rect.y) * BSP_LCD_GetXSize();
 LCD_IO_WriteMultipleData((uint16_t*)ptr, rect.width);
 }
}

inline uint8_t* TouchGFXGeneratedHAL::advanceFrameBufferToRect(uint8_t* fbPtr, const touch
{
 // Advance vertically Advance horizontally

Returning from HAL::flushFrameBuffer()
Once the function returns TouchGFX Engine continues to draw the rest of the frame. If developers wish
to use DMA to transfer pixels to the display, they must ensure that HAL::flushFrameBuffer(Rect&
rect) does not return immediately by e.g. waiting on a semaphore signaled by a DMA Completed
interrupt.

The following pseudo-code example shows an example of how HAL::flushFrameBuffer() could be
structured in case DMA is used. The code uses a FreeRTOS semaphore screen_frame_buffer_sem .

TouchGFX Driver / Tearing Effect Signal
As can be seen in TouchGFX Generator configuration above, the "Application Tick Source" is also set to
"Custom", which is general for MCUs without embedded TFT Controllers.

As described in the Abstraction Layer Architecture section, the TouchGFX Engine main loop is
unblocked by calling OSWrappers::signalVSync() , usually at the time when a display signals.

 fbPtr += rect.y * lcd().framebufferStride() + rect.x * 2;
 return fbPtr;
}

void TouchGFXHAL::flushFrameBuffer(const touchgfx::Rect& rect)
{
 uint16_t* fb = HAL::lockFrameBuffer();

 //Prepare display
 prepare();

 //Try to take a display semaphore - Always free at this point
 xSemaphoreTake(screen_frame_buffer_sem, portMAX_DELAY);

 //Set up DMA
 screenDMAEnable();

 // Wait for the DMA transfer to complete
 xSemaphoreTake(screen_frame_buffer_sem, portMAX_DELAY);

 //Unlock framebuffer and give semaphore back
 HAL::unlockFrameBuffer();
 xSemaphoreGive(screen_frame_buffer_sem);
}

For displays with a serial or 8080 display interface, the embedded display controller typically raises a
periodic Tearing Effect (TE) signal that can be connected to a GPIO on the MCU. In this case, the MCU
is usually configured to raise an interrupt when the GPIO is signalled. This "Tearing Effect" interrupt will
then unblock the TouchGFX Engine Main loop to render the next frame. Remember to configure the
GPIO to input and enable the external interrupt for the pin in CubeMX.

Conclusion
Selecting Custom Display Interface through the TouchGFX Generator is an expression of a developer's
intent to write code to transfer pixels from an application frame buffer to a display, manually.

The TouchGFX Generator will generate a function TouchGFXHAL::flushFrameBuffer(Rect& rect) that
is called automatically by TouchGFX after rendering an area of the framebuffer that developers can use
to transfer affected pixels to a display, SPI, FMC or otherwise.

Selecting a custom display interface also requires developers to implement a custom TouchGFX
Application Tick driver that signals OSWrappers::signalVSync() to unblock the TouchGFX Engine
Main loop. Usually, displays used along with MCUs that have no TFT Controllers can provide a Tearing
Effect signal that is connected to the MCU.

extern "C"
void TE_Handler(void)
{
 ...
 /* Unblock TouchGFX Engine Main Loop to render next frame */
 OSWrappers::signalVSync();
 ...
}

Version: 4.16

Framebuffer Strategies
This section shows how to configure the TouchGFX Generator to generate a TouchGFX HAL that uses
one of the following Frame Buffer strategies:

Single
Double
Partial

Single Frame Buffer
Choosing Single Buffer as the buffering strategy developers are able to let the compiler allocate
memory for the framebuffer in internal RAM but can also choose a specific location for the buffer.

By Allocation
When choosing By Allocation TouchGFX Generator will allocate an array based on the dimensions and
bitdepth of the application.

Single framebuffer, by allocation

Code is generated to configure the HAL to use this array as the framebuffer.

TouchGFXGeneratedHAL.cpp

namespace {
 // Use the section "TouchGFX_Framebuffer" in the linker script
 // to specify the placement of the buffer
 LOCATION_PRAGMA("TouchGFX_Framebuffer")
 uint32_t frameBuf[(480 * 272 * 2 + 3) / 4] LOCATION_ATTRIBUTE("TouchGFX_Framebuffer");
}

By Address
When choosing By Address for the location of the framebuffer TouchGFX Generator will use the
specified Start Addresses during HAL initialization.

Single framebuffer, by address

TouchGFXGeneratedHAL.cpp

Double Frame Buffer
In a double frame buffer configuration, code to swap farmebuffers will be generated in the HAL by
TouchGFX Generator depending on the selected Framebuffer strategy and display interface. This
memory interface to frame buffer location is used by the TouchGFX Engine during the main event
loop.

By Address

void TouchGFXGeneratedHAL::initialize()
{
 HAL::initialize();

 setFrameBufferStartAddresses((void*)frameBuf, (void*)0, (void*)0);
}

void TouchGFXGeneratedHAL::initialize()
{
 HAL::initialize();

 setFrameBufferStartAddresses((void*)0xC0000000, (void*)0, (void*)0);
}

When choosing By Address TouchGFX Generator will use the two specified Start Addresses during HAL
initialization.

Double framebuffer, by address

TouchGFXGeneratedHAL.cpp

TIP

When using Parallel RGB (LTDC) as display interface, the start address will be inherited from the LTDC Layer
settings.

By Allocation
When choosing By Allocation TouchGFX Generator will allocate an array based on the dimensions and
bitdepth of the application, exactly as with a Single Frame Buffer, only twice the size.

void TouchGFXGeneratedHAL::initialize()
{
 HAL::initialize();

 setFrameBufferStartAddresses((void*)0xC0000000, (void*)0xC003FC00, (void*)0);
}

Single framebuffer, by allocation

TouchGFXGeneratedHAL.cpp

Partial Frame Buffer
Selecting the Partial Buffer strategy allows developers to choose a number of blocks and a size for
each of these to be used as frame buffers. This strategy uses what TouchGFX calls a Frame Buffer
Allocator and is different from supplying either a pointer to external memory where the frame buffer is
located, or allocating a fixed sized array in internal memory.

See the article on Framebuffer for a general overview of the concept of frame buffers.

TIP

Usually, STM32G0 does not have enough internal RAM to fit framebuffer. "Partial Buffer" would be a perfect
match for a low cost solution using this MCU.

Partial framebuffer

namespace {
 // Use the section "TouchGFX_Framebuffer" in the linker to specify the placement of th
 LOCATION_PRAGMA("TouchGFX_Framebuffer")
 uint32_t frameBuf[(480 * 272 * 2 + 3) / 4 * 2] LOCATION_ATTRIBUTE("TouchGFX_Framebuffe
}

void TouchGFXGeneratedHAL::initialize()
{
 HAL::initialize();

 setFrameBufferStartAddresses((void*)frameBuf, (void*)(frameBuf + sizeof(frameBuf)/(siz
}

Since a partial buffering strategy is typically only used with low cost MCU with no TFT controller and
little internal RAM the Partial Buffer Strategy expects the developer to implement the transfer of the
contents of the framebuffer to the display. See FMC/SPI Scenario for how to transmit pixels to e.g. a
serial display on MCUs with no TFT Controller.

In order to synchronize with TouchGFX when using the Partial Framebuffer strategy developers are
required to provide implementations for the following two functions. The code displayed below is
generated by CubeMX inside TouchGFX/target/generated/TouchGFXGeneratedHAL.cpp and defines
the interface from developer to the TouchGFX Engine.

TouchGFXGeneratedHAL.cpp

The following function is also generated by CubeMX inside the read-only TouchGFXGeneratedHAL
class inside TouchGFX/target/generated/TouchGFXGeneratedHAL.cpp .

NOTE

This flushFrameBuffer() function is generally used for MCUs with no TFT Controller. In the case of Partial
Frame Buffers the TouchGFX Generator can generate a definition for this method specifically for that frame
buffer strategy.

TouchGFXGeneratedHAL.cpp

/* **
* Functions required by Partial Frame Buffer Strategy
* **
*
* * uint8_t isTransmittingData() must return whether or not data is currently being tran
* * void transmitFrameBufferBlock(uint8_t* pixels, uint16_t x, uint16_t y, uint16_t w, u
* when the framework wants to send a block. The user must then transfer
* the data represented by the arguments.
*
* A user must call touchgfx::startNewTransfer(); once transmitFrameBufferBlock() has succ
* E.g. if using DMA to transfer the block, this could be called in the "Transfer Complete
*
*/
extern "C" void transmitFrameBufferBlock(uint8_t* pixels, uint16_t x, uint16_t y, uint16_t
extern "C" uint8_t isTransmittingData();

void TouchGFXGeneratedHAL::flushFrameBuffer(const touchgfx::Rect& rect)
{
 HAL::flushFrameBuffer(rect);

 // Once flushFrameBuffer() is called by the framework a block is ready for transfer
 // Mark it ready for transfer and transmit it if user defined method
 // isTransmittingData() does not return false

 // If data is not being transmitted, transfer the data with user defined method
 // transmitFrameBufferBlock().
 frameBufferAllocator->markBlockReadyForTransfer();
 if (!isTransmittingData())
 {
 touchgfx::Rect r;
 const uint8_t* pixels = frameBufferAllocator->getBlockForTransfer(r);
 transmitFrameBufferBlock((uint8_t*)pixels, r.x, r.y, r.width, r.height);
 }
}

Version: 4.16

UI Development Introduction

Developing a functional UI is an integral part to having a successful embedded graphics product and
as such, TouchGFX aims to not only provide fast performance but also a smooth development
experience.

The UI Development chapter focuses on the ins and outs of how a TouchGFX application is developed:

Software Architecture - describes the overall architecture and design of a TouchGFX application
and the relationship between generated code from TouchGFX Designer and user code.
Working with TouchGFX - contains information on the workflow of developing a TouchGFX
application and the different tools used in the process - from the PC simulator to the numerous
supported IDEs.
Designer User Guide - contains an extensive guide and tips and tricks on how to use the different
components of TouchGFX Designer.
TouchGFX Engine Features - contains information on the different TouchGFX Engine features such
as bitmap caching, partial framebuffer, multi language support etc.
UI Components - contains information on every UI component found in TouchGFX - from widgets
to containers.
Scenarios - contains different scenarios that developers might run into and how to solve them.

Version: 4.16

Model-View-Presenter Design
Pattern
TouchGFX user interfaces follow an architectural pattern known as Model-View-Presenter (MVP) which
is a derivation of the Model-View-Controller (MVC) pattern. Both of them are widely used for building
user interface applications.

The main benifits of the MVP pattern are:

Separation of Concerns: Dividing your code into separate parts, each having their own
responsibility. This makes the code simpler, more reusable and easier to maintain.
Unit Testing: Since the logic (the presenter) of the UI is separated from the visual layer (the view) it
is much easier to test these parts in isolation.

In MVP the three classes are defined as follows:

The model is an interface defining the data to be displayed or otherwise acted upon in the user
interface.
The view is a passive interface that displays data (from the model) and routes user commands
(events) to the presenter to act upon that data.
The presenter acts upon the model and the view. It retrieves data from repositories (the model), and
formats it for display in the view.

Model-View-Presenter Design Pattern

In TouchGFX the communication with the non-UI part of the application, here called the backend
system, is done from the Model class. The backend system is a software component that both receives
events from the UI and feeds events into the UI, such as new measurements from sensors. The

backend system can run as a separate task on the same MCU, on a separate processor, a cloud
module or something else. From the perspective of TouchGFX, this does not really matter, as long as it
is a component that it is able to communicate with.

The specific communication protocol used is not managed by TouchGFX. It simply supplies a function
that is called once each tick of TouchGFX, in which the needed communication can be handled. Read
more on this subject in Backend Communication.

Model-View-Presenter and external communication

For more concrete details on how MVP is implemented and used in TouchGFX UI development see the
Code Structure section.

Version: 4.16

The Screen Concept
In TouchGFX applications, you can have any number of "Screens". A screen in TouchGFX is a logical
grouping of UI elements (widgets) and their associated business logic. A screen consists of two classes:
a View class containing all the widgets that are shown on this screen, and a Presenter containing
business logic for this screen.

You can choose to implement your entire application within the context of a single screen (meaning
you only have one View and one Presenter), but we recommend splitting unrelated parts of your UI
into different screens, for two reasons:

1. TouchGFX includes a memory allocation scheme that automatically allocates the necessary RAM
needed for the most RAM-consuming screen. Only this amount will be allocated, and this RAM
block is reused across all screens in your application.

2. Having several screens makes your UI code much easier to maintain.

Defining Screens
There are no exact rules as to how your application should be divided into screens, but there are
certain guidelines that might assist you in deciding what screens should make up your specific
application. Areas of the UI that are visually and functionally unrelated should be kept in different
screens.

If you consider a very simple thermostat application which has a main temperature readout display
and a configuration menu, it would be a good idea to create a "Main Screen" for the temperature
readout and a "Settings Screen" for showing the configuration menu.

The View for the Main Screen would contain widgets for a background image, a few text areas for
showing temperature and a button for switching to the configuration menu. The View for the
configuration on the other hand would probably contain widgets for showing a list of configuration
options and a different background image. If the configuration menu is capable of editing many
different types of settings (dates, names with keyboard, temperatures, units etc.), this screen will grow
large in complexity.

In that case it might be beneficial to further divide the configuration menu into one screen showing
the overall tree of menu options, and a different screen for editing a specific value. But this is
something you will learn as your project progresses.

Currently Active Screen

Because of the way TouchGFX allocates memory for screens (only allocating for biggest View and
biggest Presenter), only one View and one Presenter can be active at a time. So if your thermostat
application is displaying the temperature readout, then the configuration menu screen is not running
anywhere, and in fact is not even allocated.

If events are received from the "backend" (all your non-UI code that does the actual work of the
thermostat) or from hardware peripherals, then these events can be delegated to the currently active
screen.

This provides a useful separation of concerns because some events will be of interest only to certain
screens in your application. For instance, a received event notifying of a change in current temperature
could be handled only by the main screen (which would update the text area showing current
temperature), whereas the configuration screen could simply discard this event as it is of no interest
since current temperature is not being displayed in this screen.

Model-View-Presenter in TouchGFX
TouchGFX follows the Model-View-Presenter (MVP) design pattern as described in Model-View-
Presenter Design Pattern. The TouchGFX screen concept ties into the overall Model-View-Presenter
architecture by classes that inherit from the View and Presenter classes in TouchGFX. So when adding a
new screen to your application in TouchGFX Designer it creates both a new specific View class and a
Presenter class to represent that particular screen.

The content and responsibility of the MVP classes in a TouchGFX application are as follows.

Model
The Model class is a singleton class which is always alive and has two purposes:

1. Store state information for the UI. The Views and Presenters are deallocated when switching screen,
so they cannot be used to store information which should be kept across screen transitions. Use the
Model for this instead.

2. Act as an interface towards the backend system, relaying events to and from the currently active
screen.

The Model class is automatically setup to have a pointer to the currently active presenter. When
changes occur in the Model the current active Presenter is notified of the change. This is done via
methods in the ModelListener interface in the application.

New applications generated by the Designer will automatically have a Model class ready to be used by
the UI.

View
The View class (or more specifically, a class that derives from the TouchGFX View class) contains the
widgets that are shown in this view as member objects. It also contains a setupScreen and a
tearDownScreen function, which gets automatically called when this screen is entered/exited.

Typically you would configure your widgets in the setupScreen function.

Your View will also contain a pointer to the associated Presenter. This pointer is set up automatically
by the framework. Using this pointer you can communicate UI events like button clicks to the
Presenter.

Presenter
Your Presenter class (again, a class that derives from the TouchGFX Presenter class) is responsible for
the business logic of the currently active screen. It will receive "backend" events from the Model, and
UI events from the View and decide which action to take. For instance, if an alarm event is received
from the Model, the Presenter might decide to tell the View that an alarm popup dialog should be
displayed.

Version: 4.16

Code Structure
This section explains the structure of a TouchGFX project - from the code generated by TouchGFX
Designer to the extending code written by the user.

Generated Code vs. User Code
The code generated by TouchGFX Designer will be completely separate from the code written by the
user. In fact, the generated code is placed in the folder generated/gui_generated , whereas the
handwritten code is placed in the gui folder.

The gui_generated code serves as base classes for user code classes. The base classes contain all the
setup code configured in TouchGFX Designer. The following class diagram shows the relationship of
the classes:

Class hierarchy of engine, generated and user classes

As shown above, TouchGFX Designer applications consist of 3 different layers of code:

Engine: these classes are the standard classes provided by TouchGFX. These act as base classes for
the generated classes.
Generated: these classes and corresponding files will be regenerated whenever TouchGFX Designer
generates code. Therefore, these classes and files should not be edited manually, as any manual
changes will be overwritten on the next run of the code generator. These classes are base classes
for the user classes.
User: these classes are intended for handwritten code. The user is free to put any code in this layer.
The user classes will be generated if not present, but will never be altered by TouchGFX Designer.
They belong to the user.

NOTE

The architecture of the applications generated by TouchGFX Designer is open in the sense that there should
be no limits to what you can create. If something (e.g. a widget, animation, or effect) is not supported by
TouchGFX Designer, you can add them in user classes. The code generated by TouchGFX Designer is by
design not allowed to restrict you in your way of doing TouchGFX applications.

Files Generated by TouchGFX Designer
As a rule, TouchGFX Designer will only regenerate files within the generated folder in a TouchGFX
project and it is therefore important that you do not manually edit these, as they will be overwritten.
However, TouchGFX Designer can also generate missing files needed for compilation, e.g.
application.config , simulator/main.cpp and skin images located in assets/images/__designer .

In actuality, TouchGFX Designer only needs the following to be able to generate, compile and run a
project:

The .touchgfx file describing the project
User code (if any) located in the gui folder
User images (if any) located in the assets/images folder
Texts (if any) located in the assets/texts/texts.xlsx file
Fonts (if any) located in the assets/fonts folder

TIP

When using version control such as Git, this means that only the files listed above actually need to be
commited to a repository. The rest can be generated by TouchGFX Designer itself.

Example
A simple example of an application having both generated and user code will be given below. This
should illustrate the aspects above in more detail.

TouchGFX Designer View
The following example has just one screen. The screen MyScreen consists of a Box box1 and a
Button button1 . We have set up an interaction to call the virtual function setRandomColor() when
button1 is clicked.

TouchGFX Designer application

Whenever we press the button we would like to change the color of the background box to a new
random color. To demonstrate how to write your own custom code, we will implement this behavior in
user code.

Layers
The different classes involved in this example can be seen below:

Example classes

We see that:

MyScreenViewBase , FrontendApplicationBase and FrontendHeapBase are in the generated
space, implying that:

They will be regenerated whenever a change is made in TouchGFX Designer
The user should not manually edit these classes

MyScreenView , MyScreenPresenter , FrontendApplication and FrontendHeap are created in
the user code space, meaning that:

These will not be regenerated when changes are made in TouchGFX Designer
The user is free to add custom code here

All the setup of box1 and button1 is done in the generated view base class MyScreenViewBase .
All the functions for transitioning between screens are in the generated application base class
FrontendApplicationBase .

All the book keeping, making sure that the right amount of memory is allocated, is located in the
generated heap base class FrontendHeapBase .

The user is free to edit the user code classes. For instance you could add more widgets. For now we
will just implement the setRandomColor function to actually change the color of box1 .

Code
Looking at the view base code, we see the setup of the box and button generated by TouchGFX
Designer. We also see the setup of and the call to the virtual function setRandomColor in the
buttonCallbackHandler , but at the moment this function does not do anything:

MyApplication/generated/gui_generated/src/my_screen/MyScreenViewBase.cpp

/***/
/********** THIS FILE IS GENERATED BY TOUCHGFX DESIGNER, DO NOT MODIFY ***********/
/***/
#include <gui_generated/myscreen_screen/MyScreenViewBase.hpp>
#include <touchgfx/Color.hpp>
#include "BitmapDatabase.hpp"

MyScreenViewBase::MyScreenViewBase() :
 buttonCallback(this, &MyScreenViewBase::buttonCallbackHandler)
{
 box1.setPosition(0, 0, 800, 480);
 box1.setColor(touchgfx::Color::getColorFrom24BitRGB(255, 255, 255));

 button1.setXY(155, 106);
 button1.setBitmaps(touchgfx::Bitmap(BITMAP_BLUE_BUTTONS_ROUND_EDGE_SMALL_ID), touchgfx
 button1.setAction(buttonCallback);

 add(box1);
 add(button1);
}

void MyScreenViewBase::setupScreen()
{

Looking at the header file for the view base class, we see the declaration of setRandomColor and an
instruction to override and implement the function in user code:

MyApplication/generated/gui_generated/src/my_screen/MyScreenViewBase.hpp

}

void MyScreenViewBase::buttonCallbackHandler(const touchgfx::AbstractButton& src)
{
 if (&src == &button1)
 {
 //Interaction1
 //When button1 clicked call virtual function
 //Call setRandomColor
 setRandomColor();
 }
}

/***/
/********** THIS FILE IS GENERATED BY TOUCHGFX DESIGNER, DO NOT MODIFY ***********/
/***/
#ifndef MYSCREENVIEWBASE_HPP
#define MYSCREENVIEWBASE_HPP

#include <gui/common/FrontendApplication.hpp>
#include <mvp/View.hpp>
#include <gui/myscreen_screen/MyScreenPresenter.hpp>
#include <touchgfx/widgets/Box.hpp>
#include <touchgfx/widgets/Button.hpp>

class MyScreenViewBase : public touchgfx::View<MyScreenPresenter>
{
public:
 MyScreenViewBase();
 virtual ~MyScreenViewBase() {}
 virtual void setupScreen();

 /*
 * Virtual Action Handlers
 */
 virtual void setRandomColor()
 {
 // Override and implement this function in MyScreen
 }

protected:
 FrontendApplication& application() {
 return *static_cast<FrontendApplication*>(touchgfx::Application::getInstance());
 }

So let's do just that. Navigate to the user code header file MyScreenView.hpp and override the
function:

MyApplication/generated/gui_generated/src/my_screen/MyScreenView.hpp

Then we need to implement the actual behavior of setRandomColor in the cpp file for
MyScreenView :

 /*
 * Member Declarations
 */
 touchgfx::Box box1;
 touchgfx::Button button1;

private:

 /*
 * Callback Declarations
 */
 touchgfx::Callback<MyScreenViewBase, const touchgfx::AbstractButton&> buttonCallback;

 /*
 * Callback Handler Declarations
 */
 void buttonCallbackHandler(const touchgfx::AbstractButton& src);

};

#endif // MYSCREENVIEWBASE_HPP

#ifndef MYSCREENVIEW_HPP
#define MYSCREENVIEW_HPP

#include <gui_generated/myscreen_screen/MyScreenViewBase.hpp>
#include <gui/myscreen_screen/MyScreenPresenter.hpp>

class MyScreenView : public MyScreenViewBase
{
public:
 MyScreenView();
 virtual ~MyScreenView() {}
 virtual void setupScreen();
 virtual void tearDownScreen();
 virtual void setRandomColor();
protected:
};

#endif // MYSCREENVIEW_HPP

MyApplication/gui/src/my_screen/MyScreenView.cpp

Running the simulator now shows that we have succeeded in creating a simple application utilizing
both generated and user code - the background box now changes to a random color everytime you
click the button.

Simulator showcasing the application

TIP

#include <gui/myscreen_screen/MyScreenView.hpp>
#include <touchgfx/Color.hpp>

MyScreenView::MyScreenView()
{

}

void MyScreenView::setupScreen()
{
 MyScreenViewBase::setupScreen();
}

void MyScreenView::tearDownScreen()
{
 MyScreenViewBase::tearDownScreen();
}

void MyScreenView::setRandomColor()
{
 box1.setColor(touchgfx::Color::getColorFrom24BitRGB(rand()&0xff, rand()&0xff, rand()&0
 box1.invalidate();
}

Of course you do not need to use any features of the code generated by TouchGFX Designer but it will
potentially save a lot of time. It is possible to do TouchGFX applications the old-school way by just adding
the necessary files by hand.

It is also possible to mix and match. For example, you can have screens that are not defined within the
TouchGFX Designer project. You can add the gotoXYZ functions to the FrontendApplication class and add
the views, presenters and transitions you need for your screen to the FrontendHeap .

Version: 4.16

Using IDEs with TouchGFX
When creating a new TouchGFX project, either through the TouchGFX Designer or CubeMX, the
following project files and libraries for using proprietary IDEs are available:

Keil uVision (Target only)
IAR Embedded Workbench (Target only)
CubeIDE (Target only)
Microsoft Visual Studio (Simulator only)

Note that not all project files are present in your project at the same time. The tool chain selected in
CubeMX is the one that will be generated, by default CubeIDE is selected.

FURTHER READING

How to change the tool chain is described here.

In addition makefiles and libraries for shell-based compilation with a GCC cross compiler for ARM
targets are also provided. This article will help you configure third-party GCC-based IDEs for TouchGFX
application development. Basically any IDE which is able to invoke the GCC cross compiler should be
useable.

NOTE

Please note that this article describes only the setup procedure in general terms - support for all the various
IDEs cannot be provided, but hopefully the information presented here is sufficient for you to use TouchGFX
with your favorite IDE.

This article will describe two different approaches to getting TouchGFX to work with other IDEs. One
approach is to invoke the TouchGFX Makefile from within the IDE. This is probably the easiest
approach, but is not always desirable if you want to have more control over the compilation process
and file locations. Alternatively you can manually add the necessary TouchGFX files and configuration
options to your existing project.

Prerequisite: GCC version
This article assumes that you will use either the GCC cross compiler toolchain distributed with the
TouchGFX environment shell, or alternatively your own GCC toolchain of a flavor that is able to link
with the TouchGFX core library compiled using the environment shell toolchain.

The GCC compiler used:

The compiler can be obtained from https://launchpad.net/gcc-arm-embedded.

Invoke TouchGFX Makefile from IDE
A hopefully quick-and-dirty way of compiling TouchGFX applications from within your IDE is to simply
invoke the Makefile included in the projects created by the TouchGFX Designer. To use the TouchGFX
environment shell to compile an application for target, you must navigate to the TouchGFX application
root folder and execute the following command:

Now, instead of invoking the make command from the TouchGFX environment shell, it is also possible
to invoke it from within your IDE. The executables used by the shell (make, arm-none-eabi-gcc, ..) are
actually normal Windows x86 executables, so the make application can be executed by a normal
command prompt, provided that the following environment variables have been configured.

After setting up the needed Windows environment variables it is now possible to invoke the make
command on the appropriate TouchGFX makefile directly from within your IDE. The exact command
you need to execute is the same as when compiling from the shell, namely:

NOTE

Please note that your current directory must be the root directory of the application you want to compile.

$ arm-none-eabi-gcc.exe -v
Target: arm-none-eabi
Thread model: single
gcc version 6.3.1 20170620 (release) [ARM/embedded-6-branch revision 249437] (GNU Tools fo

$ make -f target/gcc/Makefile

C:\<touchfx_installation_directory>\touchgfx\env\MinGW\bin
C:\<touchfx_installation_directory>\touchgfx\env\MinGW\msys\1.0\Ruby193\bin
C:\<touchfx_installation_directory>\touchgfx\env\MinGW\msys\1.0\bin
C:\<touchfx_installation_directory>\touchgfx\env\MinGW\msys\1.0\gnu-arm-gcc\bin

$ make -f target/gcc/Makefile

Add TouchGFX code files to your own project
If you instead wish to have more control over the build process and file locations, you can instead
integrate the relevant TouchGFX code files into your own existing project, and add the necessary
include paths and compiler switches in order to make it compile.

Required files
Basically you will need to add the same TouchGFX files to your IDE project as are compiled when
building with make from the TouchGFX environment shell. Exactly which files to include depend on
your target board, since the low-level drivers are different for each board. In order to determine what
files you need, the recommended approach is to simply try compiling the application using the
TouchGFX environment shell for the appropriate board. The compilation process will mention each file
being compiled, thereby giving you a list of exactly the files you need to add.

Include paths
You will need to add the following include paths to your compilation (here mentioned relative to the
directory where you have unpacked TouchGFX):

TIP

In addition to the above include paths, you also need to add include paths for the board specific code. Take a
look in the target/gcc/Makefile for this information.

Compiler switches
Like with include paths, there are some generic compiler switches which must be enabled, and also
some that are specific for the processor core and concrete board. The compiler switches used to
compile the TouchGFX core library are listed below, for each core. Some of these options will be
mandatory for the compilation of your code as well in order for the linker to work, and some are
optional. Those that are known to be mandatory are marked in bold.

<touchgfx_application_root_directory>/gui/include
<touchgfx_application_root_directory>/generated/gui_generated/include
<touchgfx_application_root_directory>/platform/os
<touchgfx_application_root_directory>/generated/fonts/include
<touchgfx_application_root_directory>/generated/images/include
<touchgfx_application_root_directory>/generated/texts/include
<touchgfx_application_root_directory>/touchgfx/framework/include

Cortex-M3 cores

-mcpu=cortex-m3 -march=armv7-m -Wno-psabi -DCORE_M3 -D__irq="" -fno-rtti -fno-
exceptions -fno-strict-aliasing -fdata-sections -ffunction-sections

Cortex-M4f cores

-fno-rtti -fno-exceptions -mfpu=fpv4-sp-d16 -mfloat-abi=softfp -mcpu=cortex-m4 -D__irq=”“ -
mthumb -mno-thumb-interwork -std=c99 -Os -fno-strict-aliasing -fdata-sections -ffunction-sections -
Wno-psabi -DCORE_M4 -march=armv7e-m

Cortex-M7 cores

-fno-rtti -fno-exceptions -mfpu=fpv5-sp-d16 -mfloat-abi=softfp -mcpu=cortex-m7 -D__irq=”“ -
mthumb -mno-thumb-interwork -std=c99 -Os -fno-strict-aliasing -fdata-sections -ffunction-sections -
Wno-psabi -DCORE_M7

Linker
Core library

You must link with the TouchGFX core library. Depending on your MCU, this would be either

Linker options

In addition, you will need a few linker options. The following options are what TouchGFX uses:

Asset generation
To compile a project, assets must be generated as well. This can be done either by invoking the
generated Makefile with the option 'assets':

Another way to generate assets, is to use the imageconverter and text/font-converter directly.

touchgfx/lib/core/cortex-m4f/gcc/libtouchgfx.a
touchgfx/lib/core/cortex-m7/gcc/libtouchgfx.a

Cortex-M4f: -Wl,-static -nostartfiles -mthumb -mno-thumb-interwork -fno-exceptions -fno-rt
Cortex-M7: -Wl,-static -nostartfiles -mthumb -mno-thumb-interwork -fno-exceptions -fno-rtt

make -f <path_to_Makefile> assets

Imageconverter The imageconverter can be found in your projects touchgfx folder
touchgfx/framework/tools/imageconvert/build built for Linux and Windows.

When calling the imageconvert.out executable, it will look for a configfile (application.config) file
in the folder it is called from.

Textconverter The textconverter can be found in your projects touchgfx folder
touchgfx\framework\tools\textconvert as a ruby file: main.rb .

Flashing and debugging
Depending on your linker settings, you will most likely get an .elf or .hex file produced as output.
It is possible to deploy and debug TouchGFX applications from within most IDEs, typically using a GDB
server, or whichever other approach your IDE provides. Concrete pointers for each available IDE
cannot be provided, but you might find inspiration in the Compiling & Flashing article, which explains
how to flash a board with a GCC-produced ELF/HEX file.

usage: imageconvert [-c configfile] [-f inputfile -o outputfile | -r inputdir -w outputdir

usage: main.rb file.xlsx path/to/fontconvert.out path/to/fonts_output_dir path/to/localiza

Version: 4.16

Widgets and Containers
This section of the documentation will go over two of the most fundamental concepts of building a
TouchGFX application: widgets and containers. These are two of the building blocks you will be using
throughout the development of your UI. Both include premade components supplied with TouchGFX,
while also being open-ended enough to support the creation of custom implementations.

Widgets
TouchGFX and the TouchGFX Designer tool supplies numerous standard widgets which users can freely
use to build their UI, such as TextArea, Button and TextureMapper. But on a fundamental level, a
widget in TouchGFX is simply an abstract definition of something that can be drawn on the screen and
can be interacted with.

A Button widget with an Image widget as background

Using TouchGFX Designer, users can add any widgets they want to their screens and customize them
how they want with the supplied properties specific to each widget. Widgets can also be grouped by
using the different types of containers that TouchGFX also supplies.

You can also add widgets in user code if you want by using the add(widget_instance_name);
function or adding it to a container by using the containers add function e.g.
myContainer.add(widget_instance_name); . The order in which you add the widgets will determine

the z-order. The widget added last will appear front-most on the screen.

The coordinates of a widget are always relative to its parent node which is either the root container
(the screen) or a container.

FURTHER READING

You can create your own widgets to meet any specific need you might have. Read more on this in the
Custom Widgets section.

Containers
A container is a component in TouchGFX that can contain child nodes, such as widgets and other
containers.

In TouchGFX Designer, containers are found under the Containers category in the Widgets tab and
adding widgets to a containers is done by dragging widgets into the container in the tree view.

The z-order of children is determined by the order in which children are added to the container - the
child added last will appear front-most on the screen.

Since the position of widgets in TouchGFX is defined relative to their parents, changing the position of
a parent container will also move the children accordingly.

Containers act as viewports, meaning that only the parts of the children that intersect with the
geometry of the container will be visible.

In the animation below, you can see how the viewport aspect of containers work. First we see the
outline of the container of which the button is a child:

A Container acting as a viewport

FURTHER READING

You can create your own container to meet any specific need you might have. Read more on this in the
Custom Containers section.

Version: 4.16

Simulator
Building a TouchGFX UI often involves a lot of tweeking of the graphics details to match the
specification of the UI.

To speed up the development process it is important to have a fast turnaround time when trying out
and debugging your application. Flashing a board can often take quite some time so doing this each
time you have made a small change to your application will really slow down the development. To
alleviate this, the TouchGFX PC simulator is a great addition to your development tools.

You simply compile your application for your PC and run the application there. The code executed is
exactly the same as on target hardware except for the Board Bring Up code and Abstraction Layer
which are made for the PC instead of your board. This means that you can test things like placement
of widgets, interactions, animations, state machines and so on just as precise as on target hardware.
You can even debug your code using IDEs like Visual Studio if you like. Of course things like
performance analysis and interactions with real backend systems must be done on your board.

Simulator example

How To Run

Using TouchGFX Designer
To launch the simulator from within TouchGFX Designer, simply press the "Run Simulator" button in
the top right corner or press F5 on your keyboard.

Launching the simulator from TouchGFX Designer

Using TouchGFX Environment
To launch the simulator using the TouchGFX environment, follow these steps:

1. Open the TouchGFX Environment
2. Navigate to the location of your TouchGFX application
3. Run the command make -f simulator/gcc/Makefile -j6 to compile the simulator
4. Run the command ./build/bin/simulator.exe to launch the simulator

Run steps 3 and 4 whenever you have made a change to your TouchGFX application.

Simulator Features
Apart from capturing mouse input, the TouchGFX simulator also includes other useful features, listed
below:

Shortcut Feature

F1 Enables/disables debug info.

F2 Enables/disables highlighting invalidated area.

F3 Takes a screenshot and places the image under the screenshots folder.

CTRL + F3 Takes screenshots of the next 50 frames and places the images under the
screenshots folder.

SHIFT + F3 Takes a screenshot and places it in your clipboard.

F4 If a simulator skin is used - enables/disables the simulator skin.
If a simulator skin is not used - enables/disables window border.

Shortcut Feature

F9 Pauses the simulator by preventing ticks to be sent to the application. Pressing F9
again will resume normal execution.

F10 While the simulator is paused (after pressing F9) it is possible to send a single tick
to the application by pressing F10 thereby "single step" the application.

ESC Close the simulator.

Simulator Only User Code
If you have some code that should only run when using TouchGFX simulator, you can use #IFDEF
Simulator in your C++ code:

If you want to output a debug text to the console you can use the touchgfx_printf function. This is
a printf like function that will only be included when building simulator code and thus will not interfere
when running on target hardware. Therefore there is no need to use #IFDEF Simulator in this case.

#IFDEF Simulator
 // Your simulator specific user code here
#ENDIF

int i = 0;
touchgfx_printf("Application is running through simulator! \n");
touchgfx_printf("Print our value for integer i = %i \n", i);

Version: 4.16

Compiling & Flashing
This section describes how to go from TouchGFX application code to executing program, that is how
to compile and flash in a specific setup.

Compiling TouchGFX Applications
When compiling a TouchGFX application, there are two options; compiling for the PC simulator or
compiling for the target hardware.

Compiling for PC Simulator
There are two options for compiling projects for the PC Simulator; GCC and Visual Studio.
Both of these options are always available, since they are generated by TouchGFX Designer.

GCC

The makefile is located at <touchgfx_application_root_folder>/simulator/gcc/Makefile

TouchGFX includes a MinGW environment, that comes preinstalled with a GCC compiler and GNU
Make, making it easy to execute the generated Makefile for the PC simulator.

The TouchGFX Environment can be launched either from
<touchgfx_installation_directory>/env/MinGW/msys/1.0/msys.bat or from the shortcut added to

the Windows start menu, named "TouchGFX x.y.z Environment" where x, y and z describe the version
number.

After launching the TouchGFX Environment and navigating to the TouchGFX Application root folder,
the simple command below can be executed to produce a simulator.exe file.

The simulator executable can then be launched from the TouchGFX Environment with the following
command.

make -f simulator/gcc/Makefile

./build/bin/simulator.exe

The PC Simulator can also be compiled and launched from TouchGFX Designer, by using the Run
Simulator command.

Visual Studio

To compile the PC Simulator using Visual Studio, simply open the generated solution file located at
<touchgfx_application_root_folder>/simulator/msvs/Application.sln using Visual Studio.

The PC Simulator can be launched directly from Visual Studio, enabling code debugging.

NOTE

Before being able to compile with GCC or Visual Studio, Run the Generate command from TouchGFX
Designer.

Compiling for Target Hardware
Compiling projects for STM32 Evaluation Kits is quite simple for Application Template based
applications.

Each application template contains project files for GCC, CubeIDE, IAR and Keil:

GCC: <project_root_folder>/gcc/MakeFile
CubeIDE: <project_root_folder>/STM32CubeIDE/.cproject
IAR: <project_root_folder>/EWARM/Project.eww
Keil: <project_root_folder>/MDK-ARM/<STM32_evaluation_kit_name>.uvprojx

The active tool chain is set from CubeMX and is set to CubeIDE by default. Please note that all project
files are not present at the same time. The generated project file depends on the selected tool chain in
CubeMX

TouchGFX includes a MinGW environment, that comes preinstalled with the GNU Embedded Toolchain
for Arm and GNU Make, making it easy to execute the included Makefile for the target hardware.

The TouchGFX Environment can be launched either from
<touchgfx_installation_directory>/env/MinGW/msys/1.0/msys.bat or from the shortcut added to

the Windows start menu "TouchGFX x.y.z Environment"

After launching the TouchGFX Environment and navigating to the project root folder, the simple
command below can be executed to compile the project for the target hardware.

make -f gcc/Makefile

NOTE

Before being able to compile with GCC, CubeIDE, IAR or Keil, run the Generate command from TouchGFX
Designer.

Flashing STM32 Evaluation Kits
Flashing projects to STM32 Evaluation Kits is quite simple with projects based on a premade
Application Template.

Each project, when built, produces a binary that can be flashed by either ST Link Utility or Cube
Programmer

Therefore these tools must be installed to proceed with flashing.

It is suggested to install these tools to their default location.

ST Link Utility default install location:
C:/Program Files (x86)/STMicroelectronics/STM32 ST-LINK Utility/ST-LINK Utility

Cube Programmer default install location:
C:/Program Files/STMicroelectronics/STM32Cube/STM32CubeProgrammer

NOTE

The Application Templates do not provide any flash loaders for flashing directly from within IAR, Keil,
CubeIDE or other IDEs.

GCC & TouchGFX Designer
The Makefile included with an Application Template located at
<project_root_folder>/gcc/MakeFile has a built-in flash command, as shown below, that uses

either ST Link Utility or Cube Programmer (depending on the AT) to flash the STM32 Evaluation Kit.
You can of course also use the desktop version of the flash tools to flash the boards with the
generated .hex files.

The .hex file is located at <project_root_folder>/TouchGFX/build/bin/target.hex

make -f gcc/Makefile flash

It is also possible to only write to the internal flash and thus skipping the external part. This can reduce
the flash time considerably if you have a large set of images. However, you need to be sure that the
content for the external flash has not changed since you wrote the external flash last time. If it has, and
you do not reflash it, you will see strange behaviour. In this case reflash both the internal and external
flash.

The .hex file is located at <project_root_folder>/TouchGFX/build/bin/inttarget.hex

The Application Template also provides the configuration for TouchGFX Designer to be able to flash
projects via the Run Target Command. The command used by TouchGFX Designer to flash can be seen
and overridden in the Build Section of the Config View in TouchGFX Designer.

CubeIDE
Application Templates provide support for flashing project compiled with CubeIDE, by using the .elf
file output by CubeIDE, with the Cube Programmer.

The .elf file is located at
<project_root_folder>/STM32CubeIDE/Debug/<STM32_evaluation_kit_name>.elf

e.g. C:/TouchGFXProjects/MyApplication/STM32CubeIDE/Debug/STM32F746G_DISCO.elf

IAR
The Application Templates provide support for flashing project compiled with IAR, by using the .hex
file output by IAR, with the Cube Programmer.

The .hex file is located at
<project_root_folder>/EWARM/<STM32_evaluation_kit_name>/Exe/<STM32_evaluation_kit_name>.h
ex

e.g. C:/TouchGFXProjects/MyApplication/MDK-ARM/STM32F469I-DISCO/STM32F469I-DISCO.hex

Keil
The Application Templates provide support for flashing project compiled with Keil, by using the .hex
file output by Keil, with the Cube Programmer.

The .hex file is located at <project_root_folder>/MDK-
ARM/<STM32_evaluation_kit_name>/<STM32_evaluation_kit_name>.hex

make -f gcc/Makefile intflash

e.g. C:/TouchGFXProjects/MyApplication/MDK-ARM/STM32F469I-DISCO/STM32F469I-DISCO.hex

Flashing Custom Hardware
If instead what needs to be flashed is custom hardware, and not a predefined hardware setup like an
STM32 Evaluation Kit, you can still use STM32CubeProgrammer. STM32CubeProgrammer does not
necessarily come with a flash loading mechanism for your specific external memory. It is however
possible to create a custom flash loader. Read the user manual on developing customized loaders for
your external memory to find more info.

Version: 4.16

Debugging
As a TouchGFX application is a set of C++ files generated by TouchGFX Designer, TouchGFX Generator
and written by the developer, it can be debugged as any other C++ application.

Target Debugging
If you are using an IDE like IAR Workbench, Keil uVision or CubeIDE, debugging on target is straight
forward using the available mechanisms of that IDE. TouchGFX projects generated by TouchGFX
Generator or directly from an Application Template is ready for debugging using the selected tool
chain.

Board bring up code and TouchGFX AL is executed only on your target board and needs to be
debugged there. The UI part of your application can be debugged either on target or using the
simulator. On target you will typically debug things like performance issues, such as animation speed,
update frequency and responsiveness. Other UI specific issues can be debugged on target but is often
faster to debug using the simulator.

Simulator Debugging
Debugging UI related issues such as animation movements, transitions, element updates, program
logic and so on, is in most cases much more efficient to test and debug using the simulator instead of
flashing your board each time.

TouchGFX applications comes with support for Visual Studio and supplies and maintains a project file
for it. Using Visual Studio you are able to run the simulator in debug mode, utilizing all the debug
features of the IDE.

You are not restricted to Visual Studio if you want to debug using the simulator. The application can
be compiled with GCC and if you are using a different IDE this can most likely be set up to debug a
GCC compiled project. However, you need to configure your IDE to do this on your own.

Debugging in Visual Studio

Using the DebugPrinter
The DebugPrinter class is an easy way to print debug messages on the display without adding a
TextArea or other widgets to the screens. For example, this can be used to show events from a
backend or measurements like FPS or rendering time.

Before you can use the DebugPrinter you need to allocate an instance and pass it to the Application
class. This can be done e.g. in the constructor of FrontendApplication:

The debug printer needs to be compatible with the framebuffer format. Here we add a 16bpp debug
printer in gui/src/common/FrontendApplication.cpp :

#include <gui/common/FrontendApplication.hpp>

#include <platform/driver/lcd/LCD16bpp.hpp>
LCD16DebugPrinter lcd16bppDebugPrinter;

FrontendApplication::FrontendApplication(Model& m, FrontendHeap& heap)
 : FrontendApplicationBase(m, heap)
{
 lcd16bppDebugPrinter.setPosition(0, 0, 240, 40);
 lcd16bppDebugPrinter.setScale(2);
 lcd16bppDebugPrinter.setColor(0x00); //black

Here we have configured the DebugPrinter to write in the upper 240 x 40 pixels.
In your application you can now print a string using:

NOTE

Characters from ascii 32 (space) to ascii 126 ('~') are available.

DebugPrinter Classes
The DebugPrinter instance must be compatible to the LCD class used. This table lists the DebugPrinter
class names:

LCD class DebugPrinter class

LCD1bpp LCD1DebugPrinter

LCD2bpp LCD2DebugPrinter

LCD4bpp LCD4DebugPrinter

LCD8bpp_ARGB2222 LCD8ARGB2222DebugPrinter

LCD8bpp_ABGR2222 LCD8ABGR2222DebugPrinter

LCD8bpp_RGBA2222 LCD8RGBA2222DebugPrinter

LCD8bpp_BGRA2222 LCD8BGRA2222DebugPrinter

LCD16bpp LCD16DebugPrinter

LCD16bppSerialFlash LCD16DebugPrinter

 Application::setDebugPrinter(&lcd16bppDebugPrinter);
}

char debugStringBuffer[30];
void updateDebugString()
{
 static int count = 0;
 count++;
 snprintf(debugStringBuffer, sizeof(debugStringBuffer), "tick: %d", count);
 Application::getDebugPrinter()->setString(debugStringBuffer);
 Application::invalidateDebugRegion();
}

LCD class DebugPrinter class

LCD24bpp LCD24DebugPrinter

LCD32bpp LCD32DebugPrinter

Use the DebugPrinter class that matches the LCD class you are using.

Version: 4.16

Examples
To help further explore the possibilities and features of TouchGFX, multiple premade examples are
made available to the user. These examples can be accessed through the Startup Window of TouchGFX
Designer and all include free-to-use images, code, etc., which means that they can even be used as a
base to build your own unique application from. Examples are combined with Application Templates
to create TouchGFX applications. If you are new to TouchGFX, this can be a great starting source of
inspiration and knowledge about how TouchGFX applications function.

Some examples focus on single features while others implement several different functionalities found
in TouchGFX. Examples are divided into two different types.

UI Templates
UI Templates are generally smaller, more self-contained examples that mostly focus on specific
features such as different widgets. UI Templates can run on any STM32 evaluation kit and the PC
simulator, but for the best experience it is encouraged to create projects where the resolution of the UI
Template fits the resolution of your board. Some UI Templates are also built with specific color depths
in mind, which means they might not display as well on lower color depth displays.

The UI Templates also include several demos made by the TouchGFX team which showcase more
features with higher quality UI design. These can be a great place to start to get a feeling for what
TouchGFX is capable of.

To create an application using a UI Template, start by pressing the card under the 'Application
Template' label to see the available Application Templates. Click whichever Application Template you
want and then press 'Select'. Next, press the card under the 'UI Template' label to see the available UI
Templates. Click whichever UI Template you want and then press 'Select'. Optionally, select another
resolution and color depth in the drop downs. Finally, press 'Create' to create an application from the
selected Application Template and UI Template. Press either 'Run Simulator' or 'Run Target' to see the
application running.

An animation of these steps can be seen below:

Creating a project using a UI template

Online Applications
Online Applications are out-of-the-box applications for specific hardware solutions and it is therefore
not possible to run these on any other STM32 evaluation kit than the one it was created for (aside
from the PC simulator). These examples are generally a lot larger and explore multiple different
features of the TouchGFX framework and can also include sample integration with the hardware.

To create an application using an Online Application, first access these by clicking the 'Online
Applications' tab in the top of the startup window. Click the card under the 'Online Application' label
to show what applications are available. Click the application you want and press 'Select'. Finish by
pressing 'Create' and either press 'Run Simulator' or 'Run Target' to see the application running.

An animation of these steps can be seen below:

Creating a project using an online application

FURTHER READING

To read more about how to create applications using examples, see the Startup Window section.

Version: 4.16

Keyboard Shortcuts
Listed below are a full list of the keyboard shortcuts supported by TouchGFX to increase productivity.

TouchGFX Designer Features
File Management

CTRL + N Show startup window

CTRL + O Open project from File Explorer

CTRL + S Save current project

Startup Window

ESC Close current window

Add Widget Menu

A Show add widget menu (focus search textbox if already open)

ENTER Insert currently highlighted widget and close add widget menu

ESC Close add widget menu

Canvas

DEL Delete selected widget(s)

CTRL + C Copy

CTRL + V Paste

CTRL + Z Undo

CTRL + Y Redo

CTRL + F Bring selected widget(s) forward

CTRL + B

Send selected widget(s) backward

CTRL + A Select all widgets

← / ↑ / → / ↓ Move selected widget(s) 1 pixel

CTRL + ← / ↑ / → / ↓ Move selected widget(s) 10 pixel

MOUSE WHEEL Scroll up / scroll down

SHIFT + MOUSE WHEEL Scroll left / scroll right

CTRL + MOUSE WHEEL UP / '+' Zoom in

CTRL + MOUSE WHEEL DOWN / '-' Zoom out

CTRL + 0 Reset zoom

MOUSE DRAG Select widgets

CTRL + MOUSE DRAG Pan canvas

Debugging

F5 Run Simulator

F6 Run Target

F7 Generate Code

ALT + L Show/hide detailed log

TouchGFX Simulator Features
Simulator

F1 Enables/disables debug info

F2 Enables/disables highlighting invalidated area

F3 Takes a screenshot and places the image under the
screenshots folder

CTRL + F3 Takes screenshots of the next 50 frames and places the images

under the screenshots folder

SHIFT + F3 Takes a screenshot and places it in your clipboard

F4
If a simulator skin is used - enables/disables the simulator skin
If a simulator skin is not used - enables/disables window
border

F9 Pauses the simulator by preventing ticks to be sent to the
application. Pressing F9 again will resume normal execution.

F10
While the simulator is paused (after pressing F9) it is possible
to send a single tick to the application by pressing F10 thereby
"single step" the application.

ESC Close the simulator

Version: 4.16

Startup Window
The Startup Window of TouchGFX Designer is where new projects can be created, demo projects can
be explored and existing projects can be opened from.
The Startup Window can also be opened by pressing CTRL + N .

Startup Window in TouchGFX Designer

Create New Application
In the My Applications tab new projects can be created by combining an Application Template and UI
Template.

Create New Application view in the Startup Window

Application Name
This will determine the name of the new project, as well as the name of the folder the new project will
be contained in.

Application Directory
This will determine the location of the new project.

Application Template
This selects the Application Template used when creating the new project.

To reveal more information about the selected Application Template, the icon with an 'i' located in the
top right corner, as can be seen in the image below, can be clicked.

To change the Application Template, simply click the Application Template to bring up all available
Application Templates.

Application Template selector in the Startup Window

UI Template
This selects the UI Template used when creating the new project.

To reveal more information about the selected UI Template, the icon with an 'i' located in the top right
corner, as can be seen in the image below, can be clicked.

To change the UI Template, simply click the UI Template to bring up all available UI Templates.

UI Template selector in the Startup Window

Color Depth
This dropdown will contain the color depths supported by the selected Application Template.

Width & Height
The adjustment of width and height will vary depending on which Application Template has been
selected. The Simulator application template will support any resolution size between 0 x 0 and 2000 x
2000

Width and Height free size adjustment in the Startup Window

Some Application Templates only support one resolution size, therefore the width and height
adjustment will be locked to whatever the selected Application Template dictates the resolution size
should be.

Width and Height locked size adjustment in the Startup Window

Some Application Templates support multiple resolutions, therefore the width and height adjustment
will be changed to a dropdown with available resolution sizes from the selected Application Template.

Resolution dropdown size adjustment in the Startup Window

Application Templates
The Application Templates View consists of a search bar in the top right corner, and a tab control that
will filter the Application Templates by their provider.

To select an Application Template, simply click the entry, which will mark it with a blue border, as can
be seen on the 'Simulator' Application template in the image below, and click the blue button with the
label 'SELECT'.

Application Templates in the Startup Window

To view more information about an Application Template, each of the Application Templates, as shown
in the image above have an icon with an 'i' located in their top right corner, that can be clicked. When
clicked the window in the image below will be displayed, here it is also possible to choose the version
of the Application Template to use.

Application Template info in the Startup Window

UI Templates

The UI Templates View consists of a search bar in the top right corner, and a tab control that will filter
the UI Templates by their category.

To select an UI Template, simply click the entry, which will mark it with a blue border, as can be seen
on the 'Blank UI' UI Template in the image below, and click the blue button with the label 'SELECT'.

UI Templates in the Startup Window

To view more information about an UI Template, each of the UI Templates, as shown in the image
above have an icon with an 'i' located in their top right corner, that can be clicked. When clicked the
window in the image below will be displayed, here it is also possible to choose the version of the UI
Template to use.

UI Template info in the Startup Window

Open Online Applications
In the Online Applications tab new projects can be created by using an Online Application.

Open Online Application view in the Startup Window

Application Name
This will determine the name of the new project, as well as the name of the folder the new project will
be contained in.

Application Directory
This will determine the location of the new project.

Online Application
This selects the Online Application used when creating the new project.

To reveal more information about the selected Online Applications, the icon with an 'i' located in the
top right corner, as can be seen in the image below, can be clicked.

To change the Online Applications, simply click the UI Template to bring up all available Online
Applications.

Online Application selector in the Startup Window

Color Depth
This dropdown will contain the color depths supported by the selected Online Applications.

Width & Height
Online Applications only support one resolution size, therefore the width and height adjustment will
be locked to whatever the selected Online Applications dictates the resolution size should be.

Online Applications
The Online Applications View consists of a search bar in the top right corner, and a list of the available
Online Applications.

To select an Online Application, simply click the entry, which will mark it with a blue border, as can be
seen on the 'STM32H750 Discovery OoB Demo' Online Application in the image below, and click the
blue button with the label 'SELECT'.

Online Applications in the Startup Window

To view more information about an Online Application, each of the Online Applications, as shown in
the image above have an icon with an 'i' located in their top right corner, that can be clicked. When
clicked the window in the image below will be displayed.

Online Application info in the Startup Window

Recent Applications

In the Recent Applications view the projects that have most recently been created, opened or modified
can be found.

Recent Applications view in the Startup Window

As can be seen in the image above the Recent Applications view consists of a search bar with a list of
recent applications below it.

Recent Applications Search Bar in the Startup Window

The search bar will filter the recent applications list as characters are entered into it. At the left side of
the search bar a button with a folder icon is located, pressing this button will open a file browser
allowing for manual navigation and opening of a .touchgfx project file.

Recent Application Entry in the Startup Window

Each entry in the recent applications list consists of the name given to the project, the path to the
.touchgfx project file and a button with a folder icon. Clicking an entry will load the project and close
the Startup Window.
Hovering the folder icon will reveal the full path to the .touchgfx project file, and clicking it will open
the folder containing the file in a file explorer.

Version: 4.16

File Menu
The File Menu of TouchGFX Designer consists of a File-, Edit- and Help menu item.

File

File menu item in File Menu

New
Clicking the New button, will open the Startup Window, where a new project can be created.

Open
Clicking the Open button, will open a file explorer, allowing for navigation to and loading of a
TouchGFX Designer project file (.touchgfx)

Save
Clicking the Save button, will save the project that is currently open, into its TouchGFX Designer
project.
The project is also saved when running the simulator, flashing to target and generating code.

Recent
Hovering/clicking the Recent button, will reveal the projects that have most recently been created,
opened or modified, clicking any of these will load that project.

Exit
Clicking the Exit button, will shutdown the TouchGFX Designer.

Edit

Edit menu item in File Menu

Undo
Clicking the Undo button, will undo changes made in the Canvas View. This button may be grayed out
if there are no changes to undo, or the Canvas View is not currently selected.

Redo
Clicking the Redo button, will redo changes made in the Canvas View. This button may be grayed out
if there are no changes to redo, or the Canvas View is not currently selected.

Select All
Clicking the Select All button, will select all widgets added to the Screen or Custom Container that is
currently visible in the Canvas View.

Copy
Clicking the Copy button, will add the Widget, Screen or Custom Container that is currently selected in
the Canvas View, to the copy/paste buffer.

Paste
Clicking the Paste button, will paste the Widget, Screen or Custom Container that is currently in the
copy/paste buffer. Paste is not available if no object has been copied.

Delete
Clicking the Delete button, will delete the Widget, Screen or Custom Container that is currently
selected in the Canvas View.

Import GUI
Clicking the Import Gui button, will open the Import GUI window.

Import UI window in TouchGFX Designer

Here a UI can be imported into the project that is currently open. A UI can be chosen from the
Examples and Demo's provided by STMicroelectronics, or by clicking 'Browse' allowing for selection of
a TouchGFX Designer project (.touchgfx) to be imported into the current project.

CAUTION

Importing a UI will overwrite the UI that is already present in a project

Help

Help menu item in File Menu

Help Center
Clicking the Help Center button, will open support.touchgfx.com in your operating systems default
browser.

About
Clicking the About button, will open a window containing the Software License Agreement.

Version: 4.16

Main Window
The Main Window of TouchGFX Designer consists of a Navigation Bar, Command Buttons, Notification
Bar, and Detailed log. The Main Window forms a frame around the 'View' (The 'View' area, is the area
that has been blurred in the image below)

Main window of TouchGFX Designer

Navigation Bar
In TouchGFX Designer, navigation is done through the Navigation Bar (see image below), here the
View can be changed to one of the following views:

Canvas used for drag and drop application building.
Images used for management of the images used in a project.
Texts used for management of texts and typographies in a project.
Config used for configuration of various settings for a project.

Navigation bar in TouchGFX Designer

Commands
In the Commands section of TouchGFX Designer three buttons can be found: 'Run Simulator', 'Run
Target' and 'Generate Code'. (See image below). These buttons each execute a combination of
commands.

Command buttons in TouchGFX Designer

The commands these buttons execute can be overwritten in the Build section in Config.

Run Simulator
The Run Simulator command triggers a complete code generation, then executes the following
commands:

Generate Assets Command
Post Generate Command
Compile Simulator Command
Run Simulator command

The Run Simulator command can also be triggered by pressing F5

Run Target
The Run Target command triggers a complete code generation, then executes following commands:

Generate Assets Command
Post Generate Command 'Post
Generate Target Command
Compile Target Command
Flash Target command

The Run Target command can also be triggered by pressing F6

Generate Code
The Generate Code command triggers a complete code generation, then executes following
commands:

Generate Assets Command
Post Generate Command
Post Generate Target Command

The Generate Code command can also be triggered by pressing F7

Notification Bar
The Notification Bar at the bottom of the Main Window, shows the status of the current command
being run. If a command fails, the bar will turn red and an error icon will be displayed along with the
command that failed. Commands that succeed will first turn green and then will be cleared from the
Notification Bar, whereas commands that fail will continue to be displayed until another command is
started.

Notification bar success in TouchGFX Designer

Notification bar failed in TouchGFX Designer

Detailed Log
Pressing anywhere on the Notification Bar opens a window showing the full log of the last command
that was run by the designer. The output of a command will stream into this window (See GIF below),
the window can also be undocked/docked from the Main Window, by pressing the undock/dock icon
in the top right corner of the Detailed Log window.

The Detailed Log window can also be toggled with ALT + L

Detailed log in TouchGFX Designer

Browse Code

The Browse Code button allows for easy access to the directory of the project by opening the directory
in a new File Explorer window.

Browse Code and Detailed Log in TouchGFX Designer

Version: 4.16

Canvas View
The Canvas is the view used for building the graphical parts of an application by providing a visual
representation of the interface as it will look while running. The dynamic aspects, like animations and
interactions between parts of the system, are described here.

The Canvas View of TouchGFX Designer

Left Side Bar
The side bar to the left contains a tab control, with navigation between and Screens & Custom
Containers.

Screens & Custom Containers
Both the Screens tab and Custom Containers tab contain a tree giving an overview of the widgets in
each screen/custom container, every widget in the tree, that can contain other widgets can be
collapsed by pressing the chevron next to the widgets name.

The order of the screens, custom containers, and widgets within can be changed by dragging them
below or above other screens, custom containers and widgets, the order can also be changed with the

widget order controls. Changing the order of widgets will determine which widgets is rendered on top
of other widgets.

Widgets that are container types, can have children added to them by dragging widget on top of
them in the tree view. widgets can also be dragged from one screen to another.

Select multiple widgets by pressing and holding CTRL while clicking widgets.

Screens/Custom Containers can be added to the project by pressing the blue icon with a plus. The
Custom Containers can be added to screens and other custom containers from the Widgets tab, they
can be found in their own category named 'Custom Containers'.

The Screens tree in the left side bar

Canvas
The center of the view contains the canvas which displays the view of the screen or custom container
that is currently selected.

The canvas is surrounded by various controls: Widget Order Controls, Content Clipping Control,
History Controls and Zoom Controls

The Canvas in the Canvas View

Add Widget Menu
Clicking the Add Widget button or its shortcut A opens up the Add Widget Menu which contains all
available widgets grouped into categories. Each category can be expanded and collapsed by pressing
the chevron next to the category name.

Clicking a widget, will add it to the canvas of the Screen or Custom Container that is currently selected
and visible. A widget can also be added by dragging the widget directly to the canvas.

The Add Widget Menu also contains a search field which, powered by fuzzy search, helps find the
widget which suits the search input best. The best result is highlighted. Due to fuzzy search, it is for
example possible to input "bwl" and get "Button With Label" due to abbreviations being a factor. After
inputting something into the search field, hitting ENTER will insert the highlighted widget on canvas
and close the Add Widget Menu.

The Add Widget Menu in the Canvas view

Widget Selection
As shown in the animation above, it is possible to select a widget by simply clicking it on the canvas.
Multi-selection is also possible by clicking multiple widgets while holding down CTRL on the
keyboard.

Widget Positioning
As shown in the animation above, it is possible to move and resize widgets by dragging their thumbs.

It is also possible to move selected widgets by 1 pixel using the arrow keys. Holding down CTRL while
using the arrows keys will move selected widgets by 10 pixels.

Widget Order Controls
The z-order of widgets can be manipulated by the Bring Forward and Send Backwards controls, this
also changes their order in the Screens or Custom Container tree.

Bring Forward can also be triggered by pressing CTRL + F

Send Backward can also be triggered by pressing CTRL + B

Bring Forward and Send Backwards controls in the Canvas View

Content Clipping Control
In the canvas, widgets outside the borders of the Screen, Custom Container and children of container
type widgets are clipped. The content clipping control toggles between clipping the widgets fully or
showing them partially anyway.

Show/Hide Clipped Content control in the Canvas View

In the image below a Box is placed halfway outside the borders of a screen, when the content clipping
control is set to show clipped widgets, the Box will not be shown fully but instead have the part that is
outside desaturated.

Box widget appearance difference when showing and hiding clipped content

History Controls
The history of changes performed on the canvas can be undone and redone through the history
controls, located at the top center of the canvas.
Each screen and custom container maintains its own history, therefore to undo or redo a change
performed on a certain screen, that specific screen has to be visible on the canvas.

The History controls can also be triggered by pressing CTRL + Z and CTRL + Y

History controls in the Canvas View

Zoom Controls
The zoom level of the canvas can be controlled with the zoom control in the top right corner of the
canvas.

To return to 1:1 zoom scale, press the button next to the zoom slider label '1:1'.

To center the canvas, press the center canvas button.

Zoom controls in the Canvas View

Zooming can also be achieved by using the following shortcuts:

Zoom in CTRL + MOUSE WHEEL UP CTRL + '+'

Zoom out CTRL + MOUSE WHEEL DOWN CTRL + '-'

Zoom reset CTRL + 0 CTRL + NUMPAD 0

Right Side Bar
The side bar to the right contains a tab control, with navigation to the Properties of the widget
currently selected, and the Interactions of the Screen or Custom Container that is currently viewed on
the canvas.

Properties
The Properties tab will show the properties of the Widget/Screen/Custom Container that is currently
selected. The name of the selected component is displayed at the top of the properties list, next to the
name there is a questionmark icon. Clicking this question mark icon will expand the section, displaying
a description text and a link to the documentation for the component.

Each of the sections in the properties list can be collapsed and expanded by pressing the chrevron
next to the section name.

Properties of Box

Interactions
The Interactions tab will show the interactions of the Screen or Custom Container that is currently
displayed on the canvas. The questionmark at the top can be pressed to reveal a description of
interactions and a link to an article.

Interactions can be added by pressing the blue button labeled 'Add Interaction'. Each interaction can
be collapsed and expanded by pressing the chevron next to the name of the interaction. Next to the
chevron, a cross is located, this cross will delete the interaction when clicked.

Interactions of a Screen

FURTHER READING

Interactions

Version: 4.16

Images View
The Images View is used to manage the images used in a TouchGFX application (located under the
assets\images folder). It includes 3 sections: the tree view (left side), the table view (middle) and the
properties view (right side).

The default configuration values for an image can be changed in the Default Image Configuration in
the Config View.

Images view in TouchGFX Designer

Tree View
The tree view provides an overview of the images and folders present in your application. The width of
the tree view can be changed by dragging the grid-splitter thumb to suit your needs.

The tree view in Images

You can add images to the assets\images folder by clicking the blue button with a plus icon or by
dragging the images directly to the Designer from the File Explorer. Images added to the
assets\images folder will automatically show up in the Image Manager.

Clicking on a folder node will show the images in that folder in the table view (clicking on the root
folder “images” will show all images in the application, including images located in subfolders).

Clicking on an image node will also show the other images under the same folder in the table view
and select it such that its properties can be changed in the right side properties view.

Clicking the chevron next to a folder will collapse/expand the folder.

Clicking the x button while hovering over a node lets you delete that item from disk.

Table View
The table view shows a list of the images located under the currently selected folder and contains
different columns corresponding to different properties for an image. Clicking the header of a column
sorts the list either ascending or descending.

The table view in Images

The Image column contains a preview of the image. Hovering over the image preview will show the
preview in full size. Clicking the preview will open the image in the default application associated with
.png images (for example paint.net).

Clicking a row will select the image such that its properties can be changed in the right side properties
view.

When the value of a cell is grayed out, it means that the default value is used. When an explicit value
has been set on an image, the cell will light up, as seen in the image above, where the image
'menu_demo_screen_05.png' has had its default Image Format value changed to ARGB8888.

Properties View

The properties view is used to change the properties of an image. It includes an image preview at the
top, which, like the preview in the table view, will show a full size version if you hover over it, and will
also open up the default application associated with .png files when clicked.

The properties view in Images

The different properties all have a default value. When no explicit value has been set on a property, the
default value is shown in a grayed out manner in the selection boxes. When an explicit value is set, the
value is shown in a lit up matter as shown below.

Pressing the Reset button will remove the current value and reset it back to its default value. When an
explicit value has been set, changing the default value will not have an impact on that specific
property.

Version: 4.16

Texts View
The Texts View in the TouchGFX Designer is used for configuring texts, translations and typographies
in a project. The view consists of three tabs: Single Use, Resources and Typographies.

Single Use & Resources
The Single Use and Resouces tabs both contain an overview of texts, they are however different from
each other.

Resource Text
Resource texts can be reused on any number of widgets and actions in the TouchGFX Designer. To add
a new Resource texts, click the button labeled 'ADD NEW RESOURCE' in the Resources tab. One or
more Resource texts can be deleted by setting a checkmark in the first column of the desired text rows
and clicking the button labeled 'DELETE SELECTED RESOURCES'.

Resource texts in Texts View

Single Use Text

Single Use texts are only used once, and cannot be used by more than one widget or action at a time.
They are added automatically when used on a widget or action, are deleted automatically when the
widget or action is deleted or changed to use a Resource text instead.
One or more Single Use texts can be converted to a Resource text by setting a checkmark in the first
column of the desired text rows and clicking the button labeled 'CONVERT TO RESOURCE'.

The Single Use text overview columns labeled 'Location' and 'Widget' show which Screen/Custom
Container and Widget the widget is used on.

Single Use texts in Texts View

Translations
Typography:
Specifies which typography the text and all its translations should use as default. These can be added
and configured in the Typographies tab

Alignment:
Specifies the horizontal alignment the text and all its translations should use as default. Possible values
are Left, Right, and Center.

Direction:
Specifies which text direction the text and all its translations should use as default. Possible values are

LTR (Left-to-Right) and RTL (Right-to-Left), the default being LTR. The RTL option is primarily used for
Arabic, Hebrew or other languages written from right to left.

Translations Specifics
Each translation can overwrite the default Typography, Alignment and Direction, to reveal these
controls, simply hover the mouse cursor over a translation.

Translation Specific Typography:
Setting a translation specific typography is easily done through the inline Typography selector, as
shown in the figure below.

How to set Translation Specific Typography

Translation Specific Alignment:
Setting a translation specific alignment is easily done through the inline Alignment selector, as shown
in the figure below.

How to set Translation Specific Alignment

Translation Specific Direction:
Setting a translation specific direction is easily done through the inline Direction selector, as shown in
the figure below.

How to set Translation Specific Direction

Adding languages
To add a new language, simply press the button labeled 'ADD NEW LANGUAGE' and the popup in the
figure below will appear, where the name of the language can be configured, and whether or not to

use the translations from another language.

Add New Language popup

Typographies
In the Typographies tab an overview of all typographies in a project can be found, as shown in the
figure below.

Texts view in TouchGFX Designer

One or more Typographies can be deleted by setting a checkmark in the first column of the desired
typography rows and clicking the button labeled 'DELETE SELECTED TYPOGRAPHIES'.

Uses:
The number of times the typography has been used in texts

Typography Name:
The name of the typography, which can be referenced in code.

Font:
The name of the font to use for the given typography.
You can choose between all installed fonts in Windows, or add your own fonts in the assets/fonts
folder. When adding fonts to this folder, the TouchGFX Designer needs to be restarted to load them.

Size:
The font size of the typography.

Bpp:
Bits per pixel. The number of bits that are used per pixel to represent the font. Legal values are 1, 2, 4,
8.

Fallback Character:
If TouchGFX needs to render a character, but the glyph is unavailable, the character specified in this
column is used. Value can be a single character, a unicode value (in decimal or hexadecimal e.g.
0xABCD), the special keyword 'skip' or simply blank.

Wildcard Characters:
Characters that should be available to display in the TouchGFX application. This is recommended over
using a dummy text. A dummy text will generate all glyphs, but also the actual string (e.g.
"0123456789-"). Putting "0123456789-" in this column will generate the glyphs, but not a string.

Widget Wildcard Characters:
These are characters that some widgets that require a wildcard will add, the Digital Clock widget will
add "0123456789 :APM" to this field.

Wildcard Ranges:
This is similar to Wildcard Characters, but ranges can easily be specified, e.g. "0-9,A-F" will be the same
as putting "0123456789ABCDEF" in the Wildcard Characters column. Ranges can also be specified as
numbers, so for example "0-9" can also be specified as "48-57" or "0x30-0x39". Please note that the
quotes should not be entered.

Ellipsis Character:
This character is used to truncate long text in text areas.

Add New Typography

To add a new typography, simply press the button labeled 'ADD NEW TYPOGRAPHY' and the popup in
the figure below will appear, where the name of the typography, font, size and color depth can be
configured.

Add New Typography popup

Version: 4.16

Config View
In the Config View various settings affecting the project can be configured.

General settings in Config View

General

General settings in Config View

Application Name
Application name is a readonly field, displaying the name that was chosen for the application when it
was created.

Application Template
This field shows the application template the application was created with, if this information is not
available 'N/A' will be displayed.
If this information is available, the name of the application template will be displayed along with the
version. There will also be an icon with an 'i' (see image above), clicking this will display more
information about the Application Template.

Selected Language
This dropdown contains the languages configured in the Texts view, and selects which language
should be displayed at startup of the project.

Skin
This dropdown sets which of the two built-in styles to use for widgets that support setting a style,
options are 'Blue' or 'Dark'. If a widget has been configured with a style from the 'Blue' skin, and the skin
is changed to 'Dark', the widget will automatically switch to a corresponding style in the 'Dark' skin.

Startup Screen This dropdown contains all the screens that have been added to the project, and
selects which screen to display at startup of the project.

Display

In this section the settings for the Display can be configured.

Display settings in Config View

Dimensions
The size of the display can be set through the W(width) and H(height) properties, however if the size
has been configured by the Application Template, configuration of the size will be disabled.

Display Orientation
The orientation of the display can toggled between landscape and portrait, this will also affect how
images used in a project are converted to cpp files.

Color Depth
This dropdown contains the color depths that are available to a project. These are determined by the
Application Template used to create a project.

Default Image Configuration
In this section the default configuration used for images in a project can be set. These settings will
affect all images in the project, unless they are overwrite in the Images view

Default Image Configuration settings in Config View

Opaque Image Format
This dropdown sets which format images that have only opaque pixel data should be generated with.
The available image formats in this dropdown depend on the selected color depth of the project.

Non Opaque Image Format
This dropdown sets which format images that have non-opaque pixel data should be generated with.
The available image formats in this dropdown depend on the selected color depth of the project.

Section
This dropdown sets the location where image data should be stored on the target hardware. The
available sections in this dropdown depend on the Application Template that the project was created
with.

Extra Section
When using L8 image formats you can choose to store the color table in a different section using this
dropdown. The available sections in this dropdown depend on the Application Template that the
project was created with.

Dither Algorithm
This dropdown sets the dithering algorithm used for images.

No dither: no dithering is applied to the image. This is the setting with the highest performance since
no alteration is made. However, depending on the image, the quality of the photo may also degrade
visually at lower color depths.
Floyd-Steinberg: diffuses the error to neighboring pixels, resulting in fine-grained dithering but
sacrificing sharpness.
Jarvis, Judice and Ninke: diffuses the error to pixels one step further away compared to Floyd-
Steinberg, resulting in coarser dithering but a sharper image. The slowest of the 3 error-diffusion
dithering algorithms.
Stucki: based on minimized average error dithering but faster and cleaner.

Alpha Dither
This dropdown sets whether or not to use the dither algorithm through the alpha channel.

Layout Rotaion
This dropdown specifies the rotation of the image data when generated. If the screen orientation is
changed, use this to correctly render images in the new orientation.

Text Configuration
In this section options for text rendering and storage can be configured by checking the boxes that fit
your project's needs.

Text Configuration settings in Config View

Remap texts
This option defines whether or not translations that are identical should be remapped. Remapping
texts will combine identical translations and suffixes across all languages, typographies and
alignments, resulting in a reduced footprint.
This option is mutually exclusive with the option 'Binary translation files'

A4
This option defines whether or not the horizontal pixel data of glyphs byte aligned into an A4 format.
This only affects typographies that are configured as 4bpp

Binary translation files
This option defines whether or not the translations in a project should be moved into binary files that
can be loaded at runtime.
This option is mutually exclusive with the option 'Remap texts'

Binary font files
This option defines whether or not the font files in a project should be moved into binary files that can
be loaded at runtime.

Mapped storage format
This option defines if the font files in a project should be output in mapped storage format.

Unmapped storage format
This option defines if the font files in a project should be output in unmapped storage format.

FURTHER READING

Text and Fonts

Simulator
In this section, a skin can be added to the Simulator when running it. A skin can be added for both
landscape and portrait orientated projects. The X and Y properties determine the position of the
simulator on the skin.

Simulator settings in Config View

Below is a demonstration of a simulator running with a skin.
When a simulator runs with a skin, the standard window controls are hidden. To close the simulator
press ESC

Simulator running with a skin.

Build
In this section the commands that are executed when pressing 'Run Simulator', 'Run Target' and
'Generate Code', can be overwritten.

To overwrite a command, simply write any command in the text boxes. To reset a command, if it has
been overwritten, press the blue 'Reset' label next to the name of the Command.

Build settings in Config View

Generate Assets Command

This command is usually set up to generate text and image assets, and is executed after the TouchGFX
Designer has generated the code.

Post Generate Command
This command is usually used to update various project files. The built-in touchgfx update_project
commandline tool supports updating the following project files:

Visual Studio (.vcxproj)
Keil (.uvprojx)
IAR (.ewp & .ipcf)
CubeIDE (.project & .cproject)
CubeMX (.ioc)

However, any command that needs to be executed after code generation can be written here.

Compile Simulator Command
This command executes the compilation of a project for the simulator, usually by executing the
Makefile generated by the TouchGFX Designer.

Run Simulator Command
This command executes the startup of the simulator.exe.

Post Generate Target Command
This command is usually used to update various project files mostly CubeMX (.ioc) project files.

However, any command that needs to be executed after code generation can be written here.

Compile Target Command
This command executes the compilation of a project for the target hardware.

Flash Target Command
This command executes the flashing of a project to the target hardware.

Framework Features
In this section features in the framework, specifically which image formats the TextureMapper widget
supports, can be enabled/disabled. This can be used for optimizing the code size a project takes up on
hardware.

The available options displayed in this section depend upon which color depth has been chosen for
the project. In the image below the image formats for a 16 bit color depth TextureMapper is shown.

Framework Features settings in Config View

Version: 4.16

Interactions
Interactions allow you to configure an action to take place when a trigger happens. An interaction in
TouchGFX Designer is built up of a trigger and an action:

A Trigger is what will start the interaction - what needs to happen in our application for the Action
to take place.
An Action is what will happen after a Trigger has been emitted. This is where you can decide what
happens in your application, when your defined trigger conditions have been met.

To add an interaction, go to the Interactions tab for any Screen or Custom Container and press the
blue button labelled "Add Interaction" as shown in the image below.

Interactions tab in TouchGFX Designer

After pressing the "Add Interaction" button, the interaction in the image below will be added. The top
of the Interaction view consists of the name given to the Interaction, a dynamic description, a button
with a cross icon, and a button with a chevron icon.

The dynamic description is modified based on the Trigger and Action that have been selected. Since
no Trigger and Action have been selected in the image below, the dynamic description is "When none
none".

The button with a cross icon will delete the Interaction with a confirmation popup.

The button with a chevron icon will collapse the Interaction view, making the overview of interactions
more manageable.

New Interaction in the Interactions tab

Triggers
The Trigger dropdown is populated based on what widgets have been added to a Screen or Custom
Container.
An empty Screen will only have two Triggers available: Hardware button is clicked and Screen is
entered.

Adding a widget will add the Triggers associated with it. For example, adding a Button widget will add
the Button is clicked Trigger to the Screen or Custom Container.

Some Triggers, like Button is clicked, require a component to be selected as shown in the image
below. However, if there is only one widget matching the Trigger, that widget will be auto-selected.

Button is Clicked Trigger selected on Interaction

As can be seen in the image above, after selecting the Trigger, the dynamic description has been
updated from "When none none" to "When button1 clicked none".

Actions
The Action dropdown is populated based on what widgets have been added to a Screen or Custom
Container.
An empty Screen will only have four Actions available:

Call new virtual function
Change screen
Execute C++ code
Wait for

Adding a widget will add the Actions associated with it. Adding a Button widget will add the following
Actions:

Move widget
Fade widget
Hide widget
Show widget

Some Actions, like Move widget, require a component to be selected as shown in the image below.
However, if there is only one widget matching the Action, that widget will be auto-selected. Selecting
the action Move widget also adds more properties relevant to moving a widget.

Move widget action selected on Interaction

As can be seen above, after selecting the Action, the dynamic description has been updated from
"When button1 clicked none" to "When button1 clicked move button1".

Chaining Interactions
Interactions can also be triggered by another Interaction upon completing its Action.

To enable this behaviour, the checkbox labeled Can trigger another interaction needs to be enabled as
shown in the image below:

Can trigger another interaction enabled on Interaction

After enabling this behaviour, other Interactions can trigger on the Interaction, as shown in the image
below:

Interaction triggering on another Interaction

Version: 4.16

Custom Triggers and Actions
With TouchGFX Designer it is possible to define your own interaction components with Custom
Triggers and Actions. Each Screen in your application can contain a collection of actions (these are
simply void methods in C++) that you can call from within the TouchGFX Designer as well as in code,
while custom containers can also have a collection of triggers (which is equal to a callback in C++)
which your application can react to. In this article, we will go through this functionality to learn the
possibilities this gives us to create more clean and dynamic TouchGFX applications.

Custom Triggers
Custom Containers have the ability to create Custom Triggers. These are generated as C++ callbacks
and can be emitted or reacted to from the Interaction system, or from User Code.

Adding Custom Triggers
Adding a Custom Trigger is done via the properties tab of a Custom Container, by clicking the blue
button with a plus icon in the TRIGGERS section highlighted in the image below.

Adding a Custom Trigger

When the Custom Trigger has been created further options become available as shown in the image
below.

Editing a Custom Trigger

Name
The name specified here will be used for reference within the Interaction system and in the generated
code files, as shown in the code examples below:

CustomContainer1Base.hpp

CustomContainer1Base.cpp

class CustomContainer1Base : public touchgfx::Container
{
public:
 CustomContainer1Base();
 virtual ~CustomContainer1Base() {}
 virtual void initialize();

 /*
 * Custom Trigger Callback Setters
 */
 void setTrigger1Callback(touchgfx::GenericCallback<>& callback)
 {
 this->trigger1Callback = &callback;
 }

protected:
 FrontendApplication& application() {
 return *static_cast<FrontendApplication*>(touchgfx::Application::getInstance());
 }

 /*
 * Custom Trigger Emitters
 */
 virtual void emitTrigger1Callback()
 {
 if (trigger1Callback && trigger1Callback->isValid())
 {
 this->trigger1Callback->execute();
 }
 }

private:

 /*
 * Custom Trigger Callback Declarations
 */
 touchgfx::GenericCallback<>* trigger1Callback;

};

CustomContainer1Base::CustomContainer1Base() :
 trigger1Callback(0)

Description
The text written here, will be used in the Interaction system and can be seen when hovering over the
Trigger when selecting it in the Interaction system. If a description has not been specified a standard
description will be created as shown in the Emitting Custom Triggers from Interactions section.

Type
Enabling Type will allow for creating triggers that return a value given a specific type. The type can
either be selected from a list, or by writing the type manually. Shown below is the code generated
when selecting bool .

CustomContainer1Base.hpp

{
 setWidth(250);
 setHeight(250);
}

void CustomContainer1Base::initialize()
{

}

class CustomContainer1Base : public touchgfx::Container
{
public:
 CustomContainer1Base();
 virtual ~CustomContainer1Base() {}
 virtual void initialize();

 /*
 * Custom Trigger Callback Setters
 */
 void setTrigger1Callback(touchgfx::GenericCallback<bool>& callback)
 {
 this->trigger1Callback = &callback;
 }

protected:
 FrontendApplication& application() {
 return *static_cast<FrontendApplication*>(touchgfx::Application::getInstance());
 }

 /*
 * Custom Trigger Emitters
 */
 virtual void emitTrigger1Callback(bool value)
 {
 if (trigger1Callback && trigger1Callback->isValid())
 {

Emitting Custom Triggers from Interactions
A Custom Trigger can be emitted by using the Interaction system. Simply go to the Interaction tab of
the Custom Container that owns the Custom Trigger, create a new Interaction and select the Custom
Trigger as the action as shown in the image below.

Emitting a Custom Trigger from an Interaction

As shown in the above picture, whenever the button, that has been added to the Custom Container, is
clicked the Custom Trigger is emitted.

If the Custom Trigger has type enabled, the parameter value or variable must be specified as shown in
the image below, where bool has been specified as the Type.

 this->trigger1Callback->execute(value);
 }
 }

private:

 /*
 * Custom Trigger Callback Declarations
 */
 touchgfx::GenericCallback<bool>* trigger1Callback;

};

Specifying a parameter on a Custom Trigger emitted from an Interaction

Emitting Custom Triggers from User Code
Custom Triggers can also be emitted from the User Code class file that inherits from the generated
Custom Container. In the generated Custom Container the method below is generated, for a
CustomTrigger named "trigger1".

CustomContainer1Base.hpp

This function can be overwritten or called in the User Code class file that inherits from it.

Reacting to Custom Triggers from Interactions
If a Custom Container with a Custom Trigger is added to a Screen, the Custom Trigger can be used as
Trigger on an Interaction on the Screen, as shown in the Image below.

virtual void emitTrigger1Callback(bool value)
{
 if (trigger1Callback && trigger1Callback->isValid())
 {
 this->trigger1Callback->execute(value);
 }
}

The naming scheme of the Custom Trigger when selecting it as Trigger in an Interaction is: <Custom
Container Name> <Custom Trigger name> happens .

Selecting Custom Trigger as Trigger on an Interaction

After selecting the Trigger, if there are multiple instances of the same Custom Container containing the
Custom Trigger, the component needs to be selected. However if there is only one instance, it will be
auto selected.

Reacting to Custom Triggers from User Code
A Custom Trigger can also be reacted to from User Code by implementing the callback as shown in
the following code example, where a Custom Container with a Custom Trigger name "trigger1" has
been added to a Screen. In the User Code class file that inherits from the Screen, the following
highlighted lines have been added to implement the Callback/Custom Trigger.

Screen1View.hpp

class Screen1View : public Screen1ViewBase
{
public:
 Screen1View();
 virtual ~Screen1View() {}
 virtual void setupScreen();
 virtual void tearDownScreen();

private:
 /*
 * Callback Declarations
 */
 touchgfx::Callback<Screen1View> customContainer1Trigger1Callback;

Screen1View.cpp

Custom Actions
Screens and Custom Containers have the ability to create Custom Actions. These are generated as
virtual C++ methods, and can be executed from the Interaction system, or from User Code. The
implementation and behaviour of a Custom Action, can either be configured within the Interaction
system, or by overwriting the generated C++ methods in the User Code class file.

Adding Custom Actions
Adding a Custom Trigger is done via the properties tab of a Screen or Custom Container, by clicking
the blue button with a plus icon in the ACTIONS section highlighted in the image below.

 /*
 * Callback Handler Declarations
 */
 void customContainer1Trigger1CallbackHandler();
};

#include <gui/screen1_screen/Screen1View.hpp>

Screen1View::Screen1View():
 customContainer1Trigger1Callback(this, &Screen1View::customContainer1Trigger1CallbackH
{
 customContainer1.setTrigger1Callback(customContainer1Trigger1Callback);
}

void Screen1View::setupScreen()
{
 Screen1ViewBase::setupScreen();
}

void Screen1View::tearDownScreen()
{
 Screen1ViewBase::tearDownScreen();
}

void Screen1View::customContainer1Trigger1CallbackHandler()
{
 //Your code here.
}

Adding a Custom Action

When the Custom Action has been created further options become available as shown in the image
below.

Editing a Custom Action

Name
The name specified here will be used for further reference within the Interaction system and in the
generated code files, as shown in the code examples below.

CustomContainer1Base.hpp

CustomContainer1Base.cpp

class CustomContainer1Base : public touchgfx::Container
{
public:
 CustomContainer1Base();
 virtual ~CustomContainer1Base() {}
 virtual void initialize();

 /*
 * Custom Actions
 */
 virtual void action1();

protected:
 FrontendApplication& application() {
 return *static_cast<FrontendApplication*>(touchgfx::Application::getInstance());
 }

private:

};

pp

Description
The text written here, will be used in the Interaction system and can be seen when hovering over the
Action when selecting it in the Interaction system. If a description has not been specified a standard
description will be created as shown in the Calling Custom Action from Interactions section, that
follows this scheme: Call <Name> on <Screen or Custom Container Name> .

Type
Enabling Type will allow for creating actions that require a parameter given a specific type. The type
can either be selected from a list, or by writing the type manually. Shown below is the code generated
when selecting bool .

CustomContainer1Base.hpp

CustomContainer1Base.cpp

Calling Custom Action from Interactions

CustomContainer1Base::CustomContainer1Base()
{
 setWidth(250);
 setHeight(250);
}

void CustomContainer1Base::initialize()
{

}

void CustomContainer1Base::action1()
{

}

/*
 * Custom Actions
 */
virtual void action1(bool value);

void CustomContainer1Base::action1(bool value)
{

}

When a Custom Action has been created the action can be executed from within the Interaction
system. If the Action is created on a Custom Container and the Custom Container is added to a Screen,
the Action can be executed from the screens Interaction tab as shown in the image below.

Executing a Custom Action from an Interaction

After selecting the action, if there are multiple instances of the same Custom Container, the
component needs to be selected. However if there is only one instance, it will be auto selected.

If the Custom Action has type enabled, the parameter value or variable must be specified as shown in
the image below, where bool has been specified as the Type.

Specifying a parameter on a Custom Action executed from an Interaction

Calling Custom Action from User Code
Custom Actions can also be called directly from User Code. In the following code example a Custom
Container with a Custom Action named "action1" is created. The Custom Container has been added to
a Screen resulting in the generated code below.

Screen1ViewBase.cpp

In the User Code class file Screen1View that inherits from Screen1ViewBase the Custom Action
"action1" can be called as shown below.

Screen1View.hpp

Adding Behaviour to Custom Actions from Interactions
Behaviour can be added to Custom Actions by using the Interaction system. Simply go to the
Interaction tab of the Screen or Custom Container that owns the Custom Action, create a new
Interaction and select the Custom Action as the trigger as shown in the image below.

Screen1ViewBase::Screen1ViewBase()
{

 customContainer11.setXY(50, 11);

 add(customContainer11);
}

void Screen1ViewBase::setupScreen()
{
 customContainer11.initialize();
}

Screen1View::Screen1View()
{
 customContainer11.action1();
}

void Screen1View::setupScreen()
{
 Screen1ViewBase::setupScreen();
}

void Screen1View::tearDownScreen()
{
 Screen1ViewBase::tearDownScreen();
}

Selecting a Custom Action as Trigger on an Interaction

Then any Action that is defined in the Interaction, will be executed whenever the Custom Action is
called.

Adding Behaviour to Custom Actions from User Code
Custom Actions can also implement its behaviour by overwriting the Action in the User Code class
CustomContainer1 that inherits from CustomContainer1Base as shown below.

CustomContainer1.hpp

CustomContainer1.cpp

class CustomContainer1 : public CustomContainer1Base
{
public:
 CustomContainer1();
 virtual ~CustomContainer1() {}

 virtual void initialize();

 void action1();

protected:
};

CustomContainer1::CustomContainer1()
{

}

void CustomContainer1::initialize()
{
 CustomContainer1Base::initialize();

FURTHER READING

Tutorial 5: Creating Custom Triggers and Actions

}

void CustomContainer1::action1()
{
 //Your code here
}

Version: 4.16

Custom Containers
When creating applications you might need a widget that is not found in the standard widget set
included in TouchGFX.

One way of creating your own widgets is using custom containers. A custom container is an object
that contains other existing widgets and combines the visual appearance and behaviours of these
widgets. It is not dissimilar to the classic composite design pattern and we also refer to the contained
widgets as the children of the container.

Drawing performance of custom containers will in general be very high. It will utilize the underlying
drawing mechanisms of TouchGFX and will determine which parts of a container and the children
needs to be redrawn automatically. This means that you do not need to worry about drawing
performance when using containers.

However, there can be times where you need to reduce the footprint of a widget and in these
scenarios, the more advanced approach called Custom Widget might be preferable.

In TouchGFX Designer
If you want to create and use custom containers in TouchGFX Designer, we give a general introduction
to how you can use them in your projects in the video below:

TouchGFX Designer: Containers & Custom ContainersTouchGFX Designer: Containers & Custom Containers

Composite Custom Containers
It is possible to create a custom container that is composed of other custom containers. This can be a
powerful way to construct components made up of smaller components. You can do this by adding
instances of an already defined custom container found in the Widgets tab:

Inserting instances of custom containers

Note that TouchGFX Designer will help you to avoid inserting instances that would result in a circular
reference such as adding a custom container instance to the definition of itself:

Potential circular reference disables the ability to insert an instance

Custom Triggers and Actions
One of the powerful aspects to a custom container is the ability to define custom triggers (callbacks)
and custom actions (methods). This means that you can define integral behaviour to your custom
container so it becomes more than just a reusable collection of widgets and enables communication
with the rest of your application.

FURTHER READING

Read more about this functionality in the Custom Triggers and Actions section.

In Code
In this section we will create a custom container in code. The steps are as follows:

Create a class that extends the touchgfx::Container class
Declaring all children of the container as member variables
Setting the width and height of the container
Setting up each of the children
Adding each of the children to the hierarchy, in the right order
Implementing the desired behaviour via methods and callbacks

We will start from scratch and build upon the code until we end up with a simple fully functional
custom container.

Create a class that extends the touchgfx::Container class
Start by creating a MyCustomContainer.hpp header file with the code below. Use C++ inheritance to
gain access to the methods and members of touchgfx::Container (remember to include the header
file for Container.hpp):

MyCustomContainer.hpp

#include <gui/common/FrontendApplication.hpp>
#include <touchgfx/containers/Container.hpp>

class MyCustomContainer : public touchgfx::Container
{
public:

Declaring all children of the container as member variables
Declare which widgets are going to compose your custom container in the header file. In this example
we will just add a box myBox and a button myButton .

MyCustomContainer.hpp

Setting the width and height of the container

 MyCustomContainer();
 virtual ~MyCustomContainer() {}
 virtual void initialize();

protected:
 FrontendApplication& application() {
 return *static_cast<FrontendApplication*>(touchgfx::Application::getInstance());
 }

private:

};

#include <gui/common/FrontendApplication.hpp>
#include <touchgfx/containers/Container.hpp>

class MyCustomContainer : public touchgfx::Container
{
public:
 MyCustomContainer();
 virtual ~MyCustomContainer() {}
 virtual void initialize();

protected:
 FrontendApplication& application() {
 return *static_cast<FrontendApplication*>(touchgfx::Application::getInstance());
 }

 /*
 * Member Declarations
 */
 touchgfx::Box myBox;
 touchgfx::Button myButton;

private:

};

Create a cpp file MyCustomContainer.cpp which includes the header file we just created. Use the
setWidth() and setHeight() methods in the constructor to set whatever size you want for the

custom container:

MyCustomContainer.cpp

Setting up each of the children
Now we need to set up the properties for each widget in the constructor:

MyCustomContainer.cpp

Adding each of the children to the hierarchy, in the right
order

#include <gui/include/containers/MyCustomContainer.hpp>

MyCustomContainer::MyCustomContainer()
{
 setWidth(250);
 setHeight(250);
}

void MyCustomContainer::initialize()
{

}

#include <gui/include/containers/MyCustomContainer.hpp>

MyCustomContainer::MyCustomContainer()
{
 setWidth(250);
 setHeight(250);

 myBox.setPosition(0, 0, 250, 250);
 myBox.setColor(touchgfx::Color::getColorFrom24BitRGB(255, 255, 255));

 myButton.setXY(40, 95);
 myButton.setBitmaps(touchgfx::Bitmap(BITMAP_BLUE_BUTTONS_ROUND_EDGE_SMALL_ID), touchgf
}

void MyCustomContainer::initialize()
{

}

Use the add() method in the constructor to add the widgets as children of the custom container:

MyCustomContainer.cpp

Implementing the desired behaviour via methods and
callbacks
To add some behaviour to our custom container, we can define some methods and callbacks in
MyCustomContainer.hpp . In this example we define a method doSomething() whose sole purpose is

to emit the callback somethingHappened :

MyCustomContainer.hpp

#include <gui/containers/MyCustomContainer.hpp>

MyCustomContainer::MyCustomContainer()
{
 setWidth(250);
 setHeight(250);

 myBox.setPosition(0, 0, 250, 250);
 myBox.setColor(touchgfx::Color::getColorFrom24BitRGB(255, 255, 255));

 myButton.setXY(40, 95);
 myButton.setBitmaps(touchgfx::Bitmap(BITMAP_BLUE_BUTTONS_ROUND_EDGE_SMALL_ID), touchgf

 add(myBox);
 add(myButton);
}

void MyCustomContainer::initialize()
{

}

#include <gui/common/FrontendApplication.hpp>
#include <touchgfx/containers/Container.hpp>

class MyCustomContainer : public touchgfx::Container
{
public:
 MyCustomContainerBase();
 virtual ~MyCustomContainerBase() {}
 virtual void initialize();

 /*
 * Callback Setters
 */

Then to add the behaviour to our method and callback, implement them in the
MyCustomContainer.cpp file. For this simple surface level example, we will simply emit the
somethingHappened callback, but you can customize this as you want:

MyCustomContainer.cpp

 void setSomethingHappenedCallback(touchgfx::GenericCallback<>& callback)
 {
 somethingHappenedCallback = &callback;
 }

 /*
 * Methods
 */
 virtual void doSomething();

protected:
 FrontendApplication& application() {
 return *static_cast<FrontendApplication*>(touchgfx::Application::getInstance());
 }

 /*
 * Callback Emitters
 */
 virtual void emitSomethingHappenedCallback()
 {
 if (somethingHappenedCallback && somethingHappenedCallback->isValid())
 {
 somethingHappenedCallback->execute();
 }
 }

 /*
 * Member Declarations
 */
 touchgfx::Box myBox;
 touchgfx::Button myButton;

private:

 /*
 * Callback Declarations
 */
 touchgfx::GenericCallback<>* somethingHappenedCallback;

};

#include <gui/containers/MyCustomContainer.hpp>

MyCustomContainer::MyCustomContainer()
{

FURTHER READING

For a more detailed example on how to create and use a custom container, refer to Tutorial 4: Creating a
Scroll Wheel with custom behavior.

 setWidth(250);
 setHeight(250);

 myBox.setPosition(0, 0, 250, 250);
 myBox.setColor(touchgfx::Color::getColorFrom24BitRGB(255, 255, 255));

 myButton.setXY(40, 95);
 myButton.setBitmaps(touchgfx::Bitmap(BITMAP_BLUE_BUTTONS_ROUND_EDGE_SMALL_ID), touchgf

 add(myBox);
 add(myButton);
}

void MyCustomContainer::initialize()
{

}

void MyCustomContainer::doSomething()
{
 MyCustomContainer::emitSomethingHappenedCallback();
}

Version: 4.16

Caching Bitmaps
In this section we will discuss the bitmap cache in TouchGFX. The bitmap cache is a dedicated RAM
buffer where bitmaps can be stored (or cached) by the application. If a bitmap is cached, TouchGFX
will automatically use the RAM cache as pixel source when drawing the bitmap.

Bitmap caching can be beneficial in many cases. Reading data from RAM is often faster than reading
from flash (especially when using the Texturemapper because it uses non-linear memory access), so
caching to RAM can increase the performance of your UI. Be aware that caching from internal flash to
external RAM can reduce performance. Caching to RAM also allows you to use the flash for other
purposes like log files while showing your UI, because bitmaps will be read from RAM (in some cases
writing to a flash requires it to be non-memory mapped). It can also be useful when you need to
modify the pixels of a bitmap and therefore need the bitmap to be in modifiable memory.

For performance reasons, TouchGFX requires all graphics data stored in external flash to be directly
accessible (through a pointer), without going through a driver layer. This means that TouchGFX cannot
render directly from a non-memory mapped flash (like an SD-card). To overcome this limitation the
bitmap cache provides a mechanism for caching some or all of the bitmap data in RAM during power-
up. Bitmap caching is therefore useful when you need to store your bitmaps on slow external storage
like a USB-disk or SD-card.

Setup the Bitmap Cache
In order to use the bitmap caching feature, you need to first provide a bitmap cache configuration to
TouchGFX, and secondly (in some cases) to provide a hardware specific implementation of the
BlockCopy function for reading data from your external storage.

Bitmap Cache Configuration
The bitmap cache configuration consists of a pointer to a buffer and the size of the buffer. These two
values must be provided to TouchGFX in the call to touchgfx_generic_init or
Bitmap::registerBitmapDatabase. This call is normally found in the BoardConfiguration.cpp file:

BoardConfiguration.cpp (extract)

// Place cache start address in SDRAM at address 0xC0008000;
uint16_t* cacheStartAddr = (uint16_t*)0xC0008000;
uint32_t cacheSize = 0x300000; //3 MB, as example
HAL& hal = touchgfx_generic_init<STM32F4HAL>(dma, display, tc, DISPLAY_WIDTH, DISPLAY_HEIG

In the above example a 3 MB buffer in external memory is passed to TouchGFX as bitmap cache. The
address is selected by the application programmer. In the next example we just declare an array and
just pass the address and size of the array. The specific location of the array will depend on your linker
script. This method is most often used when creating a (small) bitmap cache in internal RAM:

BoardConfiguration.cpp (extract)

Enabling Bitmap cache with TouchGFX Generator

If you are using CubeMX and TouchGFX Generator, enabling and configuring of the bitmap cache
should be done in TouchGFXHAL.cpp. First the default created Bitmap cache database needs to be
removed, hereafter a new cache is set based on the memory area provided.

TouchGFXHAL.cpp (extract)

If you need to cache all your bitmaps, of course the size of the cache must be large enough to contain
all your bitmap data. Note: There is a small amount of memory used for bookkeeping (8 bytes x
number of bitmaps in the application), so you must allocate slightly more memory than actually
needed for the raw pixel data. This amount depends on the number of bitmaps in your application,
but a few kilobytes of additional memory is usually enough.

BlockCopy Copies Data from Flash to the Cache
When you cache a bitmap, TouchGFX copies the pixels from the original location to the bitmap cache
using the BlockCopy function in the HAL class.

If your bitmaps are stored in normal addressable flash (like internal flash or a memory mapped
external flash like a QSPI-flash), you do not need to do anything. The built-in implementation works

// Define an array for the bitmap cache
uint16_t cache[128*1024]; //256 KB cache
HAL& hal = touchgfx_generic_init<STM32F4HAL>(dma, display, tc, DISPLAY_WIDTH, DISPLAY_HEIG

void TouchGFXHAL::initialize()
{
 /* Initialize TouchGFX Engine */
 TouchGFXGeneratedHAL::initialize();

 uint16_t* cacheStartAddr = (uint16_t*)0xC0008000;
 uint32_t cacheSize = 0x300000; //3 MB, as example

 touchgfx::Bitmap::removeCache();
 touchgfx::Bitmap::setCache(cache, sizeof(cache), 0);
}

fine.

On the other hand, if your bitmaps are stored in flash that is not addressable, e.g. a filesystem or non-
memory mapped flash, then the standard copy method is not sufficient and you need to provide an
updated version that is able to read from your specific flash storage.

Read more about this topic Using Non-Memory Mapped flash for storing images section.

Cache Operations
The bitmap caching operations are all placed in the Bitmap class:

Bitmap caching method Description

bool Bitmap::cache(BitmapId id)

This method caches a bitmap. The bitmap is only
cached if enough unused memory is available in the
cache. Returns true if the bitmap was cached. Caching
an already cached bitmap does not do any work.

bool
Bitmap::cacheReplaceBitmap(BitmapId
out, BitmapId in)

This method replaces a bitmap (out) in the cache with
another bitmap (in). The method will only succeed if the
bitmap to be replaced is already cached and if the
bitmaps have the same size (in bytes).

bool
Bitmap::cacheRemoveBitmap(BitmapId
id)

This method removes a bitmap from the cache. The
memory used by the bitmap can be used for caching of
another bitmap afterwards.

void Bitmap::clearCache() This method removes all the cached bitmaps from the
cache.

void Bitmap::cacheAll()
This method caches all bitmaps. It can not be used if the
amount of RAM allocated for the cache (or available) is
less than the total size of the bitmaps.

Cache Strategies
When the amount of RAM that you can allocate for your bitmap cache is less than the total size of the
bitmaps you can not cache all the bitmaps during startup. You can e.g. select to cache only the
bitmaps needed for the first screen. When you change between your screens you can remove some or
all of the cached bitmaps and cache the bitmaps needed for the next screen. This is exemplified in the
next section.

Cache Bitmap on a Screen Basis
Your application user interface is composed of a set of Views. The Views probably all use some
bitmaps. A simple strategy for caching is to cache all the bitmaps used by a View in the
View::setupScreen method and clear the cache in the

View::tearDownScreen method:
Screen1View.cpp (extract)

The memory requirement for the cache is the size of the bitmaps used by the screen with the biggest
use of bitmaps. The drawback of this method is that if two Views both use a bitmap, the bitmap will
be erased from the cache on exit from the first View and cached again on entry to the second View .

The Bitmap::cacheRemoveBitmap can be used to selective uncache bitmaps and thus reduce this
overhead. The drawback of the cacheRemoveBitmap is that the cache memory will be fragmented.

Another general drawback of caching is that when you change your UI (e.g. adding a button) you may
need to update the caching code to include the new bitmap.

Replace the Background Bitmaps in the Cache
If your application has a set of minor bitmaps (e.g. icons) and some large full screen "background"
bitmaps another strategy can be advised:

Cache all the small bitmaps prior to entering the first screen. A good place to do this is in the
FrontendApplication constructor. Also cache the background bitmap for the first screen:

void Screen1View::setupScreen()
{
 //ensure background is cached
 Bitmap::cache(BITMAP_SCREEN2_ID);
 //cache some icons
 Bitmap::cache(BITMAP_ICON10_ID);
 Bitmap::cache(BITMAP_ICON11_ID);
 Bitmap::cache(BITMAP_ICON12_ID);
}

void Screen1View::tearDownScreen()
{
 //Remove all bitmaps from the cache
 Bitmap::clearCache();
}

FrontendApplication::FrontendApplication(Model& m, FrontendHeap& heap)
 : touchgfx::MVPApplication(),

In the View::setupScreen method replace the cached background bitmap with the required bitmap:

The memory requirement for the cache using this strategy is the size of the cached bitmaps and one
background bitmap. Compared to the previous method the code is simpler to maintain as the views
have less code. The performance is better as we move less bitmaps in and out of the cache.

The cacheReplaceBitmap operation is preferable to the cacheRemoveBitmap method as it does not
fragment the memory.

Cache Memory Management
In order to get the full effect of the bitmap caching it is necessary to understand the internal
operations of the cache.

The cache is implemented as a stack. New bitmaps are cached after the previously cached bitmaps.
Memory used by a bitmap is marked as "free" when the bitmap is removed from the cache, but the
memory is not immediately useable unless the removed bitmap was on top of the stack. If the bitmap
was in "the middle" of the cache a compacting operation is performed the next time Bitmap::cache is

 transitionCallback(),
 frontendHeap(heap),
 model(m)
{
 //cache some icons
 Bitmap::cache(BITMAP_ICON10_ID);
 Bitmap::cache(BITMAP_ICON11_ID);
 Bitmap::cache(BITMAP_ICON12_ID);

 //cache first background
 Bitmap::cache(BITMAP_SCREEN1_ID);
 backgroundBitmapCached = BITMAP_SCREEN1_ID; //remember ID in a variable
}

Screen1View::setupScreen()
{
 //ensure background is cached
 Bitmap::cacheReplaceBitmap(backgroundBitmapCached, BITMAP_SCREEN1_ID);
 backgroundBitmapCached = BITMAP_SCREEN1_ID; //remember new ID of cached bitmap
}

void Screen1View::tearDownScreen()
{
 //nothing cache related
}

called to reclaim the memory. This "costly" method can be avoided if you do not call Bitmap::cache
with a "hole" in the cache.

The drawings below illustrates the principles:

1. Caching allocates on top of the previously allocated bitmaps:

Allocation sequence of bitmaps in memory

2. Removal marks the memory unused:

Unused memory in cache after removal of cached bitmap

3. Allocating the next bitmap compacts the cache and allocates on the top:

The cache reclaims unused memory before caching a bitmap

4. When you remove the topmost (last allocated) bitmap, the memory is freed immediately along with
any free memory just below it:

Topmost bitmap cache removal

The next cache operation will in this case not involve a compact.

This animation shows the whole sequence for this code:

Bitmap::cache(BITMAP_BITMAP1_ID);
Bitmap::cache(BITMAP_BITMAP2_ID);
Bitmap::cache(BITMAP_BITMAP3_ID);
...

Caching and uncaching bitmaps

Bitmap::cacheRemoveBitmap(BITMAP_BITMAP2_ID);
...
Bitmap::cache(BITMAP_BITMAP4_ID);
...
Bitmap::cacheRemoveBitmap(BITMAP_BITMAP3_ID);
Bitmap::cacheRemoveBitmap(BITMAP_BITMAP4_ID);

Version: 4.16

Custom Widgets
When creating applications you may need widgets that are not part of the TouchGFX distribution.
TouchGFX have a few ways in which you can create your own graphical elements. The simplest way is
to use the Custom Container approach, where you combine already existing widgets into your own.
This article, however, deals with a more advanced approach where you can essentially create a widget
that has full control of the framebuffer and thus is able to draw precisely what you want.

When to use the custom widget approach
Creating custom widgets is not the most typical way to create your own widget. The custom container
approach is preferable if it suits your needs, but sometimes this approach is not enough. When you
need full control of the framebuffer you need to use the custom widget approach.

A few examples of widgets that could and should be created using the custom widget approach are:

A sepia filter
A mandelbrot fractal widget
A widget that shows data from a file, for example a gif animation.

In TouchGFX Designer
TouchGFX Designer does not currently support the creation of custom widgets. As a result, you will
need to write the code for the custom widget manually (refer to the remainder of this article on how
to do this) and then insert the widget in the user code portion of your View.

In code
You create your own custom widget by extending the Widget class. Doing this requires a bit more
effort on the user's side, but will also give full control of all pixels drawn by the widget. Your custom
widget will not necessarily utilize any existing widgets but instead define how it should be drawn by
specifying colors of pixels. The custom widget approach will in general also have a smaller memory
footprint, which in some cases is of great importance.

One example of a custom widget is a QR code widget. This particular widget makes for a good
example, so we will walk through how to create it in the following section. In this example, a QR code

widget is an NxN matrix of black and white pixels. The size of the widget and the color of each pixel
will be determined at run time and depend on the information in a QR code data object.

Here are two examples of how a QR code widget might look:

QR code widget examples

CAUTION

It is possible to create the qr code widget with the custom container approach by having n*n black or white
boxes as children of the container. However, this will take up a lot of memory, and will probably not be as
efficient or flexible.

TIP

The standard touchgfx::Button (supplied with the framework) is created as a custom widget, not a custom
container. This saves memory per button on your screen.

Your own custom widget
In order to create your widget that extends the Widget class, you need to describe two things.

The way your widget is drawn
The part of your widget that is solid

Partial drawing
Any widget, and therefore also your custom widget, needs to support partial drawing. This means that
your widget should be able to draw only a part of itself.

This is due to two points. It is often not necessary to redraw the entire screen but only parts of it. The
algorithms of TouchGFX might split up the drawing of a screen into multiple partial drawings to
minimize the global number of pixels drawn. This partial drawing of a screen, might then ask a widget
to only draw itself partially.

As an example our QR code widget needs to be able to support drawing only the highlighted part of
itself.

QR code widget partial drawing

The way to do this in your code is by overriding the draw method:

The invalidatedArea is the part of the widget that needs to be updated. In our QR code example
the invalidated area is the highlighted area. The area is expressed in coordinates relative to the top left
corner of the widget.

CAUTION

It is the responsibility of the widget to draw inside the invalidated area. If you draw outside the invalidated
area you will not get overall correct behaviour of your screens.

TIP

The draw method is const because the optimized drawing algorithm might split up the drawing of a
widget into multiple calls to draw. The const assures that the widget is not moved, updated etc. in
between these multiple draw executions.

Solid area

virtual void draw(const touchgfx::Rect& invalidatedArea) const
{
 //run through the pixels of the invalidated area
 //draw a black pixel if the qr data object has a value at this position
 //draw a white pixel otherwise
}

Furthermore, a widget needs to be able to report how large a portion of itself is solid. Solid means that
you can not see the things that are behind it on the screen. For instance, a standard red box is
completely solid, whereas an image with an alpha value of 50% is completely non solid; you can see
everything behind it.

A solid widget will enable TouchGFX to speed up the drawing process. Since we do not have to draw
the widgets below the solid widget, fewer pixels have to be drawn.

To report the solid area in your code, override the getSolidRect method.

Our QR code widget will be completely solid. You will not be able to see anything behind the black
and white pixels. Therefore, we let the method return a rectangle the full size of the widget:

Example source code
We end up with an application and a widget looking like this - depending on the data supplied:

QR code widget screenshot

The complete code of the widget is shown below:

gui/include/gui/common/QRCodeWidget.hpp

virtual Rect getSolidRect() const;

virtual Rect getSolidRect() const
{
 return touchgfx::Rect(0, 0, getWidth(), getHeight());
}

In the header file, we define the widget as an extension of the touchgfx::Widget class. We override
the draw and getSolidRect methods to define how our widget is drawn. We declare methods for
setting the data of the QR code and setting the scaling factor of the QR code.

gui/src/common/QRCodeWidget.cpp

#ifndef QR_CODE_WIDGET_HPP
#define QR_CODE_WIDGET_HPP

#include <touchgfx/widgets/Widget.hpp>

class QRCodeWidget : public touchgfx::Widget
{
public:
 QRCodeWidget();

 virtual void draw(const touchgfx::Rect& invalidatedArea) const;
 virtual touchgfx::Rect getSolidRect() const;

 void setQRCodeData(QRCodeData* data);
 void setScale(uint8_t s);

private:
 void updateSize();

 QRCodeData* data;
 uint8_t scale;
};
#endif

#include <gui/common/QRCodeWidget.hpp>

QRCodeWidget::QRCodeWidget() :
 data(0),
 scale(1)
{
}

void QRCodeWidget::draw(const touchgfx::Rect& invalidatedArea) const
{
 if (!data)
 {
 return;
 }

 touchgfx::Rect absolute = getAbsoluteRect();

 uint16_t* framebuffer = touchgfx::HAL::getInstance()->lockFrameBuffer();

 for (int y = invalidatedArea.y; y < invalidatedArea.bottom(); y++)
 {

The source file defines the draw method. This method steps through each of the pixels in the
invalidated area and determines the color of the framebuffer based on the contents of the data object
and the scaling factor.

The getSolidRect method reports the widget as completely solid.

CAUTION

Note that we locked and unlocked the framebuffer as part of our draw method. This is to make sure that
the DMA is done drawing when we start drawing.

The code also uses a small class/interface to access the data of the QR code:

 for (int x = invalidatedArea.x; x < invalidatedArea.right(); x++)
 {
 framebuffer[absolute.x + x + (absolute.y + y) * touchgfx::HAL::DISPLAY_WIDTH]
 data->at(x / scale, y / scale) ? 0x0000 : 0xffff;
 }
 }

 touchgfx::HAL::getInstance()->unlockFrameBuffer();
}

touchgfx::Rect QRCodeWidget::getSolidRect() const
{
 return touchgfx::Rect(0, 0, getWidth(), getHeight());
}

void QRCodeWidget::setQRCodeData(QRCodeData* qrCode)
{
 data = qrCode;
 updateSize();
}

void QRCodeWidget::setScale(uint8_t s)
{
 scale = s;
 updateSize();
}

void QRCodeWidget::updateSize()
{
 if (data)
 {
 setWidth(data->getSize() * scale);
 setHeight(data->getSize() * scale);
 }
}

FURTHER READING

Download and check out the QRCode and Lens widgets.

THINGS TO TRY

Modify the QR code widget such that white pixels are completely transparent.
Create a custom widget that displays a sepia filter, a mandelbrot fractal, a gif image or something else.
Consider which widgets are most easily done using custom containers and which widgets are most easily

realized using the custom widget approach.

Modifying standard widgets/containers
The source code for the standard widgets are included when installing TouchGFX. These can also be
modified to fit with the needs of an application. The source code for the standard widgets and
containers is located in the folder:

In order to maintain backwards compatibility, the core library contains compiled versions of the
standard widgets and containers. It is therefore not necessary to compile these files in your project.

CAUTION

Modifying the standard widgets/containers directly is discouraged

The source code is primarily intended as inspiration and a way to learn about the inner workings of
TouchGFX widgets. If you want something to behave differently than the standard implementation, it is
possible to achieve this by either subclassing or creating custom containers, which is also the
recommended approach.

The reason for this recommendation is two-fold:

class QRCodeData
{
public:
 uint8_t getSize();
 bool at(uint8_t x, uint8_t y);
};

touchgfx\framework\source\touchgfx

First, you will make it more difficult to upgrade to newer TouchGFX versions, since you must
manually merge any changes you did.
Second, you risk breaking the standard widgets and containers that are dependent on specific
behavior.

Therefore, if it is necessary to modify a standard widget/container, we recommend you take a copy of
it, rename it and use that instead of directly modifying the source code.

That being said, you are free to do whatever you judge is right. If you add the source code for a
standard widget into your project, your linker will choose this version instead of the one in the core
library. As a result, you have access to modification of the standard widgets by adding the source code
to your compilation.

Version: 4.16

Canvas Widgets
Canvas Widgets and the Canvas Widget Renderer are a powerful and versatile add-on to TouchGFX
which provides nice smooth, anti-aliased drawing of geometric shapes using relatively little memory
while maintaining high performance. However, rendering geometrical shapes must be seen as a quite
expensive operation and can easily strain the microcontrollers resources if not used carefully.

The Canvas Widget Renderer (hereafter referred to as CWR) is a general graphics API, providing
optimized drawing for primitives, automatically eliminating most superfluous drawings. CWR is used
by TouchGFX for drawing complex geometric shapes. Geometric shapes are defined by Canvas
Widgets. TouchGFX comes with a number of supported Canvas Widgets but just like normal widgets
you can make your own custom Canvas Widget to match your needs. Where a Canvas Widget defines
the geometric shape of a figure to be drawn by the CWR, the actual color of each pixel inside the
figure is defined by an associated Painter class. Again, TouchGFX comes with a number of Painters but
you can make your own custom Painters to match your needs.

Using CanvasWidgets
Other widgets in TouchGFX have their sizes set automatically. A bitmap widget, for example, will
automatically get the width and height of the contained bitmap. It is therefore enough to use
setXY() on the bitmap widget to place the bitmap on the display.

Canvas Widgets do not have a default size which can be determined automatically and set initially.
Care must be taken to not only position, but also size the widget correctly, otherwise the width and
height of the Canvas Widget will be zero, and nothing will be drawn on the display.

So, instead of using setXY() , use setPosition() to place and size the canvas widget. See also
Custom Canvas Widgets below for an example on how to create and use a custom canvas widget.

Once the position and size of the Canvas Widget has been set, a geometrical shape can be drawn
inside it. The coordinate system will have (0, 0) in the upper left corner of the widget (not the display),
the X axis stretches to the right and the Y axis stretches downwards.

Canvas widgets are also supported in TouchGFX Designer, and makes the usage simple and has
automatic memory allocation.

Available CanvasWidget based widgets in TouchGFXDesigner:

Line

Circle
Shape
LineProgress
CircleProgress

Using these widgets via TouchGFX Designer, makes placement and size adjustment much easier by
showing how the widget will look at run time.

Memory Allocation and Usage
To produce nice anti-aliased complex geometrical shapes additional memory is required. For this CWR
has to have a special allocated memory buffer that is used during rendering. CWR, as the rest of
TouchGFX, has no dynamic memory allocation.

Memory Allocation in TouchGFX Designer
When adding a widget to the canvas of a Screen, a memory buffer is automatically generated. The size
of the buffer is based upon the width of the Screen with the following formula (Width × 3) × 5. This is
however not always the ideal buffer size for all scenarios. Therefore the buffer size can be overridden
has shown in the image below.

Canvas buffer size being overridden in Screen properties

Memory Allocation in User Code
The memory buffer can be allocated and set up in target/main.cpp and simulator/main.cpp or be
setup and allocated per Screen.

A static const defining the size of the memory buffer, and the actual memory buffer can be defined in
the beginning of the main.cpp or ScreenView.hpp

Then in either the main() method of main.cpp or setupScreen() method of ScreenView.cpp the
following line setting up the buffer can be added.

The amount of CWR memory needed depends on the maximum size of the shapes that are to be
drawn in the application. You can, however, reserve less memory than the maximum shape requires. To

static const uint16_t CANVAS_BUFFER_SIZE = 3600;
static uint8_t canvasBuffer[CANVAS_BUFFER_SIZE]

CanvasWidgetRenderer::setupBuffer(canvasBuffer, CANVAS_BUFFER_SIZE);

handle this situation, the CWR splits up the drawing of shapes into smaller frame buffer parts resulting
in slightly longer rendering time, as shapes in these cases will sometimes have to be rendered more
than once. It is possible to investigate the memory consumption closer and fine-tune it when running
in simulator mode. Simply add the following function call to your main.cpp:

Now whenever a draw operation finishes, CWR will report (print in the console) how much memory
was required. For canvas_widget_example this could be “CWR requires 3604 bytes” (for the first draw
operation) followed by “CWR requires 7932 bytes (4328 bytes missing)” (for the second draw
operation). Even though it appears that CWR does not have enough memory (4328 bytes missing in
this case) the application runs fine. This is because CWR detects that too little memory is available to
complete the complex draw operation in a single run. Instead, it splits the draw operation into two
separate draw operations and the shape will be drawn just fine but will require more time to render.

Setting the correct memory buffer size is therefore a trade off between memory and performance
(rendering time). A good starting value is usually around 3000, but using the above technique, a better
value can often be determined. If the shape is too complex and the allocated memory buffer is too
small, part of the shape will not be drawn (some vertical pixel lines will be skipped) and it is possible
that nothing is drawn at all. In any case rendering time will increase a lot.

This means that if you want your application to render the CWR drawing at maximum speed you need
to allocate the requested amount of memory. But if you can go with a slower rendering timer it is
perfectly okay to reduce the memory buffer.

The CWR Coordinate System
The coordinate system in TouchGFX is normally used to address pixels for positioning bitmaps on the
display. Bitmaps, texts and other graphic elements are all placed in a coordinate system, where (0,0) is
the upper left hand pixel, the x-axis extends to the right and the y-axis extends downwards. In CWR it
is not enough to be able to address pixels using integers, though this might be enough in special
cases, this is far from enough in general. To demonstrate this, consider a circle with line width 1, which
must fit precisely inside a box of 5 by 5 pixels. The center of this circle must be at (2.5, 2.5) and the
radius must be 2, so fractions are required for the center coordinate. Similarly, if the circle should fit
inside a box of 6 by 6 pixels, the center must be at (3, 3) and the radius must be 2.5, so here fractions
are required for the radius.

This new way of addressing coordinates for drawing graphics, means that the center of the pixel at
(0,0) has CWR coordinate (0.5, 0.5). Hence, the box containing the pixel in the upper left corner of the
screen has the following outline: (0,0) -> (1,0) -> (1,1) -> (0,1) -> (0,0).

CanvasWidgetRenderer::setWriteMemoryUsageReport(true);

CWR coordinate system for pixel at (0,0)

Though this might seem confusing at first, it quickly becomes very natural. Where the coordinate
system for bitmaps address the pixels, the same coordinate for Canvas Widgets address the gap just
before and above the pixel.

Custom Canvas Widgets
Implementing a custom Canvas Widget requires an implementation of a new class with the following
functions:

virtual bool drawCanvasWidget(const Rect& invalidatedArea) const;
virtual Rect getMinimalRect() const;

The drawCanvasWidget() must draw whatever the custom widget needs to draw and
getMinimalRect() should return the actual rectangle in the Widget which contains the geometrical

shape.

NOTE

The reason for having getMinimalRect() is that a geometrical shape can be moved around inside its widget
and it is often impractical to resize and reposition the widget whenever the shape changes to only invalidate
the smallest possible area.
A dummy implementation of getMinimalRect() could simply return rect; , that is the size of the widget,
but that would cause the entire area covered by the canvas widget to be redrawn, and not just the part of
the canvas widget containing the geometrical shape. Very often, the geometrical shape occupies only a small
part of the canvas widget.

Canvas Widgets all use the Canvas class, which encapsulates the Canvas Widget Renderer as described
above. CWR has many optimizations applied automatically, though awareness of your geometrical
shape in relation to the invalidated area, and avoiding unnecessary drawing outside the invalidated
area, is always a good way to boost performance.

A rough implementation of a diamond shaped square inside a 10x10 box could look something like
this:

NOTE

Again, be careful that getMinimalRect() returns to correct rectangle, or the graphics on screen might be
wrong.

class Diamond10x10 : public CanvasWidget
{
public:
 virtual Rect getMinimalRect() const
 {
 return Rect(0,0,10,10);
 }
 virtual bool drawCanvasWidget(const Rect& invalidatedArea) const
 {
 Canvas canvas(this, invalidatedArea);
 canvas.moveTo(5,0);
 canvas.lineTo(10,5);
 canvas.lineTo(5,10);
 canvas.lineTo(0,5);
 return canvas.render(); // Shape is automatically closed
 }
};

In order to see the Diamond10x10 on the display, the color must be set using
Diamond10x10::setPainter() inherited from CanvasWidget. Also, the Diamond10x10 must be placed

and sized correctly. This could look similar to this:

In the header file declare

and in the code you should have something like this:

Painters
A Painter defines a coloring scheme to fill a Canvas Widget object. TouchGFX comes with a set of
predefined painter classes, but custom painters can easily be implemented.

In order to implement a custom Painter, care must be taken to never write outside the frame buffer.
Such a bug in a custom Painter can result in serious crashes. Here is an example of a custom Painter
which we will use to paint an object red, only function renderNext() needs to be implemented. See
AbstractPainter for more information.

To paint the box object from above red, put this in the header file:

Diamond10x10 box;
PainterRGB565 myPainter;

myPainter.setColor(Color::getColorFrom24BitRGB(0xFF, 0x0, 0x0));
box.setPosition(100,100,10,10);
box.setPainter(myPainter);
add(box);

class Red : public AbstractPainterRGB565
{
public:
 virtual bool renderNext(uint8_t &red, uint8_t &green, uint8_t &blue, uint8_t &alpha)
 {
 red = 0xFF;
 green = 0x00;
 blue = 0x00;
 alpha = 0xFF;
 }
};

Diamond10x10 box;
Red redPaint;

and put this in the code:

Please note that it is possible to override more methods to create special painters e.g. renderInit() ,
however, TouchGFX has some generic painters which covers most uses.

box.setPosition(100,100,10,10);
box.setPainter(redPaint);
add(box);

Version: 4.16

Dynamic Bitmaps
This section explains how to use Dynamic Bitmaps. Recall that standard bitmaps are compiled into the
application and therefore must be available at compile time. The bitmaps are converted from e.g. PNG
files and stored in an internal format together with size and format information.

It is also possible to create a bitmap in RAM at runtime. This is called a dynamic bitmap. A dynamic
bitmap can be used just as the static bitmaps that are compiled into the application. This means that
you can use a dynamic bitmap with e.g. the Image and Button widgets.

Dynamic Bitmap Configuration
When you create a dynamic bitmap the RAM for the pixels is allocated from the bitmap cache. You
must therefore configure a bitmap cache before you can create dynamic bitmaps.

See the article on bitmap caching for configuration instructions.

It is required to define the maximum number of Dynamic Bitmaps used in your application. This
maximum is passed to TouchGFX together with the bitmap cache address and size. Here we configure
a bitmap cache with up to 4 dynamic bitmaps:

BoardConfiguration.cpp (extract)

Using a Dynamic Bitmap Example
To use the dynamic bitmap we need a widget to show it. So insert an Image widget in the view (in
code or in the Designer):

// Place cache start address in SDRAM at address 0xC0008000;
uint16_t* cacheStartAddr = (uint16_t*)0xC0008000;
uint32_t cacheSize = 0x300000; //3 MB, as example
HAL& hal = touchgfx_generic_init<STM32F4HAL>(dma, display, tc, DISPLAY_WIDTH, DISPLAY_HEIG

class TemplateView : public View
{
private:
 Image image;
}

Create the dynamic bitmap in setupScreen. Here we use the 16bpp format RGB565. If your framebuffer
is e.g 24 bit use RGB888. To create a transparent bitmap, use the format ARGB8888:

If you want to load your image from a file you can replace the call to memset with your loader code.
See the article Loading Images At Runtime

Dynamic Bitmap Operations
The dynamic bitmap operations are all placed in the Bitmap class.

Creating a Dynamic Bitmap
The following method creates a dynamic bitmap with the width, height and bitmap format specified.
The bitmap is only created if enough unused memory is available. The method returns
BITMAP_INVALID if the bitmap was not created.

Deleting a Dynamic Bitmap

void TemplateView::setupScreen()
{
 BitmapId bmpId;

 //Create (16bit) dynamic bitmap of size 100x150
 const int width = 100;
 const int height = 150;
 bmpId = Bitmap::dynamicBitmapCreate(100, 150, Bitmap::RGB565);

 //set all pixels white
 if (bmpId != BITMAP_INVALID)
 {
 memset(Bitmap::dynamicBitmapGetAddress(bmpId), 0xFF, width*height*2);
 }

 //Make Image widget show the dynamic bitmap
 image.setBitmap(Bitmap(bmpId));

 //Position image and add to View
 image.setXY(20, 20);
 add(image);
 ...
}

static BitmapId Bitmap::dynamicBitmapCreate(const uint16_t width, const uint16_t height, B

This method deletes a dynamic bitmap.

Get the address of the pixels in a Dynamic Bitmap
The following method returns the address of the dynamic bitmap. This method is used by file loaders
to copy image data into the bitmap.

Set the solid area of a Dynamic Bitmap
The following method sets the solid rectangle of a dynamic bitmap.

Read more about the "solid area" concept in the Custom Widgets article.

By default the solid area is set to be the whole bitmap for non-transparent formats like RGB565 and
RGB888. It is set to empty for transparent formats like ARGB8888.

static bool Bitmap::dynamicBitmapDelete(BitmapId id)

static uint8_t* dynamicBitmapGetAddress(BitmapId id)

static bool dynamicBitmapSetSolidRect(BitmapId id, const Rect& solidRect)

Version: 4.16

Binary Fonts
This section describes how to use binary fonts in TouchGFX. The first section contains some in-depth
information about the font and text system in TouchGFX that can be beneficial to understand when
working with binary fonts. The second section explains how to use binary fonts.

Binary fonts can be used as an alternative to the traditional way of compiling and linking font
information in to your application (the .cpp files in generated/fonts/src). The main advantages of
this approach is to get a smaller application binary and get flexibility in providing different sets of
fonts with your device. For example you can pack the Chinese font with devices going to China, and
the Japanese font with devices going there. The drawback of this approach is that the whole binary
font needs to be loaded to RAM (or memory-mapped flash) which can be a problem if the font is
large.

The main advantage of the normal principle of linking fonts into the application is that the application
will always automatically contain the updated texts and typographies used in the application. This is
very easy and safe to use. The disadvantage is that fonts can make the application big.

The Font and Text system classes
In the default configuration TouchGFX generates .cpp-files for all texts and fonts used in the
application. These files are compiled and linked into the application together with the generated UI
and your application code.

When you show a text on the UI with e.g. a TextArea, you reference the text with a TextId. This TextId is
used by the Widgets to find the actual letters in the text. The Widgets will access the texts through the
touchgfx::Texts class framework/include/touchgfx/Texts.hpp .

The Text class contains a pointer array with a pointer to a translation table for each language in the
application. A translation table is in principle a collection of all strings used in that language:

Mapping texts to specific languages

This table allows TouchGFX to find a given text in the selected language.

The tables are regenerated whenever you change a text in TouchGFX Designer and generate your
application.

Before we can draw on the screen we need to know which font to use for the text. This mapping
between texts and fonts is controlled by the TypedTextDatabase class
(generated/texts/include/texts/TypedTextDatabase.hpp).

In the texts tab in TouchGFX Designer you can specify a typography, writing order (Left-to-right or
Right-to-left), and an alignment for each text (Left, Right, Center). The typography, order, and
alignment can be different for each translation of the text. This information is compiled into a table
specific for each language. This makes it easy for TouchGFX to find out what font to use for a given
text, how to align it, and how to write it.

typography information is specific to a language

In the above figure the TypedTextData table has pointers to three arrays. One for each language in the
application. Each of the arrays has 3 elements, one for each text in the system. Each elements
describes a font, a reading order, and the alignment. We see that in this example the texts use the
same font in the three languages. The Fonts table has two pointers because there are two fonts in the
application.

When TouchGFX is about to draw a text on the screen, it looks up the TypedTextData for the given text.
This data contains the font index, letter order (LTR/RTL), and the horizontal alignment (Left, Right,
Center) of the text as specified in the Excel sheet. TouchGFX uses the font index in the TypedTextData
(F1 or F2) to lookup the correct font for the text.

All this happens automatically when the fonts are compiled into your application.

Using Binary Fonts
When an application is using many letters in many different fonts the size of the application can grow
substantially.

To relieve this problem TouchGFX allows applications to use binary fonts. These fonts are not linked
into the application but are stored separately from the application as files. These files are loaded and
provided to TouchGFX by the application at runtime. The application can e.g. load the font from an
external storage like an sd-card or maybe download the font from the Internet.

When the application has loaded the font, it can ask TouchGFX to install the Binary Font in the font
system:

Installing a binary font in the font table

Here the built-in Font2 is replaced by the Binaryfont loaded by the application. The linked-in Font2 is
hereafter not used by TouchGFX.

Configuring the Font converter to generate Binary Fonts
The font converter must be configured to generate binary fonts. This is easily done in
TouchGFXDesigner. Go to the Config tab, select "Text Configuration", and click "Binary font files":

Selecting Binary Fonts

When you regenerate the code, TouchGFX will generate binary fonts in the generated/fonts/bin/
folder, and empty fonts in the normal files in generated/fonts/src/

Manual Configuration
If you are not using TouchGFX Designer you can still generate binary fonts. Change the option
"binary_fonts" to "yes" in the text_configuration section in the application.config file in your project.

application.config

When you generate assets the next time, the binary fonts will be in the generated/fonts/bin folder.

 "text_configuration": {
 "remap": "yes",
 "a4": "yes",
 "binary_translations": "no",
 "binary_fonts": "yes",
 "framebuffer_bpp": "16"
 }

Installing the binary font
Before TouchGFX can use a binary font it must be copied from the file or other storage. The font must
be made available in addressable memory like RAM or QSPI flash (where it can be accessed through a
pointer).

When the application has loaded the binary font to memory, it can install the font in TouchGFX. Now
TouchGFX will use that font and not the compiled font. The binary needs to be installed before the text
is used, but it does not need to be done immediately after booting. The
FrontendApplication::FrontendApplication(Model& m, FrontendHeap& heap) constructor in
FrontApplication.cpp can be used to install fonts. This constructor is executed before anything is

drawn.

Here is an example:

FrontendApplication.cpp

The exact code for opening a file and reading data will depend on your file system and operating
system. The basic steps are to make the font data available in memory, initialize a BinaryFont object
with a pointer to the data, and finally pass the BinaryFont object to TouchGFX.

After the call to setFont TouchGFX will use the binary font to draw text on the screen.

//read the file into this array in internal RAM
uint8_t fontdata[10000];

//binary font object using the data
BinaryFont bf;

FrontendApplication::FrontendApplication(Model& m, FrontendHeap& heap)
 : FrontendApplicationBase(m, heap)
{
 //read the binary font from a file
 FILE* font = fopen("generated/fonts/bin/Font_verdana_20_4bpp.bin", "rb");
 if (font)
 {
 //read data from the file
 fread(fontdata, 1, 10000, font);
 fclose(font);

 //initialize BinaryFont object in bf using placement new
 new (&bf) BinaryFont((const struct touchgfx::BinaryFontData*)fontdata);

 //replace application font 'DEFAULT' with the binary font
 TypedTextDatabase::setFont(DEFAULT, &bf); //verdana_20_4bpp
 }
}

Resetting a font
Sometimes you want to go back to the original font compiled into your application after using a
binary font. For example if you are changing language, and want to use the default font. The
resetFont() function in TypedTextDatabase will reset the font pointer to the built-in font:

After this call, the application can reuse the memory occupied by the binary font to allocate a new font
or for other purposes.

//reset to original font
TypedTextDatabase::resetFont(DEFAULT);

Version: 4.16

Font Caching
This section describes how to use the font cache to handle binary fonts in TouchGFX.

Read first about binary fonts.

Font Caching
Recall that using binary fonts require the whole font to be loaded to memory. This can in some cases
be undesireable if the font is large, e.g. with large Chinese fonts.

Font caching allows an application to load from external memory only the letters required to show a
string. This means that the whole font does not need to reside in the addressable flash or RAM, but
can be stored on a larger file system.

In the drawing below, the compiled-in font, Font2, has been replaced by the font cache. When
TouchGFX is drawing a text, that uses Font2, TouchGFX will find the pointer to the CachedFont object
in the font table. This special font will lookup the letters in the FontCache object.

Using a cached font

The CachedFont is setup with a pointer to the linked-in font (Font2 above). When TouchGFX asks the
CachedFont for a specific letter, the cachedFont will first look in the normal Font it is replacing (Font2).
This font may be an empty font, but can also be a "normal" font containing a selection of some often
used letters. If the font does not contain the required letter, the CachedFont will look into the
FontCache to see if the letter has been loaded from the file system.

This principle limits the amount of letters that must be cached, as we do not need to cache letters
already found in the normal font.

Using the Font Cache in application code
Before the application can install a CachedFont it must also create a FontCache, a memory buffer, and
a file system reader object:

Screen1View.cpp

The FontCache must be linked to the buffer and the reader:

Screen1View.cpp

Now the application can setup the font cache, initialize the CachedFont and pass it to TouchGFX.

The font cache requires a TextId to initialize a CachedFont object. The TextId is used to lookup the font
that the CachedFont must point to. This secures that you are replacing the font used by the text that
you have on your display:

Screen1View.cpp

The code above can be put anywhere in the application. If the cached font is only used in a specific
view, this view can be a good place to insert the code.

Caching Letters

uint8_t fontdata[5120]; //Memory buffer for the font cache, 5Kb
FontCache fontCache;
CachedFont cachedFont; //Cached Font object
FileDataReader reader; //Filesystem reader object

//setup the font cache with buffer and size; and file reader object
fontCache.setMemory(fontdata, 5120);
fontCache.setReader(&reader);

//initialize the cachedFont object to the font used by T_SINGLEUSEID1
TypedText text = TypedText(T_SINGLEUSEID1);
fontCache.initializeCachedFont(text, &cachedFont);

//replace the linked in font in TouchGFX with cachedFont
TypedTextDatabase::setFont(DEFAULT, &cachedFont);

The font cache is still empty. Before we can show any letters they must be read from the font cache.
This is done by passing an array of unicodes (a string) to the font cache. In this example we just pass
the text from T_SINGLEUSEID1.

Screen1View.cpp

The font cache will load the letters found in the str array through the reader object. The read
unicodes will be linked to the font that is used by the TextId text argument.

The application is responsible for configuring the reader object to load from the correct file.

Caching Ligatures
For languages that convert sequences of unicodes to other unicodes before displaying (e.g. Arabic and
Devanagari) the above method is not good. It caches the original unicodes and not the unicodes that
are displayed after conversion. This method will convert the given unicodes and cache the required
unicodes (after conversion):

Screen1View.cpp

Memory Usage
The font cache can calculate the current amount used memory:

Screen1View.cpp

Caching GSUB Tables

//cache the glyphs used by the text T_SINGLEUSEID1
Unicode::UnicodeChar* str = const_cast<Unicode::UnicodeChar*>(text.getText());
bool b = fontCache.cacheString(text, str);

//cache the glyphs used by the text T_SINGLEUSEID1 after conversion
Unicode::UnicodeChar* str = const_cast<Unicode::UnicodeChar*>(text.getText());
bool b = fontCache.cacheLigatures(cachedFont, text, str);

touchgfx_printf("Memory usage %d\n", fontCache.getMemoryUsage());

Some fonts use a GSUB table while rendering. These are only a few fonts for eastern languages, e.g.
Devanagari fonts. The GSUB tables allow the font system to reorder characters and substitute
sequences of characters for other "combination" characters.

The Font Cache can load this GSUB table from the file system. If it is not loaded, the font is not
displayed correctly as the GSUB table is then not available to the text rendering system.

The GSUB table is loaded by supplying an extra argument when initializing the cached font:

Screen1View.cpp

Implementing the Font File Reader
The FileDataReader class used in the above example code is not included in TouchGFX as it is
dependant on the operating system you are using.

Here is an example for normal "stdio" compatible file systems.

Screen1View.cpp

//initialize the cachedFont and load the GSUB table
text = TypedText(T_SINGLEUSEID1);
fontCache.initializeCachedFont(text, &cachedFont, true);

class FileDataReader : public FontDataReader
{
public:
 virtual ~FileDataReader() { }
 virtual void open()
 {
 fp = fopen("Font_verdana_20_4bpp.bin", "rb");
 if (!fp)
 {
 touchgfx_printf("Unable to open font file!!!\n");
 }
 }
 virtual void close()
 {
 fclose(fp);
 }
 virtual void setPosition(uint32_t position)
 {
 fseek(fp, position, SEEK_SET);
 }
 virtual void readData(void* out, uint32_t numberOfBytes)
 {

The FileDataReader class implements the FontDataReader interface from FontCache.hpp:

FontCache.hpp

 fread(out, numberOfBytes, 1, fp);
 }
private:
 FILE* fp;
};

class FontDataReader
{
public:
 virtual ~FontDataReader() { }
 virtual void open() = 0;
 virtual void close() = 0;
 virtual void setPosition(uint32_t position) = 0;
 virtual void readData(void* out, uint32_t numberOfBytes) = 0;
};

Version: 4.16

Binary Translations
This section describes how to use binary translations in TouchGFX. Normally text translations are
compiled into the application. This principle is efficient and easy to use.
Binary translations keep the text translation out of the application. The binary translations are
generated in separate binary files which can be programmed to flash or for example stored on an
sdcard. This gives more flexibility to application developers when handling a large number of
translations.

Translations
The Text class in TouchGFX contains a pointer array with a pointer to a translation table for each
language in the application. A translation table is in principle a collection of all strings used in that
language:

Mapping texts to specific languages

This table allows TouchGFX to find a given text in the selected language.

Mapping to a binary translation

When using binary translations at runtime you change the mapping from the compiled-in translation
to a binary translation. The binary translations must be available in addressable memory (flash or
RAM). It can for example be loaded from a disk or written to the flash during production.

Configuring the Text converter
The TouchGFX text converter can be configured to generate binary translations. This is easily done in
the TouchGFX Designer 4.13. Go to the Config tab, select "Text Configuration", and click "Binary
translation files"

Enabling binary translation

When you generate the code the next time, the binary translations will be in the
generated/texts/binary folder.

The translations compiled into the application are empty when binary translations are generated.
Therefore no texts are shown unless you load binary translations.

Installing a binary translation
When the application has the binary translation in memory, it can install it in TouchGFX. Now
TouchGFX will use that translation. Depending on the application this can be done in different places
or time (The FrontendApplication::FrontendApplication(Model& m, FrontendHeap& heap) constructor in
gui/src/common/FrontApplication.cpp can e.g. be used).

Here is an example where we read a translation for English from a filesystem and install it as language
"GB".

Note, it is necessary to change language after installing a translation. Otherwise TouchGFX will still use
the previous translation. Read about changing language here.

It is also necessary to force a redraw of the current screen, or change screen, to see the new texts (if
you are loading translations for the language that is used on the display). TouchGFX does not redraw
anything automatically.

The current screen can be redrawn by invalidating the root container:

This will force a redraw. In some cases it is better to change the screen to get everything set up again
from scratch (e.g. to recalculate TextArea sizes). You can change the screen by creating an interaction
in TouchGFX Designer with the "Change Screen" action. See this article.

//read the translation into this global array
uint8_t translation[10000];
...

//read the translation from a file, or change array to a pointer that points
//to the translation data in internal or addressable external flash
FILE* file = fopen("generated/texts/binary/LanguageGb.bin", "rb");
if (file)
{
 //read data from file
 fread(translation, 1, 10000, file);
 fclose(file);

 //replace empty translation with the binary data
 Texts::setTranslation(GB, translation);

 //always change language to get TouchGFX changed from the
 //empty translation compiled in to the binary translation
 Texts::setLanguage(GB);
}

container.invalidate();

Version: 4.16

Backend Communication
In most applications, the UI needs to be connected to the rest of your system somehow, and send and
receive data. This could be interfacing with hardware peripherals (sensor data, A/D conversions, serial
communication, ...) or interfacing with other software modules.

This article describes the recommended solutions for implementing this connection.

The first method is a "quick-and-dirty" approach, primarily intended for prototyping, whereas the
second method is an architecturally sound way of properly connecting the UI with the remaining
components in a real world application.

In the end of this article, we link to examples of using both methods.

The Model Class
All TouchGFX applications have a Model class, which apart from storing UI state information is also
intended to function as the interface to your surrounding system. By this we are referring to both
hardware peripherals but also communicating with other OS tasks in your system. It is normally not a
good design to access other software modules or hardware in the individual View classes.

FURTHER READING

To learn more about the Model: MVP pattern

The Model class is well suited for placing any such interface code because:

1. The Model class has a tick() function which is automatically called every frame and can be
implemented to look for and react to events from other sub-modules.

2. The Model class has a pointer to your currently active Presenter, in order to be able to notify the UI
of incoming events.

System Interfacing
There are two ways of interfacing with the surrounding system, either by sampling directly from the
GUI Task, or by sampling from a Secondary Task

Sampling from GUI Task

The best way of interfacing with surrounding system depends on how frequently you need to sample,
how time consuming it is and how time critical it is.

If your requirements in those regards are lenient, the simplest approach is to just sample the
surrounding system directly in the Model::tick function.

If the sampling occurs less frequently than your frame rate (typically around 60Hz), you can just add a
counter and only do the sampling every Nth tick. When done this way, your sampling operation must
be somewhat fast (typically 1ms or less), otherwise your frame rate will begin to suffer, since the
sampling is done in the context of the GUI task and will delay drawing the frame.

Sampling from Secondary Task
Alternatively, if it is not desirable to place the interaction with the surrounding system directly within
the context of the GUI task, you can create a new OS task responsible for doing the sampling.

You can configure this task to run at the exact time intervals you need for your specific scenario. Also
depending on your needs this new task can have a lower or higher priority than the GUI task.

If it has a higher priority, then you are guaranteed that it runs at exactly the times you have specified,
regardless of what the GUI task is doing. This has the drawback that if it is a CPU consuming process it
might impact the frame rate of the UI.

If on the other hand the sampling is not time critical, you can assign the task a lower priority than the
GUI task, such that the UI frame rate is never affected by the sampling of the surrounding system. The
GUI task will sleep a lot while rendering (e.g. when waiting for a DMA-based pixel transfer to
complete) so lower priority tasks will be allowed to run quite frequently and this is therefore sufficient
for the vast majority of applications.

If you use the secondary task approach, we recommend that you take advantage of the inter-task
messaging system that is provided by your RTOS. Most, if not all, RTOSes have a queue/mail
mechanism which allows you to send data (typically user-defined C structs, byte arrays or simple
integers) from one task to another. In order to communicate new data to the GUI task, set up a
mailbox or message queue for the UI task, and send the data to the GUI task using this messaging
system. You can then Model::tick poll the mailbox of the GUI task to check if any new data has
arrived. In case, read the data and update the UI accordingly.

Propagating Data to UI
Regardless of whether you use Sampling from GUI Task or Sampling from Secondary Task, the
Model::tick function is the place where the GUI Task becomes aware of the new data to be shown in

the UI. Apart from acting as an interface to your surrounding system, recall from earlier that the Model
class is also responsible for holding state data, so there might be some state variables that need to be
updated too.

Let us consider a simple example where a temperature sensor is attached to the system, and that the
current temperature is to be shown in the UI. In preparation, we will augment the Model class to
support this:

Model.hpp

With the above, your Presenters are able to ask the model about the current temperature, allowing
a Presenter to set this value in the UI (the View) when entering a screen that displays the temperature.
What we need to do now is to be able to update the UI again when new temperature information is
received. To do this we take advantage of the fact that the Model has a pointer to your currently active
Presenter. The type of this pointer is an interface (ModelListener) which you can modify to reflect
the application-specific events that are appropriate:

ModelListener.hpp

Now that we have this interface hooked up, the remaining this is to do the actual sampling of
incoming "new temperature" events Model::tick

class Model
{
public:
 // Function that allow your Presenters to read current temperature.
 int getCurrentTemperature() const { return currentTemperature; }

 // Called automatically by framework every tick.
 void tick();
 ...
private:
 // Variable storing last received temperature;
 int currentTemperature;
 ...
};

class ModelListener
{
public:
 // Call this function to notify that temperature has changed.
 // Per default, use an empty implementation so that only those
 // Presenters interested in this specific event need to
 // override this function.
 virtual void notifyTemperatureChanged(int newTemperature) {}
};

Model.cpp

The approach above ensures two things:

1. The currentTemperature variable is always up-to-date so that your Presenter can at any time
obtain the current temperature.

2. The Presenter is immediately notified of temperature changes and can take appropriate action.

One advantage of the MVP pattern is that you achieve a separated handling of notifications
depending on what screen you are currently on. Assume for instance that a temperature changed
event occurs while displaying some kind of settings menu (e.g. MainMenuPresenter/MainMenuView is
active) where the current temperature is of no relevance.

Since the notifyTemperatureChanged function has a default empty implementation, this notification
is simply disregarded by the MainMenuPresenter . On the other hand, if you have a
TemperatureControlPresenter you can in this Presenter override the notifyTemperatureChanged

function and inform the View that it should display an updated temperature:

TemperatureControlPresenter.hpp

void Model::tick()
{
 // Pseudo-code for sampling data
 if (OS_Poll(GuiTaskMBox))
 {
 // Here we assume that you have defined a "Message" struct containing type and data,
 // along with some event definitions.
 struct Message msg = OS_Read(GuiTaskMBox);
 if (msg.eventType == EVT_TEMP_CHANGED)
 {
 // We received information that temperature has changed.
 // First, update Model state variable
 currentTemperature = msg.data;

 // Second, notify the currently active Presenter that temperature has changed.
 // The modelListener pointer points to the currently active Presenter.
 if (modelListener != 0)
 {
 modelListener->notifyTemperatureChanged(currentTemperature);
 }
 }
 }
}

class TemperatureControlPresenter : public ModelListener
{
public:
 // override the empty function.

The View class TemperatureControlView , must of course implement the setTemp method.

Transmitting Data from UI to Surrounding
System
The reverse direction where data/events are transferred from the UI to the surrounding system, is
done through the Model in much the same way. Continuing the example from before if we need to
add the ability to configure a new target temperature, we would add the following to the Model:

Model.hpp

In case the user sets a new target temperature in the UI, the View can inform the Presenter which
holds a pointer to the Model object and is therefore able to call the setNewTargetTemperature
function.

Examples
The following examples are full demos configured for specific demo boards, however much of the
code demonstrated can be reused for other demo boards and custom hardware.

From GUI Task
A working example for STM32F746 showing how to sample a button and controlling a LED directly in
the Model class. The example uses the MVP architecture to transfer values and events between the
two views and the Model class. The Model class samples a button and updates the LED to match the
state of the application.

 virtual void notifyTemperatureChanged(int newTemperature) {
 view.setTemp(newTemperature);
 }
};

void setNewTargetTemperature(int newTargetTemp)
{
 // Pseudo-code for sending an event to a task responsible for controlling temperature.
 struct Message msg;
 msg.eventType = EVT_SET_TARGET_TEMP;
 msg.data = newTargetTemp;
 OS_Send(SystemTaskMBox, &msg);
}

A working example for STM32F429 showing how to sample a button in the Model class. The example
uses the MVP architecture to transfer the button event to the View.

From Other Task
A working example for STM32F469 showing how to sample an analog input in separate thread. The
example uses the MVP architecture to transfer the analog value to the View.

A working example showing intertask communication and propagation to and from the UI. Use this as
inspiration for your own setup. The example communicates between the backend system
implemented in C code and the C++ TouchGFX GUI. The example runs on the STM32F746G-DISCO
board on top of FreeRTOS.

From Multiple tasks
This working example was demonstrated at the TouchGFX webinar "Integration with your hardware"
from the 28th of May 2018.

The application was designed for the STM32F769-DISCO board and interacts with an LED and the
USER BUTTON to show how to integrate both C code and hardware peripherals into your TouchGFX
application.

The application configures the button in GPIO mode. Behavior is to sample the state of the button in
btntask.c and pass a message through the GUI message queue if the button is pressed down. This
allows us to advance the animation in the application by keeping the button pressed.

The application uses three FreeRTOS tasks. One for the GUI, one for each peripheral (LED and USER
Button).

From Task and External Interrupt Line
This working example was demonstrated at the TouchGFX webinar "Integration with your hardware"
from the 28th of May 2018.

The application was designed for the STM32F769-DISCO board and interacts with an LED and the
USER BUTTON to show how to integrate both C code and hardware peripherals into your TouchGFX
application.

This application configures the button in EXTI mode (external interrupt line 0). Behavior is to receive an
interrupt when the button is pressed down after which the interrupt is cleared. This does not allow the
same behavior as in GPIO, but instead we'll be single stepping the animation because a message is
only sent through the gui message queue whenever an interrupt is received.

The application uses two FreeRTOS tasks. One for the GUI, one for the LED. (The Button task from
Multiple tasks demo remains active in this application to exemplify that the peripheral interaction code
has been moved into an interrupt handler).

Version: 4.16

Mixins
A Mixin is a class that extends the functionality of a widget to, for example, be able to animate
movement or a change in their alpha value. The Move Animator and Fade Animator mixins are the
basis of TouchGFX Designer Interactions being able to generate code that animates movement and
alpha change. These mixins can be added to a widget either through TouchGFX Designer or manually
in User Code.

Move Animator
The Move Animator mixin makes the widget capable of animating a movement from its current
position to a specified end position. The movement in both the X and Y direction can be described by
supplying EasingEquations.

In TouchGFX Designer, the mixin can be applied by enabling it in the properties for the given widget in
the "Mixins" section, as shown in the image below.

The Move Animator mixin will automatically be applied to a widget if an Interaction that moves the
widget has been created.

Move Animator mixin enabled in TouchGFX Designer

Enabling the Move Animator mixin changes the declaration signature of the generated widget as seen
below, where a Box has had the Move Animator mixin enabled.

Using Move Animator in User Code
When a widget has had the Move Animator mixin applied to it, the widget now has the capability of
animating its movement from one position to another. In this section a demonstration of how to use

touchgfx::MoveAnimator< touchgfx::Box > box;

this new functionality is shown.

After enabling the Move Animator mixin in TouchGFX Designer on a Box widget, the method
startMoveAnimation becomes available for use. This methods takes five arguments in the following

order

endX: the X position relative to its parent that the widget should move to.
endY: the Y position relative to its parent that the widget should move to.
duration: the time in ticks the movement in the X and Y axis should take.
xProgressionEquation: the EasingEquation that should be used for the movement in the X axis.
yProgressionEquation: the EasingEquation that should be used for the movement in the Y axis.

Below an example of a movement to the coordinates X: 0, X: 0 over a duration of 40 ticks, using a
linear EasingEquation in both X and Y axis.

FURTHER READING

API Reference for the available EasingEquations
Graphical demonstations of EasingEquations

Callback Implementation in User Code
When a Move Animator mixin has completed an animation, a callback is emitted. In this section a
demonstration of how to implement this callback is shown.

After enabling the Move Animator mixin in TouchGFX Designer on a Box widget, the next step is to
add declarations for a callback and a function to handle the event in the Screen header class file that
inherits from the base class where the Box widget is located.

Screen1View.hpp

 box.startMoveAnimation(0, 0, 40, EasingEquations::linearEaseNone, EasingEquations::lin

class Screen1View : public Screen1ViewBase
{
public:
 Screen1View();
 // Declaring callback handler for move animation ended on a Box
 void boxMoveAnimationEndedHandler(const touchgfx::MoveAnimator<Box>& comp);

protected:
 // Declaring callback type of MoveAnimator<Box>
 Callback <Screen1View, const touchgfx::MoveAnimator<Box>&> boxMoveAnimationEndedCallba

Then the callback declaration and function to handle the event need to be bound to the view object.

Screen1View.cpp

Next step is to tell the Box widget which callback to use when its move animation has ended, this is
done in setupScreen() to ensure that the callback is set every time the screen is entered.

Screen1View.cpp

Last step is to implement the function, boxMoveAnimationEndedHandler , that handles the callback. For
good practice we check that the Box which move animation has ended is actually the 'box'

Screen1View.cpp

API reference

FURTHER READING

API reference for the MoveAnimator class

Fade Animator

};

Screen1View::Screen1View() :
 // In constructor for callback, bind to this view object and bind which function to hand
 boxMoveAnimationEndedCallback(this, &Screen1View::boxMoveAnimationEndedHandler) { }

void Screen1View::setupScreen()
{
 // Add the callback to box
 box.setMoveAnimationEndedAction(boxMoveAnimationEndedCallback);
}

void Screen1View::boxMoveAnimationEndedHandler(const touchgfx::MoveAnimator<touchgfx::Box>
{
 if (&b == &box)
 {
 //Implement what should happen when move animation on 'box' has ended here.
 }
}

The Fade Animator mixin makes the widget capable of animating its alpha value to fade from its
current alpha value to a specified end alpha value. The rate of fading can be described by supplying an
EasingEquation.

NOTE

Only widgets that implement an alpha value support the Fade Animator mixin. This means all the widgets
that can contain other widgets, like the Container, do not support the Fade Animator mixin.

In TouchGFX Designer, the mixin can be applied by enabling it in the properties for the given widget in
the "Mixins" section, as shown in the image below.

The Fade Animator mixin will also automatically be applied to a widget if an Interaction that fades the
widget over a duration larger than zero has been added.

Fade Animator mixin enabled in TouchGFX Designer

Enabling the Fade Animator mixin changes the declaration signature of the generated widget as seen
below, where a Box has had the Fade Animator mixin enabled.

Using Fade Animator in User Code
When a widget has had the Fade Animator mixin applied to it, the widget now has the capability of
animating its alpha value from one setting to another. In this section a demonstration of how to use
this new functionality is shown.

After enabling the Fade Animator mixin in TouchGFX Designer on a Box widget, the method
startFadeAnimation becomes available for use. This method takes three arguments in the following

order:

endAlpha: the alpha value the widget should be when animation is completed.
duration: the time in ticks the animation to the new alpha value setting should take.

touchgfx::FadeAnimator< touchgfx::Box > box;

alphaProgressionEquation: the EasingEquation that should be used for the rate of change to the
alpha value.

Below an example of an alpha value change to 0 over a duration of 40 ticks, using a linear
EasingEquation.

FURTHER READING

API Reference for the available EasingEquations
Graphical demonstations of EasingEquations

Callback Implementation in User Code
When a Fade Animator mixin has completed an animation, a callback is emitted. In this section a
demonstration of how to implement this callback is shown.

After enabling the Fade Animator mixin in TouchGFX Designer on a Box widget, the next step is to add
declarations for a callback and a function to handle the event in the Screen header class file that
inherits from the base class where the Box widget is located.

Screen1View.hpp

Then the callback declaration and function to handle the event need to be bound to the view object.

Screen1View.cpp

 box.startFadeAnimation(0, 0, 40, EasingEquations::linearEaseNone);

class Screen1View : public Screen1ViewBase
{
public:
 Screen1View();
 // Declaring callback handler for fade animation ended on a Box
 void boxFadeAnimationEndedHandler(const touchgfx::FadeAnimator<Box>& comp);

protected:
 // Declaring callback type of FadeAnimator<Box>
 Callback <Screen1View, const touchgfx::FadeAnimator<Box>&> boxFadeAnimationEndedCallba
};

Screen1View::Screen1View() :
 // In constructor for callback, bind to this view object and bind which function to hand
 boxFadeAnimationEndedCallback(this, &Screen1View::boxFadeAnimationEndedHandler) { }

Next step is to tell the Box widget which callback to use when its move animation has ended, this is
done in setupScreen() to ensure that the callback is set every time the screen is entered.

Screen1View.cpp

Last step is to implement the function, boxFadeAnimationEndedHandler , that handles the callback. For
good practice we check that the Box which fade animation has ended is actually the 'box'

Screen1View.cpp

API reference

FURTHER READING

API reference for the FadeAnimator class

ClickListener
The Click Listener mixin makes the widget capable of responding to touch input by extending the
widget with a callback.

In TouchGFX Designer, the mixin can be applied by enabling it in the properties for the given widget in
the "Mixins" section, as shown in the image below.

void Screen1View::setupScreen()
{
 // Add the callback to box
 box.setFadeAnimationEndedAction(boxFadeAnimationEndedCallback);
}

void Screen1View::boxFadeAnimationEndedHandler(const touchgfx::FadeAnimator<touchgfx::Box>
{
 if (&b == &box)
 {
 //Implement what should happen when fade animation on 'box' has ended here.
 }
}

Click Listener mixin enabled in TouchGFX Designer

Enabling the Click Listener mixin changes the declaration signature of the generated widget as seen
below, where a Box has had the Click Listener mixin enabled.

Callback Implementation in User Code
When a Click Listener mixin receives a touch event, a callback is emitted. In this section a
demonstration of how to implement this callback is shown.

After enabling the Click Listener mixin in TouchGFX Designer on a Box widget, the next step is to add
declarations for a callback and a function to handle the event in the Screen header class file that
inherits from the base class where the Box widget is located.

The callback should declare three things: which class type to bind to, which widget the callback
originates from and the type of event that occurs. In this example it is Screen1View , const Box&
and const ClickEvent&

Screen1View.hpp

Then the callback declaration and function to handle the event need to be bound to the view object.

touchgfx::ClickListener< touchgfx::Box > box;

class Screen1View : public Screen1ViewBase
{
public:
 Screen1View();
 // Declaring callback handler for Box
 void boxClickHandler(const Box& b, const ClickEvent& e);

protected:
 // Declaring callback type of box and clickEvent
 Callback<Screen1View, const Box&, const ClickEvent&> boxClickedCallback;
};

Screen1View.cpp

Next step is to tell the Box widget which callback to use when it is touched, this is done in
setupScreen() to ensure that the callback is set every time the screen is entered.

Screen1View.cpp

Last step is to implement the function, boxClickHandler , that handles the callback. For good practice
we check that the Box which initiated the callback is actually the 'box'

Screen1View.cpp

API reference

FURTHER READING

API reference for the ClickListener class

Draggable
The Draggable mixin makes the widget capable of being dragged around via touch input.

In TouchGFX Designer, the mixin can be applied by enabling it in the properties for the given widget in
the "Mixins" section, as shown in the image below.

Screen1View::Screen1View() :
 // In constructor for callback, bind to this view object and bind which function to ha
 boxClickedCallback(this, &Screen1View::boxClickHandler) { }

void Screen1View::setupScreen()
{
 // Add the callback to box
 box.setClickAction(boxClickedCallback);
}

void Screen1View::boxClickHandler(const Box& b, const ClickEvent& evt)
{
 if (&b == &box)
 {
 //Implement what should happen when 'box' is touched/clicked here.
 }
}

Draggable mixin enabled in TouchGFX Designer

Enabling the Draggable mixin changes the declaration signature of the generated widget as seen
below, where a Box has had the Click Listener mixin enabled.

API reference

FURTHER READING

API reference for the Draggable class

touchgfx::Draggable< touchgfx::Box > box;

Version: 4.16

Texts and Fonts
Fonts and texts are a very important aspect of modern graphical user interfaces. It is important to be
able to display high quality anti-aliased texts in all the languages that your application supports.

TouchGFX supports the creation and modification of texts and typographies through the Texts View of
TouchGFX Designer. The TouchGFX Designer outputs text and typography configurations into a
spreadsheet located at assets/texts/texts.xlsx . This spreadsheet, along with font files are fed to
the font- and text-converter tools, producing generated C++ code files, that TouchGFX can render.

This article introduces the text and font converter tools and explains how to use the generated texts in
an application through code and TouchGFX Designer.

Texts and Typographies
The texts, translations and typographies in a TouchGFX application are stored in the
assets/texts/texts.xlsx spreadsheet. This spreadsheet consists of two sheets. One defining the

typographies used in the application and one defining the texts and all their translations. This
spreadsheet is commonly referred to as the "Text Database".

The typographies can be edited in TouchGFX Designer with the Texts View, which allows for real-time
editing and handling of texts and translations. It is, however, possible to edit the typographies and
texts directly in the texts.xlsx spreadsheet. This is in general not recommended, at least not during
development. If using an external resource for translation it can however be easier to share the
spreadsheet instead of requiring it to be done in TouchGFX Designer. If editing the spreadsheet during
development, the TouchGFX Designer must be closed while editing as it locks the texts.xlsx file while
open.

FURTHER READING

To learn more about how to create and edit typographies, texts, translations and languages go to Texts View

NOTE

For Glyph Bitmap Distribution Format fonts (.bdf), not all font sizes can be rendered with the font. If the
given size in the typography sheet does not match with the given font, the font convert utility will report the
supported font sizes. Updating the size in the Typography Sheet to one of the supported sizes will solve the
problem.

The Text Converter
The text converter is the tool that converts the text information in the text database to an internal C++
format used by TouchGFX applications. The tool is an integrated part of the build tool-chain and will
be executed automatically when building the simulator. The text converter is not executed if the text
database has not been updated since the last build.

NOTE

The output directory of the text converter is generated/texts/ .

The text converter converts all the texts specified in the text database into the text format used by
TouchGFX. The format is wrapped in an object called TypedText . A TypedText in TouchGFX is a
combined entity of the text contents itself and the typography of the text. The typography contains,
the font and font size of the text and the bits per pixel (bpp) used in anti aliasing the glyphs of the
font.

The text converter generates a file called
generated/texts/include/texts/TextKeysAndLanguages.hpp . This file contains an enum TEXTS that

references all texts in the text database.

Notice that all entries in the enum are generated from the text id stated in each row in the text
database, but with a T_ prepended and converted to uppercase. These enum values are used in
applications to initialize TypedTexts.

The TextKeysAndLanguages.hpp also contains an enum LANGUAGES that specifies all the languages
that are present in the text database. The naming is the same as in the language column in the text
database.

generated/texts/include/texts/TextKeysAndLanguages.hpp

/* DO NOT EDIT THIS FILE */
/* This file is autogenerated by the text-database code generator */

#ifndef TEXT_KEYS_AND_LANGUAGES_HPP

The Font Converter
The font converter is a tool that combines the information in font files with information in the text
database and generates the characters needed by the application. The output format is an internal
C++ format used by TouchGFX applications. The tool is an integrated part of the build tool-chain and
will be executed automatically when building the simulator.

The Font Converter accepts

TrueType (.ttf)
OpenType (.otf)
Glyph Bitmap Distribution Format (.bdf).

Simply place the font in the assets/fonts/ folder and the font will be available for reference in
TouchGFX Designer (If the font is added while TouchGFX Designer is running, it must be restarted to
update the available fonts).

#define TEXT_KEYS_AND_LANGUAGES_HPP

typedef enum {
 GB,
 DE,
 NUMBER_OF_LANGUAGES
} LANGUAGES;

typedef enum {
 T_TEMPERATURE_READOUT,
 T_TEMPERATURE_HEADLINE,
 NUMBER_OF_TEXT_KEYS
} TEXTS;

#endif /* TEXT_KEYS_AND_LANGUAGES_HPP */

In TouchGFX Designer, it is also possible to use the fonts installed in Windows, selecting any of these
fonts will automatically add them to the assets/fonts/ folder

The Font Converter supports kerning by using the kerning information in the supplied font.

NOTE

Using TouchGFX does not in any way provide licenses for commercial use of any TrueType, OpenType or
Bitmap fonts.

The output directory of the font converter is generated/fonts/.

Character Memory Optimization
TouchGFX is optimized for low memory consumption. By analysing the characters used for a specific
typography, the number of generated characters (in internal C++ format) are minimized to the
characters that are actually used by the application.

Text memory consumption is also optimized by compacting texts that use common suffixes by
enabling the option to remap texts in the Text Configuration.

Wildcards
It is possible to use runtime values as part of texts. This is possible by use of wildcards in the texts.
These are specified in the given format <*> , where the * represents an optional helping text which
will not be included in the resulting text. It is possible to have up to two wildcards in one text.

All translations for a given text must contain the same number of wildcards. The wildcard values are
inserted at runtime in the application C++ code.

Example of wildcard usage: The temperature is <insert_temperature>°

One detail to notice is that due to the character memory optimization (see section above) the only
characters that are generated for a specific typography are the ones used in texts having this
typography. To force the font generator to include certain characters, you can use "Wildcard
Characters" and "Character Ranges" for each typography.

The wildcard format <*> can be escaped by using backslash notation like this: \<not a wildcard\>.
This will result in the literal text "<not a wildcard>" being used in the application.

Using Wildcards in TouchGFX Designer

In TouchGFX Designer, wildcards can be added to regular TextAreas. Effectively this now makes the
TextArea widget cover the functionality previously covered by the
TextAreaWithOneWildcard/TextAreaWithTwoWildcards widgets, although there is no changes to how
the code is generated in TouchGFX.

In TouchGFX Designer you can add Wildcards to TextAreas by either using the usual syntax <*> , or by
simply clicking the Add Wildcard button in properties for the selected TextArea. A well-known example
is adding a temperature reading to a TextArea, which could say The temperature is °. In this case it
could be an outdoor temperature reading. Here we want to insert a Wildcard that not only displays a
static number, but also updates according to temperature readings. The Wildcard will be added to the
current position of the in-text caret:

Adding a wildcard to a Text Area widget

Now our text in properties will display The temperature is <value>°, while our text on canvas displays
The temperature is °:

Text Area widget with wildcard in TouchGFX Designer

To set up the specific wildcard you can click the corresponding Wildcard button (in this example
Wildcard 1), which allows editing the Wildcard we just added.

Here you can choose how you will update the wildcard. Either with predefined resource texts or by
dynamic run-time created texts. In both cases, you can update the text at run-time. For the latter you

need a Wildcard buffer for storing the dynamic text. Such a buffer is created by selecting the Wildcard
Buffer check mark. In this case you also need to specify a size (number of characters) of the buffer. If
you want to be memory efficient, you need to match the specified size as closely as possible with your
actual needed text size. Remember to add one extra space for the string termination (‘\0’).

You can also set an initial value for the Wildcard, enabling you to see how the final TextArea could look
with a temperature reading. Setting an initial value will either create a hard coded Single Use text in
the Text Database or if you have selected to use Wildcard buffer insert it into the Wildcard buffer:

Wildcard settings in TouchGFX Designer

Using Wildcards in User Code
Wildcards can also be added and updated via User Code as shown in the code example below, where
a Unicode::UnicodeChar array is managed and updated.

gui/include/gui/some_screen/SomeView.hpp

gui/src/some_screen/SomeView.cpp

#include <touchgfx/widgets/TextAreaWithWildcard.hpp>
...
class SomeView : public View<SomePresenter>
{
 TextAreaWithOneWildcard txt;
 Unicode::UnicodeChar txtBuffer[10];
}

#include <texts/TextKeysAndLanguages.hpp>
#include <touchgfx/Color.hpp>

Text Placement
As for all TouchGFX widgets a TextArea is placed on the screen by specifying a position (X and Y) and a
dimension (width and height). This is easily done via TouchGFX Designer in the widgets properties,
However the rendering of text in TouchGFX Designer is not always 100% acurrate compared to how
the text is rendered by TouchGFX.

There are also a few more details and possibilites to be aware of when dealing with texts, decribed in
this section.

Alignment
The text inside the TextArea is aligned according to the alignment specified for the chosen text entry in
the text database. The text is aligned with respect to the area of the TextArea. In the following
screenshots the area of the TextArea is highlighted in blue.

Left aligned text

void SomeView::setupScreen()
{
 txt.setTypedText(TypedText(T_TEMPERATURE_READOUT));
 txt.setXY(10, 20);
 txt.setColor(Color::getColorFrom24BitRGB(0xFF, 0xFF, 0xFF))
 txt.setWildcard(txtBuffer);
 add(txt);

 updateTxt(5);
}

void SomeView::updateTxt(int newValue)
{
 Unicode::snprintf(txtBuffer, 10, "%d", newValue);
 txt.invalidate();
}

Center aligned text

Right aligned text

These settings can be set in TouchGFX Designer Texts View.

Setting the Correct Width and Height of a TextArea
A TextArea is able to adjust its width and height according to the currently selected text. This is done
by calling the TextArea::resizeToCurrentText() method.

NOTE

resizeToCurrentText() is called automatically when instantiating a TextArea with a new TypedText if the
width and height are not set.

When using center/right aligned text you most often do not want to resize the width and height
because your text needs to be centered/right aligned in a fixed area. In this case set the width and
height manually. This can be done by calling TextArea::setPosition(x, y, width, height) ,
TextArea::setWidth(width) and TextArea::setHeight(height) .

If your width and/or height is too small to fit the text, the text will be clipped to the area as can be
seen below.

Text cut off by the bounds of the TextArea widget size

Setting the Correct X and Y for a TextArea
To place a TextArea at the correct X and Y position, you need to be aware of the fact that the font used
will have some extra spacing above the characters to allow for large characters. This makes it a bit hard
to place a TextArea according to a Y position for the upper left corner, since you do not know the
exact spacing above your text. One way of placing a text is to specify the position where you believe it
should be and then fine tune the position by inspecting the placement in the simulator. This is most
often a fairly simple task but it has to be redone if you change the font or font size later on.

A more robust way of doing it is to use text baseline. The baseline is the line upon which most letters
"sit" and below which descenders (characters like p and j) extend.

Baseline for text

To set a text baseline use the TextArea::setBaselineY(y) or TextArea::setXBaselineY(x, y) . For
these methods you do not specify the upper left corner of the TextArea but instead the baseline of the
first text line. This will take the font size and spacing into account and set the Y position of the
TextArea accordingly.

The baseline functionality is not available in TouchGFX Designer, since TextArea widget placement is
easily done via TouchGFX Designer Canvas, and can therefore only be used in User Code.

NOTE

The TextArea needs to have its TypedText set before calling setBaselineY since it relies on the font. Also be
aware that you need to call setBaselineY again if you change the TextAreas TypedText to one with a
different font or font size.

Automatic Wrapping of Long Text Lines
Sometimes a TextArea needs to contain a text which is very long. By default, such text is simply written
as a single line and all text that does not fit inside the TextArea is simpy cut off. If instead the text
should be wrapped at spaces and re-flowed to fill several lines, simply call:

Available Wide Text Actions

WIDE_TEXT_NONE : Do nothing, simply cut the text in the middle of any character that extends
beyond the width of the TextArea.
WIDE_TEXT_WORDWRAP : Wrap between words, ellipsis anywhere "Very long t...".
WIDE_TEXT_WORDWRAP_ELLIPSIS_AFTER_SPACE : Wrap between words, ellipsis anywhere only after

space "Very long ...".
WIDE_TEXT_CHARWRAP : Wrap between any two characters, ellipsis anywhere, as used in Chinese.
WIDE_TEXT_CHARWRAP_DOUBLE_ELLIPSIS :Wrap between any two characters, double ellipsis

anywhere, as used in Chinese.

FURTHER READING

API Reference for the WideTextAction enum

This will probably make the TextArea need more vertical space. This can either be achieved by
increasing the height of the TextArea in the Designer or it can be done in user code as follows.

Remember to call myTextArea.invalidate() before resizing myTextArea if you are decreasing the
text area size. If not, you will still see part of the old text area, since it is not covered by the new
smaller text area.

Switching Language
TouchGFX supports multi language interfaces. The current language used in the interface can be
changed by calling the static method Texts::setLanguage :

myTextArea.setWideTextAction(WIDE_TEXT_WORDWRAP); // Default is WIDE_TEXT_NONE

myTextArea.setWidth(200);
myTextArea.resizeHeightToCurrentText(); // Will set height by wrapping text at 200px long
myTextArea.invalidate();

The value GB is found in the LANGUAGES enum in the TextKeysAndLanguages.hpp as shown in the
example in The Text Converter section.

After this call, invalidate all widgets that display texts (or simply invalidate the entire screen) and they
will display texts in the newly selected language.

In TouchGFX Designer
You can switch between languages, enabling testing for all translations. This is done from General
section of the Config view. Here you simply change the startup language of the application by
changing the Selected Language. Languages will need to be created and translated before they are
selectable in the Config view.

Texts::setLanguage(GB);

Version: 4.16

Languages and Characters
TouchGFX enables internationalized and localized applications.

TouchGFX does this by supporting a wide range of languages and characters and by understanding
text layout mechanisms, such as writing direction and contextual shaping.

Languages
The languages supported are the languages of the Unicode basic multilingual plane with the
restriction that only Left-to-Right or Right-to-Left writing systems are supported. This implies that
languages such as Arabic, Chinese, English and many more are supported, maybe with a few
limitations. Urdu and Burmese are examples of languages that are currently not supported.

Characters
The encoding of characters is based on the Unicode standard. 16-bit unicodes are supported, i.e.
Unicodes from 0x0000 to 0xFFFF are supported. Some languages may use the Private Use Area from
0xE000-0xE3FF for special characters in a given font (e.g. Devanagari).

Writing Direction
TouchGFX supports Left-to-Right (LTR) and Right-to-Left (RTL) writing systems. There is no built-in
support for Top-to-Bottom writing systems.

It should be noted that RTL does not mean that text is written backwards (compared to LTR). It means
that WORDS are written starting from the right towards the left. For Arabic and Hebrew, this is the
correct setting. "TouchGFX" will not be written "XFGhcuoT" but the direction of words (or collection of
workds) can be controlled using the RTL/LTR setting.

The handling of LTR and RTL writing inside TouchGFX applications respects mixing of the two to some
degree. This is known as bidirectional script support. A subset of the official rules for bidirectional
writing is supported by TouchGFX. This means that for example "10:45", "3.14159", "STMicroelectronics
TouchGFX" and others are recognized and written fully LTR even in an RTL text.

For RTL text, some parts of the text must thus be written LTR. This text is found and collected; all
characters that are non-RTL letters are collected. Characters such as color (:), dot (.), comma (,), space

() will also "tie together" two consecutive LTR parts. This is what makes sure that "10:45" is handled as
a single LTR entity whereas "Mark:" (ending in a color) will get the colon to the left as Arabic and
Hebrew speaking countries would expect, i.e. "<some Arabic message> :Mark" where the colon is on
the left side in the RTL text.

Please note that numbers used in the Latin character set (0-9), as well as numbers used in the Arabic
character set, are all handled as LTR characters to make sure that numbers show up properly on the
display.

It should also be noted that the writing direction is very important when a text contains a mix of LTR
entities and RTL entities. Also note, that it cannot be determined if a text is RTL or LTR by examining
the characters in the text. If a text contains first a hebrew word (RTL) and then an english word (LTR),
the output on display will depend on the writing direction of the text. If the text is set to be RTL the
output would look something like this: "English werbeH" because the entire text is RTL so the first
word must be written to the far right, but if the text is set to be LTR the output would look something
like this: "werbeH English" because the text should start with the first word at the far left. The RTL
versus LTR setting cannot be determined automatically because an English text may contain Hebrew
words, just like a Hebrew text may contain English words.

Another important issue regarding RTL text is the automatic swapping of parenthesis characters. These
are (,), {, }, [,], <, >. All these are automatically swapped with the opposite character to ensure that
text looks correct. Please note that there is no automatic conversion from Latin numbers to Arabic
numbers. This must be done by the user before displaying the text, should this be desired.

Contextual Shaping
Certain scripts will select a different form of one or more characters/glyphs depending on the context
of the character. As an example the Arabic alphabet has different contextual forms for the letters in the
alphabet, depending on the position of the letter inside the word. TouchGFX supports such contextual
shaping of languages by implementing a simplied set of rules for combining characters. Also, some
diacritics are placed using custom logic to determine the vertical position - this is particularly true for
Arabic, Thai and Devanagari.

List of Supported Languages
It is difficult to provide an exhaustive list of all supported languages. In general, standard glyphs
without special re-ordering or positioning rules are supported. Some languages, such as Hindi
(Devanagari) and Arabic, with special rules have been included in TouchGFX.

Left-to-Right Languages

g g g
Simple languages using latin characters

In general, simple languages using characters and glyphs that do not require special re-ordering or
positioning are supported. These languages include, but is not limited to, these:

Bosnian, Bulgarian, Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, German,
Hungarian, Italian, Latvian, ithuanian, Norwegian, Polish, Portuguese, Romanian, Serbian, Slovenian,
Slovak, Spanish, Swedish, Turkish, Ukrainian

Simple languages using special character sets

Some languages still follow simple positioning rules, but use a different set of characters and glyphs.
These are also support and include, but is not limited to, these:

Chinese, Greek, Japanese, Russian

Other

Thai has limited support. Tone marks are positioned (vertically) using TouchGFX rules.
Hindi (Devanagari) has limited support. Some characters may be placed slightly wrong, but text
should not be unreadable.

Right-to-Left Languages
Simple languages using special character sets

Hebrew, Indonesian, Khazakh

Languages with different ligatures for different forms (isolated, initial, middle, final)

Arabic (Sequences of more than four characters are not recognized and converted to one ligature.
These are: Sallallahou Alayhe Wasallam, Jallajalalouhou and Rial Sign). Some diacritics may be
placed slightly incorrect.
Farsi
Malay (ݢ "Keheh with dot above" only supported in isolated form)

Unsupported Languages
The following languages are known to be unsupported because they rely on extensive use of ligatures,
digraphs and vertical positioning:

Urdu, Burmese

Version: 4.16

Button
A Button in TouchGFX is a widget that is aware of touch events and can send a callback when the
Button is released. Each state, pressed and released, is associated with an image.

The Button can be replicated with the FlexButton. A FlexButton is a more configurable button that
takes up a bit more RAM in exchange for flexibility.

Button running in the simulator (pressed state)

Widget Group
The Button can be found in the Buttons widget group in TouchGFX Designer.

Button in TouchGFX Designer

Properties
The properties for a Button in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of a Button is determined by the size of the selected images.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image Released Image and Pressed Image specify the images assigned to the pressed
and released states from the Designer skin library or the Project folder.

Appearance
Alpha specifies the transparency of the widget.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by a Button are described in the following sections.

Actions

Standard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers

Trigger Description

Button is clicked A button has been clicked.

Performance
A Button is composed of two images and is dependent on image drawing. Therefore, a Button is
considered a fast performing widget on most platforms.

For more details on image drawing performance, read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a Button.

Screen1ViewBase.cpp

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"

Screen1ViewBase::Screen1ViewBase()
{
 buttonName.setXY(155, 106);
 buttonName.setBitmaps(touchgfx::Bitmap(BITMAP_BLUE_BUTTONS_ROUND_EDGE_SMALL_ID), touch

 add(buttonName);

TIP

You can use these functions and the others available in the Button class in user code. Remember to force a
redraw by calling buttonName.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples
To further explore the Button, try creating a new application within TouchGFX Designer with the
following UI template:

Button Example UI template in TouchGFX Designer

To further explore the callback handler, most of the TouchGFX Designer examples use the Button for
its trigger ability "button is clicked".

API Reference
FURTHER READING

API reference for the Button class

}

void Screen1ViewBase::buttonCallbackHandler(const touchgfx::AbstractButton& src)
{
 if (&src == &buttonName)
 {
 //Interaction name
 //When buttonName clicked calls the new virtual function "functionName()" set by t
 functionName();
 }
}

Version: 4.16

ButtonWithLabel
A ButtonWithLabel in TouchGFX is a widget that is aware of touch events and can send a callback
when the ButtonWithLabel is released. Each state, pressed and released, is associated with an image
and a text.

The ButtonWithLabel can be replicated with the FlexButton. A FlexButton is a more configurable
button that takes up a bit more RAM in exchange for flexibility.

ButtonWithLabel running in the simulator (pressed state)

Widget Group
The ButtonWithLabel can be found in the Buttons widget group in TouchGFX Designer.

ButtonWithLabel in TouchGFX Designer

Properties
The properties for the ButtonWithLabel are described in the following sections.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of a ButtonWithLabel is determined by the size of the selected images.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Text

Single Use and Ressource specify the type of text: unique or from a known
ressource.

When Single Use is selected:
Text specifies the content of the text to be displayed.
Typography specifies the format of the text.
Alignment specifies the horizontal alignment of the text relative to the widget.

When Ressource is selected:
Ressource ID specifies the ressource to retrieve the text from.

For more details on text configuration, refer to the Using texts and fonts
section.

Text
Appearance

Released Color and Pressed Color specify the color of the Text in the pressed
and released states.

Alpha specifies the transparency of the widget.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Text Rotation specifies the angle in degrees of rotation of the text. There are
four possible angles : 0, 90, 80 and 270 degrees.

Property Group Property Descriptions

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image Released Image and Pressed Image specify the images assigned to the pressed
and released states fron the Designer skin library or the Project folder.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the ButtonWithLabel are described in the following sections.

Actions

Specific widget action Description

Set label color type Set the color of the text.

Standard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers

Trigger Description

Trigger Description

Button is clicked A ButtonWithLabel has been clicked.

Performance
A ButtonWithLabel is composed of two images and text, and is dependent on image and text drawing.
Text drawing is very similar to general image drawing (though due to the nature of text characters, a
significant amount of alpha blending takes place). Therefore, the ButtonWithLabel is considered a fast
widget on most platforms.

For more details on text drawing performance, read the General UI Component Performance section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
ButtonWithLabel.

Screen1ViewBase.cpp

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"
#include <texts/TextKeysAndLanguages.hpp>
#include <touchgfx/Color.hpp>

Screen1ViewBase::Screen1ViewBase() :
 buttonCallback(this, &Screen1ViewBase::buttonCallbackHandler)
{
 buttonWithLabelName.setXY(155, 106);
 buttonWithLabelName.setBitmaps(touchgfx::Bitmap(BITMAP_BLUE_BUTTONS_ROUND_EDGE_SMALL_I
 buttonWithLabelName.setLabelText(touchgfx::TypedText(T_SINGLEUSEID1));
 buttonWithLabelName.setLabelColor(touchgfx::Color::getColorFrom24BitRGB(255, 255, 255)
 buttonWithLabelName.setLabelColorPressed(touchgfx::Color::getColorFrom24BitRGB(255, 25
 buttonWithLabelName.setLabelRotation(TEXT_ROTATE_0);
 buttonWithLabelName.setAction(buttonCallback);

 add(buttonWithLabelName);
}

void Screen1ViewBase::buttonCallbackHandler(const touchgfx::AbstractButton& src)
{
 if (&src == &buttonWithLabelName)

TIP

You can use these functions and the others available in the ButtonWithLabel class in user code. Remember to
force a redraw by calling buttonWithLabelName.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples
To further explore the ButtonWithLabel, try creating a new application within TouchGFX Designer with
the following UI templates:

Custom Trigger Action Example UI template in TouchGFX Designer

Pool Demo UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the ButtonWithLabel class

 {
 //InteractionName
 //When buttonName clicked calls the new virtual function "functionName()" set by t
 functionName();
 }
}

Version: 4.16

ButtonWithIcon
A ButtonWithIcon in TouchGFX is a widget that is aware of touch events and can send a callback when
the ButtonWithIcon is released. Each state, pressed and released, is associated with an image and an
icon.

The ButtonWithIcon can be replicated with the FlexButton. A FlexButton is a more configurable button
that takes up a bit more RAM in exchange for flexibility.

ButtonWithIcon running in the simulator

Widget Group
The ButtonWithIcon can be found in the Buttons widget group in TouchGFX Designer.

ButtonWithIcon in TouchGFX Designer

Properties
The properties for a ButtonWithIcon in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of a ButtonWithIcon is determined by the size of the selected images.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Image

Button Style specifies a predefined setup of the widget, that sets select
properties to predefined values.
These styles contain images that are free to use.

Released Image and Pressed Image specify the images assigned to the pressed
and released states from the Designer skin library or the Project folder.

Icon

Icon Style specifies a predefined setup of the widget, that sets select properties
to predefined values.
These styles contain images that are free to use.

Released Icon and Pressed Icon specify the images assigned to the pressed and
released states of the icon from the Designer skin library or the Project folder.

Icon Location
X and Y specify the top left corner of the icon relative to its parent.

W and H specify the width and height of the icon, based on the selected
image.

Appearance
Alpha specifies the transparency of the widget.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Property Group Property Descriptions

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the ButtonWithIcon are described in the following sections.

Actions

Standard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers

Trigger Description

Button is clicked A ButtonWithIcon has been clicked.

Performance
The ButtonWithIcon is composed of four images and is dependent on image drawing. Therefore, a
ButtonWithIcon is considered a fast performing widget on most platforms.

For more details on image drawing performance, read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
ButtonWithIcon.

Screen1ViewBase.cpp

TIP

You can use these functions and the others available in the ButtonWithIcon class in user code. Remember to
force a redraw by calling buttonWithIconName.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples
To further explore the ButtonWithIcon, try creating a new application within TouchGFX Designer with
the following UI template:

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"

Screen1ViewBase::Screen1ViewBase() :
 buttonCallback(this, &Screen1ViewBase::buttonCallbackHandler)
{
 buttonWithIconName.setXY(155, 106);
 buttonWithIconName.setBitmaps(touchgfx::Bitmap(BITMAP_BLUE_BUTTONS_ROUND_EDGE_SMALL_ID
 buttonWithIconName.setIconXY(71, 16);
 buttonWithIconName.setAction(buttonCallback);

 add(buttonWithIconName);
}

void Screen1ViewBase::buttonCallbackHandler(const touchgfx::AbstractButton& src)
{
 if (&src == &buttonWithIconName)
 {
 //InteractionName
 //When buttonName clicked calls the new virtual function "functionName()" set by t
 functionName();
 }
}

Transition Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the ButtonWithIcon class

Version: 4.16

ToggleButton
A ToggleButton in TouchGFX is a widget that is aware of touch events and can send a callback when
the ToggleButton is clicked. Each state, pressed and released, is associated with an image. A
ToggleButton is a Button specialization that swaps the two bitmaps when clicked to emulate switching
between two states.

The ToggleButton can be replicated with the FlexButton. A FlexButton is a more configurable button
that takes up a bit more RAM in exchange for flexibility.

ToggleButton running in the simulator

Widget Group
The ToggleButton can be found in the Buttons widget group in TouchGFX Designer.

ToggleButton in TouchGFX Designer

Properties
The properties for a ToggleButton in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of a ToggleButton is determined by the size of the selected images.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image Released Image and Pressed Image specify the images assigned to the pressed
and released states from the Designer skin library or the Project folder.

Property Group Property Descriptions

Appearance
Alpha specifies the transparency of the widget.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the ToggleButton are described in the following sections.

Actions

Standard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers

Trigger Description

Button is clicked A button has been clicked.

Performance
The ToggleButton is composed of two images and is dependent on image drawing. Therefore, a
ToggleButton is considered a fast performing widget on most platforms.

For more details on image drawing performance, read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
ToggleButton.

Screen1ViewBase.cpp

TIP

You can use these functions and the others available in the ToggleButton class in user code. Remember to
force a redraw by calling toggleButtonName.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples
To further explore the ToggleButton, try creating a new application within TouchGFX Designer with the
following UI template:

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"

creen1ViewBase::Screen1ViewBase() :
 buttonCallback(this, &Screen1ViewBase::buttonCallbackHandler)
{
 toggleButtonName.setXY(176, 117);
 toggleButtonName.setBitmaps(touchgfx::Bitmap(BITMAP_BLUE_TOGGLEBARS_TOGGLE_ROUND_LARGE
 toggleButtonName.setAction(buttonCallback);

 add(ToggleButtonName);
}

void Screen1ViewBase::buttonCallbackHandler(const touchgfx::AbstractButton& src)
{
 if (&src == &toggleButtonName)
 {
 //InteractionName
 //When buttonName clicked calls the new virtual function "functionName()" set by t
 functionName();
 }
}

Pool Demo UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the ToggleButton class

Version: 4.16

RadioButton
A RadioButton in TouchGFX is a widget that is aware of touch events and can send a callback when the
RadioButton is clicked. A radio button consists of four images, corresponding to a selected or
unselected button during a pressed or released state. RadioButtons can be added to a
RadioButtonGroup which handles the deselection of radio buttons when a new selection is made.

The RadioButton can be replicated with the FlexButton. A FlexButton is a more configurable button
that takes up a bit more RAM in exchange for flexibility.

RadioButton running in the simulator

Widget Group
The RadioButton can be found in the Buttons widget group in TouchGFX Designer.

RadioButton in TouchGFX Designer

Properties
The properties for the RadioButton are described in the following sections.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of a RadioButton is determined by the size of the selected images.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Selection Selected specifies the initial selection state of the button. Deselectable specifies
the ability to deselect the button by pressing it while in the selected state.

Group
Group specifies the name of the group this button will be assigned to.
Selection and deselection behaviour is contained within these
RadioButtonGroups.

Property Group Property Descriptions

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image Released Image and Pressed Image specify the images assigned to the pressed
and released states from the Designer skin library or the Project folder.

Appearance
Alpha specifies the transparency of the widget.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the RadioButton are described in the following sections.

Actions

Standard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers

Trigger Description

Radio Button is selected A RadioButton has been deselected.

Trigger Description

Radio Button is deselected A RadioButton has been selected.

Performance
The RadioButton is composed of four images and is dependent on image drawing. Therefore, a
RadioButton is considered a fast performing widget on most platforms.

For more details on image drawing performance, read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
RadioButton.

Screen1ViewBase.cpp

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"

creen1ViewBase::Screen1ViewBase() :
 radioButtonSelectedCallback(this, &Screen1ViewBase::radioButtonSelectedCallbackHandler
{
 radioButtonName.setXY(136, 114);
 radioButtonName.setBitmaps(touchgfx::Bitmap(BITMAP_BLUE_CHECK_BUTTONS_CHECK_MARK_INACT
 radioButtonName.setSelected(false);
 radioButtonName.setDeselectionEnabled(true);

 add(radioButtonName);
 radioButtonGroupName.add(radioButtonName);

 radioButtonGroupName.setRadioButtonSelectedHandler(radioButtonSelectedCallback);
}

void Screen1ViewBase::radioButtonSelectedCallbackHandler(const touchgfx::AbstractButton& s
{
 if (&src == &radioButtonName)
 {
 //InteractionName
 //When buttonName clicked calls the new virtual function "functionName()" set by t

TIP

You can use these functions and the others available in the RadioButton class in user code. Remember to
force a redraw by calling radioButtonName.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples
To further explore the RadioButton, try creating a new application within TouchGFX Designer with the
following UI template:

RadioButton Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the RadioButton class

 functionName();
 }
}

Version: 4.16

RepeatButton
A RepeatButton in TouchGFX is a widget that is aware of touch events and can send a callback when
the RepeatButton is pressed. The button activates its pressed action immediately, then after a given
delay, then repeatedly after an interval. Each state, Pressed and Released, is associated with an image.

The RepeatButton can be replicated with the FlexButton. A FlexButton is a more configurable button
that takes up a bit more RAM in exchange for flexibility.

RepeatButton running in the simulator

Widget Group
The RepeatButton can be found in the Buttons widget group in TouchGFX Designer.

RepeatButton in TouchGFX Designer

Properties
The properties for a RepeatButton in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of a RepeatButton is determined by the size of the selected images.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image Released Image and Pressed Image specify the images assigned to the Pressed
and Release states from the Designer skin library or the Project folder.

Settings

Delay specifies the time (ms) to wait when the button is pressed before
starting the loop of triggers.

Interval specifies the time (ms) in between every trigger. Designer accepts
inputs of milliseconds and converts them into ticks.

Appearance
Alpha specifies the transparency of the widget.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the RepeatButton are described in the following sections.

Actions

Standard widget actions Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers

Trigger Description

Button is clicked A button has been clicked.

Performance
A RepeatButton is composed of two images and is dependent on image drawing. Therefore, a
RepeatButton is considered a fast performing widget on most platforms.

For more details on image drawing performance, read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
RepeatButton.

Screen1ViewBase.cpp

TIP

You can use these functions and the others available in the RepeatButton class in user code. Remember to
force a redraw by calling repeatButtonName.invalidate() if you change the appearance of the widget.

API Reference
FURTHER READING

API reference for the RepeatButton class

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"

Screen1ViewBase::Screen1ViewBase() :
 buttonCallback(this, &Screen1ViewBase::buttonCallbackHandler)
{
 repeatButtonName.setXY(155, 106);
 repeatButtonName.setBitmaps(touchgfx::Bitmap(BITMAP_BLUE_BUTTONS_ROUND_EDGE_SMALL_ID),
 repeatButtonName.setDelay(12); // Set at 200 (ms) in Designer
 repeatButtonName.setInterval(20); // Set at 333 (ms) in Designer
 repeatButtonName.setAction(buttonCallback);

 add(repeatButtonName);
}

void Screen1ViewBase::buttonCallbackHandler(const touchgfx::AbstractButton& src)
{
 if (&src == &repeatButtonName)
 {
 //InteractionName
 //When repeatButtonName clicked calls the new virtual function "functionName()" se
 functionName();
 }
}

Version: 4.16

FlexButton
A FlexButton in TouchGFX is a widget that is aware of touch events and can send a callback when the
FlexButton is triggered. The FlexButton is adaptable to the needs of the user. It can combine the
behaviour and appearance of other button types but takes up a bit more RAM as a tradeoff. This will,
however, in most cases be an insignificant amount. The FlexButton can be composed of a maximum of
4 visual elements: BoxWithBorder, Icon, Text and Image.

FlexButton running in the simulator (combining BoxWithBorder, Icon and Text elements)

Widget Group
The FlexButton can be found in the Buttons widget group in TouchGFX Designer.

FlexButton in TouchGFX Designer

Properties
The properties for a FlexButton in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Appearance
Alpha specifies the transparency of the widget.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Trigger Click , Touch , Toggle and Repeat specify which action triggers the button
callback.

Visual Elements Image , Box With Border , Text and Icon specify which elements make up the
widgets visual appearance.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the FlexButton are described in the following sections.

Actions

Standard widget action DescriptionStandard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers

Trigger Description

Button is clicked A button has been clicked.

Performance
A FlexButton is potentially composed of up to two Boxes, four Images and one Text, and relies on
image and text drawing. Text drawing is very similar to general image drawing (though due to the
nature of text characters, a significant amount of alpha blending takes place). Therefore, the
FlexButton is considered a fast widget on most platforms.

For more details on drawing performance, read the General UI Component Performance section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
FlexButton. The code corresponds to the FlexButton shown at the start of this section, combining the
behavior and appearance of the BoxWithBorder, Icon and Text elements.

Screen1ViewBase.cpp

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"

Screen1ViewBase::Screen1ViewBase() :
 buttonCallback(this, &Screen1ViewBase::buttonCallbackHandler)

TIP

You can use these functions and the others available in the FlexButton class in user code. Remember to force
a redraw by calling flexButtonName.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples

To further explore the FlexButton, try creating a new application within TouchGFX Designer with the
following UI template:

FlexButton Example UI template in TouchGFX Designer

{
 // Box with Border behavior and appearance
 flexButtonName.setBoxWithBorderPosition(0, 0, 176, 74);
 flexButtonName.setBorderSize(5);
 flexButtonName.setBoxWithBorderColors(touchgfx::Color::getColorFrom24BitRGB(0, 102, 15
 // Text behavior and appearance
 flexButtonName.setText(TypedText(T_SINGLEUSEID1));
 flexButtonName.setTextPosition(30, 12, 176, 74);
 flexButtonName.setTextColors(touchgfx::Color::getColorFrom24BitRGB(10, 10, 10), touchg
 // Icon behavior and appearance
 flexButtonName.setIconBitmaps(Bitmap(BITMAP_BLUE_ICONS_ALERT_32_ID), Bitmap(BITMAP_BLU
 flexButtonName.setIconXY(20, 17);
 // Widget
 flexButtonName.setPosition(152, 99, 176, 74);
 flexButtonName.setAction(flexButtonCallback);

 add(flexButtonName);
}

void Screen1ViewBase::flexButtonCallbackHandler(const touchgfx::AbstractButtonContainer& s
{
 if (&src == &flexButtonName)
 {
 //InteractionName
 //When FlexButtonName clicked calls the new virtual function "functionName()" set
 functionName();
 }
}

API Reference
FURTHER READING

API reference for the AbstractButton class

Version: 4.16

Image
An Image in TouchGFX draws the pixel data from an associated image file. The image file must be
imported into the project before usage.

The size of an Image is defined by the associated image file and cannot be altered at runtime. If you
need the image shown to be of a different size you need to resize the associated imported image. This
is due to performance reasons.

If you need to resize an image at runtime use ScalableImage. Note that the performance of drawing a
scaled image is much lower than a non-scaled image.

Image running in the simulator

Widget Group
The Image can be found in the Images widget group in TouchGFX Designer.

Image in TouchGFX Designer

Properties
The properties for a Image in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget. The size of the widget is
determined by the size of the associated image.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image Image specifies the associated image. Select either from the imported images
in the Project tab or from the set of free TouchGFX images in the Skins tab.

Appearance Alpha specifies the transparency of the widget. The alpha value ranges between
0 and 255 for the widget. 0 is fully transparent and 255 is solid.

Mixin

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by an Image in TouchGFX Designer.

Actions

Standard widget actions DescriptionStandard widget actions Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
An Image does not emit any triggers.

Performance
The Image is dependent on image drawing and is considered a fast performing widget on most
platforms.

For more details on image drawing performance, read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the view base class we can see how TouchGFX Designer sets up an Image.

Screen1ViewBase.cpp

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"

Screen1ViewBase::Screen1ViewBase()
{
 imageName.setXY(0, 0);
 imageName.setBitmap(Bitmap(BITMAP_STM32_LOGO_ID));

 add(imageName);
}

TIP

You can use these functions and the others available in the Image class in user code. Remember to force a
redraw by calling imageName.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples
To further explore the Image, try creating a new application within TouchGFX Designer with one of the
following UI templates:

KnightHitsZombie Game UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the Image class

Version: 4.16

ScalableImage
ScalableImage is a widget capable of drawing a scaled version of a bitmap. Simply change the
width/height of the widget to resize the image. The quality of the scaled image depends of the
rendering algorithm used. The rendering algorithm can be changed dynamically.

NOTE

This widget has a significant effect on the MCU load.
This widget does not support 1 bit per pixel color depth.

ScalableImage running in the simulator

Widget Group
The ScalableImage can be found in the Images widget group in TouchGFX Designer.

ScalableImage in TouchGFX Designer

Properties
The properties for a ScalableImage in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image
Scaling Algorithm specifies the algorithm used for scaling the chosen image.

Image specifies which image the widget should use.

Appearance Alpha specifies the transparency of the widget. The alpha value ranges between
0 and 255 for the widget. 0 is fully transparent and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by a ScalableImage in TouchGFX Designer.

Actions

Standard widget action DescriptionStandard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
A ScalableImage does not emit any triggers.

Performance
A ScalableImage heavily depends upon the MCU for scaling the image. Therefore, the ScalableImage is
considered a demanding widget on most platforms.

For more details on drawing performance, read the read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the View base class we can see how the Designer sets up a ScalableImage.

Screen1ViewBase.cpp

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"

Screen1ViewBase::Screen1ViewBase()
{
 scalableImage.setBitmap(touchgfx::Bitmap(BITMAP_IMAGE_ID));
 scalableImage.setPosition(246, 36, 200, 200);
 scalableImage.setScalingAlgorithm(touchgfx::ScalableImage::NEAREST_NEIGHBOR);

 add(scalableImage);
}

void Screen1ViewBase::setupScreen()

TIP

You can use these functions and the others available in the ScalableImage class in user code. Remember to
force a redraw by calling scalableImage.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples
To further explore the ScalableImage, try creating a new application within TouchGFX Designer with
one of the following UI templates:

Scale and Zoom Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the ScalableImage class

{

}

Version: 4.16

TiledImage
Description
A TiledImage is a simple widget capable of showing a tiled bitmap. This means that when TiledImage
is larger than the provided bitmap, the bitmap is repeated horizontally and vertically. The bitmap can
be alpha-blended with the background and have areas of transparency.

TiledImage running in the simulator

Widget Group
The TiledImage can be found in the Images widget group in TouchGFX Designer.

TiledImage in TouchGFX Designer

Properties

The properties for a TiledImage in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image Image Specifies the image that should be used within the widget.
An image with a repeating pattern is recommended.

Offset X and Y specify the offset of the image where the tile drawing should start.

Appearance Alpha specifies the transparency of the widget. The alpha value ranges between
0 and 255 for the widget. 0 is fully transparent and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the TiledImage are described in the following sections.

Actions

Standard widget action DescriptionStandard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
A TiledImage does not emit any triggers.

Performance
A TiledImage is dependent on image drawing, and is considered a fast performing widget on most
platforms.
A TiledImage redraws the same image multiple times to cover the area of the widget. Therefore, small
source images result in a greater number of image draws.

For more details on image drawing performance, read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
TiledImage.

mainViewBase.cpp

#include <gui_generated/main_screen/mainViewBase.hpp>
#include "BitmapDatabase.hpp"

mainViewBase::mainViewBase()
{

 tiledImage.setBitmap(touchgfx::Bitmap(BITMAP_BLUE_TEXTURES_IRONGRIP_ID));
 tiledImage.setPosition(35, 36, 50, 50);
 tiledImage.setOffset(0, 0);

TIP

You can use these functions and the others available in the TiledImage class in user code. Remember to force
a redraw by calling tiledImage.invalidate() if you change the appearance of the widget.

User Code
The following code example shows how to animate movement into a TiledImage by continuously
adjusting the offset in the handleTickEvent() :

mainView.cpp

 add(tiledImage);
}

void mainViewBase::setupScreen()
{

}

#include <gui/main_screen/mainView.hpp>

mainView::mainView()
{

}

void mainView::setupScreen()
{
 mainViewBase::setupScreen();
}

void mainView::tearDownScreen()
{
 mainViewBase::tearDownScreen();
}

void mainView::handleTickEvent()
{
 int x = tiledImage.getXOffset();
 int y = tiledImage.getYOffset();
 tiledImage.setOffset(x + 1, y + 1);
 tiledImage.invalidate();
}

API Reference
FURTHER READING

API reference for the TiledImage class

Version: 4.16

AnimatedImage
An AnimatedImage is capable of running an animation from start to end using a range of images
sharing a common identifier. It is capable doing a single animation or looping the animation until
stopped or paused.

AnimatedImage running in the simulator

Widget Group
The AnimatedImage can be found in the Images widget group in TouchGFX Designer.

AnimatedImage in TouchGFX Designer

Properties
The properties for a AnimatedImage in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of a AnimatedImage is taken from the size of the associated images and
cannot be altered except by changing the images.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Image
First Image and Last Image specify the first and last images in the range of
images used for the animation.
The images used must have an identifier e.g. img_01.png, img_02.png,
img_03.png, img_04.png, img_05.png, img_06.png, img_07.png, etc.

Animation

Start on load specifies if the animation should start as soon as the screen is
loaded.

Reverse Animation specifies if the images used for the animation should be run
in reverse order.

Loop Animation specifies if the animation should run continuously.

Update Interval specifies the the amount of time that will pass between each
image in the animation.

Appearance Alpha specifies the transparency of the widget. The alpha value ranges between
0 and 255 for the widget. 0 is fully transparent and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the AnimatedImage are described in the following sections.

Actions

Standard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers

Trigger Description

Animation is done An AnimatedImage has completed its animation.

Performance
An AnimatedImage is dependent on image drawing, and is considered a fast performing widget on
most platforms.
An AnimatedImage draws images according to the Update Interval. Therefore, a lower Update Interval
results in more image draws.

For more details on image drawing performance, read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up an
AnimatedImage.

mainViewBase.cpp

#include <gui_generated/main_screen/mainViewBase.hpp>
#include "BitmapDatabase.hpp"

TIP

You can use these functions and the others available in the AnimatedImage class in user code. Remember to
force a redraw by calling animatedImage.invalidate() if you change the appearance of the widget.

User Code
The following code example shows how to set up the callback of an AnimatedImage when an
animation is done:

mainView.hpp

mainViewBase::mainViewBase()
{

 image.setXY(0, 0);
 image.setBitmap(touchgfx::Bitmap(BITMAP_BLUE_BACKGROUNDS_MAIN_BG_TEXTURE_480X272PX_ID)

 animatedImage.setXY(0, -104);
 animatedImage.setBitmaps(BITMAP_BUTTERFLY_01_ID, BITMAP_BUTTERFLY_72_ID);
 animatedImage.setUpdateTicksInterval(2);
 animatedImage.startAnimation(false, true, true);

 add(image);
 add(animatedImage);
}

void mainViewBase::setupScreen()
{

}

#ifndef MAINVIEW_HPP
#define MAINVIEW_HPP

#include <gui_generated/main_screen/mainViewBase.hpp>
#include <gui/main_screen/mainPresenter.hpp>

class mainView : public mainViewBase
{
public:
 mainView();
 virtual ~mainView() {}
 virtual void setupScreen();
 virtual void tearDownScreen();
protected:
 /*
 * Callback Declarations
 */

mainView.cpp

TouchGFX Designer Examples
To further explore the AnimatedImage, try creating a new application within TouchGFX Designer with
one of the following UI templates:

 touchgfx::Callback<mainView, const touchgfx::AnimatedImage&> animatedImageAnimationDon

 /*
 * Callback Handler Declarations
 */
 void animatedImageAnimationDoneCallbackHandler(const touchgfx::AnimatedImage& src);
};

#endif // MAINVIEW_HPP

#include <gui/main_screen/mainView.hpp>

mainView::mainView():
 animatedImageAnimationDoneCallback(this, &mainView::animatedImageAnimationDoneCallback
{

}

void mainView::setupScreen()
{
 mainViewBase::setupScreen();
 animatedImage.setDoneAction(animatedImageAnimationDoneCallback);
}

void mainView::tearDownScreen()
{
 mainViewBase::tearDownScreen();
}

void mainView::animatedImageAnimationDoneCallbackHandler(const touchgfx::AnimatedImage& sr
{
 if (&src == &animatedImage)
 {
 //execute code whenever the animation of animatedImage stops
 }
}

AnimatedImage Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the AnimatedImage class

Version: 4.16

TextureMapper
A TextureMapper is a widget capable of drawing a transformed image, that can be freely scaled and
rotated around an adjustable origin. Perspective impression is also achieved by applying a virtual
camera, where the amount of perspective is adjustable.

NOTE

This widget has a significant effect on the MCU load.
This widget does not support 1 bit per pixel color depth.

TextureMapper running in the simulator

Widget Group
The TextureMapper can be found in the Images widget group in TouchGFX Designer.

TextureMapper in TouchGFX Designer

Properties
The properties for a TextureMapper in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Animation Texture Mapper specifies if the TextureMapper should be generated
as an AnimationTextureMapper.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image

Image specifies the image that should be transformed.

Lock Image to Center specifies if the image position should be locked to the
center of the widget.
If the Texture Mapper is resized at run time, this option does not maintain a
centered position for the image..

X and Y specify the top left corner of the image to be transformed within the
widget.

Angle & Scale

X Angle, Y Angle and Z Angle specify the rotation transformation of the image
within the widget.
Angles are in radians.

Scale specifies the scale transformation of the image in the widget.

Property Group Property Descriptions

Origo

Lock Origo to Center specifies if the rotation point of the image is locked to the
center of the widget.
If the Texture Mapper is resized at run time, this option does not maintain a
centered origo position.

X Origo, Y Origo and Z Origo specify the point at which the image within the
widget be rotated and scaled.

For more details on the intricacies of this, refer to the Origo & Camera section.

Camera Camera Distance specifies the distance of the virtual camera.
This changes the amount of perspective when the image is rotated.

Appearance

Rendering Algorithm specifies the algorithm used to render the image within
the widget.
The options are Nearest-neighbour and Bilinear Interpolation.

Alpha specifies the transparency of the widget.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Origo & Camera
Origo determines the location around which the transformation of the selected image should take
place. The coordinate properties X Origo and Y Origo is in relation to the width and height of the
TextureMapper and not in relation to the width and height of the chosen image.

The coordinate property Z Origo is in relation to the Camera Distance. If the Camera Distance is set to
1000, and the image should rotate around it's own axis the Z Origo should also be set to 1000.

To lock the transformation location in the center of the TextureMapper, put a check mark in the
checkbox with the label Lock Origo to Center. This will lock the X Origo and Y Origo properties to the
center of the TextureMapper and lock the Z Origo to the value of the Camera Distance.

The Camera Distance changes the amount of perspective that is shown when the image is rotated. The
closer the Camera Distance is, the greater the FOV (field of view) becomes, and therefore the

percieved amount of perspective increases.

Coordinate system used for the origo and camera distance in Texture Mapper

Interactions
The actions and triggers supported by the TextureMapper are described in the following sections.

NOTE

If a rotation or scale interaction is applied to a TextureMapper, that has a duration or delay greater than zero,
it will be generated as a AnimationTextureMapper.

Actions

Widget specific action Description

Rotate
TextureMapper

Rotate the TextureMapper around its Origo in x-, y- and z-axis, either
relative to its current orientation or to a specific angle.

Widget specific action Description

Scale TextureMapper Scale the TextureMapper either relative to its current size or to a specific
size.

Standard widget actions Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
A TextureMapper does not emit any triggers.

Performance
A TextureMapper heavily depends upon the MCU for scaling and rotating the image. Therefore, a
TextureMapper is considered a demanding widget on most platforms.

For more details on drawing performance, read the General UI Component Performance section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
TextureMapper.

Screen1ViewBase.cpp

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"

Screen1ViewBase::Screen1ViewBase() :
 interaction1Counter(0)
{

TIP

You can use these functions and the others available in the TextureMapper class in user code. Remember to
force a redraw by calling textureMapper.invalidate() if you change the appearance of the widget.

User Code
If the Texture Mapper is setup to be a AnimationTextureMapper, there are two callbacks that can be
setup:

setTextureMapperAnimationStepAction is invoked every time the current animations have
performed a step.
setTextureMapperAnimationEndedAction is invoked when all animations have ended.

The following two pieces of code demonstrate how to set up these two callbacks:

Screen1View.hpp

 textureMapper.setXY(150, 46);
 textureMapper.setBitmap(touchgfx::Bitmap(BITMAP_BLUE_LOGO_TOUCHGFX_LOGO_ID));
 textureMapper.setWidth(180);
 textureMapper.setHeight(180);
 textureMapper.setBitmapPosition(26.000f, 26.000f);
 textureMapper.setScale(1.000f);
 textureMapper.setCameraDistance(1000.000f);
 textureMapper.setOrigo(90.000f, 90.000f, 1000.000f);
 textureMapper.setCamera(90.000f, 90.000f);
 textureMapper.updateAngles(-0.500f, -0.500f, -0.500f);
 textureMapper.setRenderingAlgorithm(touchgfx::TextureMapper::BILINEAR_INTERPOLATION);

 add(textureMapper);
}

void Screen1ViewBase::setupScreen()
{

}

class Screen1View
{
public:
 Screen1View();
 virtual ~Screen1View() {}
 virtual void setupScreen();
 virtual void tearDownScreen();
private:
 /*

Screen1View.cpp

TouchGFX Designer Examples
To further explore the TextureMapper, try creating a new application within TouchGFX Designer with
one of the following UI templates:

 * Callback Declarations
 */
 touchgfx::Callback<Screen1View, const touchgfx::AnimationTextureMapper&> textureMapper
 touchgfx::Callback<Screen1View, const touchgfx::AnimationTextureMapper&> textureMapper

 /*
 * Callback Handler Declarations
 */
 void textureMapperStepActionCallbackHandler(const touchgfx::AnimationTextureMapper& sr
 void textureMapperAnimationEndedCallbackHandler(const touchgfx::AnimationTextureMapper
};

#include <gui/screen1_screen/Screen1View.hpp>

Screen1View::Screen1View() :
 textureMapperStepActionCallback(this, &Screen1View::textureMapperStepActionCallbackHandl
 textureMapperAnimationEndedCallback(this, &Screen1View::textureMapperAnimationEndedCallb
{
 textureMapper.setTextureMapperAnimationStepAction(textureMapperStepActionCallback);
 textureMapper.setTextureMapperAnimationEndedAction(textureMapperAnimationEndedCallback);
 add(textureMapper);
}

void Screen1View::textureMapperStepActionCallbackHandler(const touchgfx::AnimationTextureM
{
 if (&src == &textureMapper)
 {
 //execute code whenever the animation running in AnimationTextureMapper steps
 }
}

void Screen1View::textureMapperAnimationEndedCallbackHandler(const touchgfx::AnimationText
{
 if (&src == &textureMapper)
 {
 //execute code whenever the animation running in AnimationTextureMapper ends
 }
}

TextureMapper Example UI template in TouchGFX Designer

Animation TextureMapper Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the TextureMapper class
API reference for the AnimationTextureMapper class

Version: 4.16

Container
A Container is a component in TouchGFX that can contain child nodes.

To read more about the fundamental nature of the concept of Containers, read the Widgets and
Containers page.

It is also possible to generate a Container as a CachableContainer. A CacheableContainer can render
its content to a dynamic bitmap. This is explained more in detail on the Achieving Better Performance
with CacheableContainer page.

Container widget running in the simulator

Widget Group
The Container can be found in the Containers widget group in TouchGFX Designer.

Container widget in TouchGFX Designer

Properties
The properties for a Container in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Caching Cachable specifies if the Container should be generated as a
CachableContainer.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by a Container in TouchGFX Designer.

Actions

Widget specific action Description

Resize widget Resize a widget.

Standard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
A Container does not emit any triggers.

Performance
A Container itself does not have any impact on performance and is entirely dependent on its children.
Therefore, the Container is considered a very fast widget on most platforms.

In certain cases, using a CachableContainer to cache UI elements in a dynamic bitmap can significantly
improve performance throughout an application. This is explained more in detail in the Achieving
Better Performance with CacheableContainer article.

For more general details on drawing performance, read the General UI Component Performance
section.

Examples
Generated Code

In the generated code for the View base class we can see how TouchGFX Designer sets up a Container.

Screen1ViewBase.cpp

TIP

You can use these functions and the others available in the Container class in user code. Remember to force
a redraw by calling container1.invalidate() if you change the appearance of the widget.

API Reference
FURTHER READING

API reference for the Container class
API reference for the CachableContainer class

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"

Screen1ViewBase::Screen1ViewBase()
{
 container1.setPosition(67, 11, 347, 250);

 image1.setXY(109, 61);
 image1.setBitmap(touchgfx::Bitmap(BITMAP_BLUE_LOGO_TOUCHGFX_LOGO_ID));
 container1.add(image1);

 add(container1);
}

Version: 4.16

ScrollableContainer
A ScrollableContainer is a Container that allows its content to be scrolled both vertically and
horizontally.

ScrollableContainer running in the simulator

Widget Group
The ScrollableContainer can be found in the Containers widget group in TouchGFX Designer.

ScrollableContainer in TouchGFX Designer

Properties

The properties for a ScrollableContainer in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Scrolling

Enable horizontal scroll specifies if horizontal scrolling is enabled.

Enable vertical scroll specifies if vertical scrolling is enabled.

Show scrollbars specifies if the scrollbars should always should be visible.

Show scrollbars while scrolling specifies if the scrollbars should only be visible
when the content is being scrolled.
If 'Show scrollbars' is enabled this option is disregarded\.

Scrollbars Color specifies the color of the scrollbars.

Scrollbars Alpha specifies the transparency of the scrollbars.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the ScrollableContainer are described in the following sections.

Actions

Widget specific action Description

Resize widget Resize the widget.

Standard widget action Description

Move widget Move a widget to a new position over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
A ScrollableContainer does not emit any triggers.

Performance
A ScrollableContainer is a Container type, and does not per default appear in the draw chain apart
from the scrollbar rendering. Therefore, the performance is mostly dependent on the drawing
performance of the children.

For more general details on drawing performance, read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
ScrollableContainer.

Screen1ViewBase.cpp

#include <gui_generated/main_screen/mainViewBase.hpp>
#include "BitmapDatabase.hpp"
#include <touchgfx/Color.hpp>

mainViewBase::mainViewBase()
{
 scrollableContainer.setPosition(115, 11, 250, 250);

TIP

You can use these functions and the others available in the ScrollableContainer class in user code. Remember
to force a redraw by calling scrollableContainer.invalidate() if you change the appearance of the
widget.

TouchGFX Designer Examples
To further explore the ScrollableContainer, try creating a new application within TouchGFX Designer
with one of the following UI templates:

ScrollableContainer Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the ScrollableContainer class

 scrollableContainer.enableHorizontalScroll(false);
 scrollableContainer.setScrollbarsColor(touchgfx::Color::getColorFrom24BitRGB(0, 0, 0))
 scrollableContainer.setScrollbarsPermanentlyVisible();
 scrollableContainer.setScrollbarsVisible(false);
 scrollableContainer.add(<widget_name>); //add a widget as child

 add(scrollableContainer);
}

void mainViewBase::setupScreen()
{

}

Version: 4.16

SwipeContainer
A SwipeContainer in TouchGFX is a specialization of the Container that consists of multiple pages,
which can be accessed by swiping between them. The pages in the SwipeContainer can contain other
widgets, similar to the Container.

SwipeContainer running in the simulator

Widget Group
The SwipeContainer can be found in the Containers widget group in TouchGFX Designer.

SwipeContainer in TouchGFX Designer

Properties
The properties for the SwipeContainer are described in the following sections.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Pages
Selected Page specifies the page shown on the canvas. This page will also be
the starting page when the project is running.

The + button creates a new page when clicked.

Page indicator

Show page indicator specifies the visibility of the page indicator.

X and Y specify the top left corner of the page indicator relative to the top left
corner of the widget.

Center horizontally specifies if the position page indicator should be centered
in the x-axis of the widget.

Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Normal Image and Highlighted Image specify the images assigned to the
normal and highlighted states of the PageIndicator.

Swipe settings

Swipe threshold specifies the distance that has to be swiped by the user before
resulting in a page change.

End swipe elastic width specifies the distance the first and last pages can be
swiped beyond the borders of the widget before stopping.

Property Group Property Descriptions

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the SwipeContainer are described in the following sections.

Actions

Standard widget action Description

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
The SwipeContainer does not emit any triggers.

Performance
A SwipeContainer is a Container type and does not per default appear in the draw chain. Therefore,
the performance is mostly dependent on the drawing performance of the children, though the
SwipeContainer also does some image drawing in the form of its PageIndicator.

For more details on drawing performance, read the General UI Component Performance section.

Examples
Generated Code

In the generated code for the View base class we can see how the TouchGFX Designer sets up the
SwipeContainer of two pages with a page indicator centered horizontally.

Screen1ViewBase.cpp

TIP

You can use these functions and the others available in the SwipeContainer class in user code. Remember to
force a redraw by calling swipeContainerName.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples
To further explore the SwipeContainer, try creating a new application within TouchGFX Designer with
the following UI template:

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"

Screen1ViewBase::Screen1ViewBase()
{
 swipeContainerName.setXY(15, 10);
 swipeContainerName.setPageIndicatorBitmaps(touchgfx::Bitmap(BITMAP_BLUE_PAGEINDICATOR_
 swipeContainerName.setPageIndicatorXY(210, 0);
 swipeContainerName.setSwipeCutoff(50);
 swipeContainerName.setEndSwipeElasticWidth(50);

 swipeContainerNamePage1.setWidth(450);
 swipeContainerNamePage1.setHeight(250);
 swipeContainerName.add(swipeContainerNamePage1);

 swipeContainerNamePage2.setWidth(450);
 swipeContainerNamePage2.setHeight(250);
 swipeContainerName.add(swipeContainerNamePage2);

 swipeContainerName.setSelectedPage(0);

 add(swipeContainerName);
}

Swipe Container Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the SwipeContainer class

Version: 4.16

ListLayout
The ListLayout widget is a Container which automatically arranges its children in a list in a given
direction. Adding and removing widgets from the ListLayout rearranges the children.

ListLayout running in the simulator

Widget Group
The ListLayout can be found in the Containers widget group in TouchGFX Designer.

ListLayout in TouchGFX Designer

Properties

The properties for a ListLayout in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget. The size of the ListLayout
amounts to the total size of its children.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Direction
Direction specifies the direction of the layout arrangement. Choose between a
horizontal layout in the east (right) direction or vertical layout in the south
(down) direction.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by a ListLayout in TouchGFX Designer.

Actions

Standard widget action Description

Move widget Move a widget to a new position over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers

A ListLayout does not emit any triggers.

Performance
A ListLayout itself does not have any notable impact on performance and is almost entirely dependent
on its children. Therefore, the ListLayout is considered a very fast widget on most platforms.

For more general details on drawing performance, read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a ListLayout.

Screen1ViewBase.cpp

TIP

You can use these functions and the others available in the ListLayout class in user code. Remember to force
a redraw by calling listLayout1.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include <touchgfx/Color.hpp>

Screen1ViewBase::Screen1ViewBase()
{
 listLayout1.setDirection(touchgfx::SOUTH);
 listLayout1.setXY(90, 111);

 box1.setWidth(50);
 box1.setHeight(50);
 box1.setColor(touchgfx::Color::getColorFrom24BitRGB(255, 255, 255));
 listLayout1.add(box1);

 add(listLayout1);
}

To further explore the ListLayout, try creating a new application within TouchGFX Designer with one of
the following UI templates:

ListLayout Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the ListLayout class

Version: 4.16

ModalWindow
The ModalWindow is a Container type widget that displays a window and blocks touch events to the
underlying view and widgets. The ModalWindow consists of a background Image and a Box that acts
as a shade over the underlying view and widgets with adjustable alpha. The ModalWindow will fill up
the entire screen and should always be added as the last element such that it is always on top of all
other elements.

ModalWindow running in the simulator

Widget Group
The ModalWindow can be found in the Containers widget group in TouchGFX Designer.

ModalWindow in TouchGFX Designer

Properties
The properties for a ModalWindow in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Modal Image
Location

X and Y specify the top left corner of the image within the ModalWindow.

W and H specify the width and height of the container within the
ModalWindow.
The size of the container within the ModalWindow is taken from the size of the
associated image and cannot be altered except by changing the image.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Appearance

Window Image specifies which image the ModalWindow should use.

Shade Color specifies the color of the overlay shade.

Shade Alpha specifies the transparency of the overlay shade.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Interactions
The actions and triggers supported by the ModalWindow are described in the following sections.

Actions

Standard widget action Description

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
The ModalWindow does not emit any triggers.

Performance
A ModalWindow is a Container type that consists of a Box, a Container and an Image. The
ModalWindow does not per default appear in the draw chain. Therefore, the performance is mostly
dependent on the childrens drawing performance.

For more general details on drawing performance, read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
ModalWindow.

mainViewBase.cpp

#include <gui_generated/main_screen/mainViewBase.hpp>
#include "BitmapDatabase.hpp"
#include <texts/TextKeysAndLanguages.hpp>
#include <touchgfx/Color.hpp>

mainViewBase::mainViewBase() :
 buttonCallback(this, &mainViewBase::buttonCallbackHandler)
{
 modalWindow.setBackground(touchgfx::BitmapId(BITMAP_BLUE_BACKGROUNDS_MAIN_BG_320X240PX
 modalWindow.setShadeColor(touchgfx::Color::getColorFrom24BitRGB(0, 0, 0));
 modalWindow.setShadeAlpha(150);
 modalWindow.hide();

 add(modalWindow);
}

void mainViewBase::setupScreen()
{

}

TIP

You can use these functions and the others available in the ModalWindow class in user code. Remember to
force a redraw by calling modalWindow.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples
To further explore the ModalWindow, try creating a new application within TouchGFX Designer with
one of the following UI templates:

ModalWindow Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the ModalWindow class

Version: 4.16

ScrollList
The ScrollList is a scrollable menu consisting of a number of items and a number of widgets, which are
dynamically updated as they are scrolled into view. The ScrollList is also able to invoke callbacks when
interacting with the items in the ScrollList.

ScrollList running in the simulator

Widget Group
The ScrollList can be found in the Containers widget group in TouchGFX Designer.

ScrollList in TouchGFX Designer

Properties
The properties for a ScrollList in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Type Type specifies if ScrollList is oriented vertically or horizontally

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Item Template
Item Template specifies which CustomContainer to use as template.

Number of Items specifies the number of items present in the ScrollList.

List
Appearance

Circular specifies if the items in the ScrollList will loop when reaching the end.

Items Snap specifies if items should snap.
If snapping is false, the items can flow freely. If snapping is true, the items will
snap into place such that an item is always in the selected spot.

Item Margin specifies the spacing between items.

Padding Before and Padding After specifies the distance offset before and after
the visible drawables in the ScrollList.

Animation
Easing and Easing Option specify which easing equation to use for animations.

Swipe Acc. and Drag Acc. specify the acceleration when scrolling.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Item Templates

The items in a ScrollList are based on a concept called Item Template which is a CustomContainer that
serves as a base for the graphical elements for the items in the ScrollList. Before creating a ScrollList, a
Custom Container should be created to have an Item Template for the ScrollList.

After having created the ScrollList the CustomContainer can be selected under the property Item
Template. Specifying the Item Template results in the ScrollList resizing to fit with the size property that
is not in the scrollable direction (width for vertical ScrollLists and height for horizontal ScrollLists) of
the selected Custom Container. Changing the other size property (height for vertical and width for
horizontal) determines the number of items visible.

Interactions
The actions and triggers supported by the ScrollList are described in the following sections.

Actions

Standard widget action Description

Move widget Move a widget to a new position over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
A ScrollList does not emit any triggers.

Performance
A ScrollList is a Container type, and does not per default appear in the draw chain. Therefore, the
performance is wholly dependent on the childrens drawing performance.

For more details on drawing performance, read the General UI Component Performance section.

Examples
Generated Code

In the generated code for the View base class we can see how TouchGFX Designer sets up a ScrollList.

Screen1ViewBase.cpp

TIP

You can use these functions and the others available in the ScrollList class in user code. Remember to force a
redraw by calling scrollList.invalidate() if you change the appearance of the widget.

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"

Screen1ViewBase::Screen1ViewBase() :
 updateItemCallback(this, &Screen1ViewBase::updateItemCallbackHandler)
{
 scrollList.setPosition(140, 10, 200, 252);
 scrollList.setHorizontal(false);
 scrollList.setCircular(false);
 scrollList.setEasingEquation(touchgfx::EasingEquations::backEaseOut);
 scrollList.setSwipeAcceleration(10);
 scrollList.setDragAcceleration(10);
 scrollList.setNumberOfItems(20);
 scrollList.setPadding(0, 0);
 scrollList.setSnapping(false);
 scrollList.setDrawableSize(50, 2);
 scrollList.setDrawables(scrollListListItems, updateItemCallback);

 add(scrollList);
}

void Screen1ViewBase::setupScreen()
{
 scrollList.initialize();
 for (int i = 0; i < scrollListListItems.getNumberOfDrawables(); i++)
 {
 scrollListListItems[i].initialize();
 }
}

void Screen1ViewBase::updateItemCallbackHandler(touchgfx::DrawableListItemsInterface* item
{
 if (items == &scrollListListItems)
 {
 touchgfx::Drawable* d = items->getDrawable(containerIndex);
 TextContainer* cc = (TextContainer*)d;
 scrollListUpdateItem(*cc, itemIndex);
 }
}

User Code
After the graphical elements for the ScrollList and its properties are set, user code can be written to
update the items in the ScrollList. The header file for the Screen1ViewBase class which is generated
by TouchGFX Designer is shown below:

ScreenViewBase.hpp

When TouchGFX Designer generates the code for ScrollList, the function scrollListUpdateItem ,
highlighted above, is created for the user to override and update the items in the ScrollList. The
function is called each time an item in the ScrollList needs updating, thereby ensuring that an item is
updated before it becomes visible. The scrollListUpdateItem has two parameters, which are used
to identify the item being updated and to update it. The parameter itemIndex contains the index
value of the item, which is used to identify which item is being updated. The parameter item is a
reference to a CustomContainer object which is a visible item in the ScrollList. Updating the graphics
for the parameter item results in an update to the render for a visible item in the ScrollList.

An example integration of scrollListUpdateItem is shown below:

Screen1View.hpp

class ScreenViewBase : public touchgfx::View
{
public:
 ScreenViewBase();
 virtual ~ScreenViewBase() {}
 virtual void setupScreen();

 virtual void scrollListUpdateItem(CustomContainer& item, int16_t itemIndex)
 {
 // Override and implement this function in Screen
 }

protected:
 FrontendApplication& application() {
 return *static_cast<FrontendApplication*>(Application::getInstance());
 }
 touchgfx::BoxWithBorder boxWithBorder;
 touchgfx::ScrollList scrollList;
 touchgfx::DrawableListItems<CustomContainer, 6> scrollListListItems;
private:
 void updateItemCallbackHandler(DrawableListItemsInterface* items, int16_t containerInd
 touchgfx::Callback<ScreenViewBase, DrawableListItemsInterface*, int16_t, int16_t> upda
};

#ifndef SCREEN1_VIEW_HPP
#define SCREEN1_VIEW_HPP

Screen1View.cpp

In the header file Screen1View.hpp , the scrollListUpdateItem function is overidden and then
implemented in Screen1View.cpp .

The goal of this example is to update the text in the Item Template with the index value of the items
which are visible, like the example shown in the beginning of this section. Since the Item Template is
based on the CustomContainer, a setValue function is created for the CustomContainer. The
setValue function is able to take the itemIndex parameter and update the text in the item template.

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include <gui/screen1_screen/ScreenPresenter.hpp>

class Screen1View : public Screen1ViewBase
{
public:
 Screen1View();
 virtual ~Screen1View() {}
 virtual void setupScreen();
 virtual void tearDownScreen();

 virtual void scrollListUpdateItem(CustomContainer& item, int16_t itemIndex);
protected:
};

#endif // SCREEN1_VIEW_HP

#include <gui/screen1_screen/Screen1View.hpp>

Screen1View::Screen1View()
{

}

void Screen1View::setupScreen()
{
 Screen1ViewBase::setupScreen();
}

void Screen1View::tearDownScreen()
{
 Screen1ViewBase::tearDownScreen();
}

void Screen1View::scrollListUpdateItem(CustomContainer& item, int16_t itemIndex)
{
 item.setValue(itemIndex);
}

Calling setvalue for the parameter item will cause the items to update their appearance, thereby
showing their index value.

TouchGFX Designer Examples
To further explore the ScrollList, try creating a new application within TouchGFX Designer with one of
the following UI templates:

ScrollWheel and List Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the ScrollList class

Version: 4.16

ScrollWheel
The ScrollWheel is a scrollable menu containing multiple items, which are dynamically updated when
scrolling through the items in the wheel, and the item which is selected is moved into focus. Enabling
the code to react to interactions with the ScrollWheel, different callbacks can be invoked based on the
interaction with the items in the wheel.

ScrollWheel running in the simulator

Widget Group
The ScrollWheel can be found in the Containers widget group in TouchGFX Designer.

ScrollWheel in TouchGFX Designer

Properties
The properties for a ScrollWheel in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Type Type specifies whether the ScrollWheel is oriented vertically or horizontally.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Item Template

Item Template specifies which CustomContainer to use as template.

Number of Items specifies the number of items present in the ScrollWheel.

Initial Selected Item specifies which item is selected first.

Use Selected Style Template specifies whether to use a separate template for
the selected item.

Selected Style Template specifies which CustomContainer to use as selected
template.

List
Appearance

Circular specifies if the items in the ScrollWheel will loop when reaching the
end.

Selected Item Offset specifies the location of the selected item.

Item Margin specifies the spacing between items.

Extra Size Before and Extra Size After specify the size of the area in which
Selected Style Template is shown.

Margin Before and Margin After specify the size of the margin before and after
the area in which Selected Style Template is shown.

Property Group Property Descriptions

Animation
Easing and Easing Option specify which easing equation to use for animations.

Swipe Acc. and Drag Acc. specify the acceleration when scrolling.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Item Templates
The items in a ScrollList are based on a concept called Item Template which is a CustomContainer that
serves as a base for the graphical elements for the items in the ScrollWheel. To highlight the selected
item, the ScrollWheel has the option to select an Item Template called Selected Style Template, which is
only used for the selected item. Before creating a ScrollWheel, a CustomContainer for the Item
Template, along with a Selected Style Template if enabled, should be created.

After the ScrollWheel is created, the CustomContainer can be selected under the property Item
Template. When selecting the Custom Container for the Item Template, the ScrollWheel resizes to fit
with the size property that is not in the scrollable direction (width for vertical orientation and height for
horizontal orientation) of the selected Custom Container. Changing the other size property (height for
vertical orientation and width for horizontal orientation) determines the number of items visible.

Interactions
The actions and triggers supported by the ScrollWheel are described in the following sections.

Actions

Standard widget action Description

Move widget Move a widget to a new position over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers

A ScrollWheel does not emit any triggers.

Performance
A ScrollWheel is a Container type, and does not per default appear in the draw chain. Therefore, the
performance is wholly dependent on the drawing performance of the children.

For more details on drawing performance, read the General UI Component Performance section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
ScrollWheel.

Screen1ViewBase.cpp

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"

Screen1ViewBase::Screen1ViewBase() :
 updateItemCallback(this, &Screen1ViewBase::updateItemCallbackHandler)
{
 scrollWheel.setPosition(140, 10, 200, 252);
 scrollWheel.setHorizontal(false);
 scrollWheel.setCircular(false);
 scrollWheel.setEasingEquation(touchgfx::EasingEquations::backEaseIn);
 scrollWheel.setSwipeAcceleration(10);
 scrollWheel.setDragAcceleration(10);
 scrollWheel.setNumberOfItems(60);
 scrollWheel.setSelectedItemOffset(100);
 scrollWheel.setSelectedItemExtraSize(0, 0);
 scrollWheel.setSelectedItemMargin(0, 0);
 scrollWheel.setDrawableSize(50, 3);
 scrollWheel.setDrawables(scrollWheelListItems, updateItemCallback,
 scrollWheelSelectedListItems, updateItemCallback);
 scrollWheel.animateToItem(0, 0);

 add(scrollWheel);
}

void Screen1ViewBase::setupScreen()
{
 scrollWheel.initialize();
 for (int i = 0; i < scrollWheelListItems.getNumberOfDrawables(); i++)

TIP

You can use these functions and the others available in the ScrollWheel class in user code. Remember to
force a redraw by calling scrollWheel.invalidate() if you change the appearance of the widget.

User Code
After the graphical elements for the ScrollWheel and its properties are set, user code can be written to
update the items in the ScrollWheel. The header file for the Screen1ViewBase class which is generated
by the TouchGFX Designer is shown below:

Screen1ViewBase.hpp

 {
 scrollWheelListItems[i].initialize();
 }
 for (int i = 0; i < scrollWheelSelectedListItems.getNumberOfDrawables(); i++)
 {
 scrollWheelSelectedListItems[i].initialize();
 }
}

void Screen1ViewBase::updateItemCallbackHandler(touchgfx::DrawableListItemsInterface* item
{
 if (items == &scrollWheelListItems)
 {
 touchgfx::Drawable* d = items->getDrawable(containerIndex);
 TextContainer* cc = (TextContainer*)d;
 scrollWheelUpdateItem(*cc, itemIndex);
 }
 else if (items == &scrollWheelSelectedListItems)
 {
 touchgfx::Drawable* d = items->getDrawable(containerIndex);
 TextCenterContainer* cc = (TextCenterContainer*)d;
 scrollWheelUpdateCenterItem(*cc, itemIndex);
 }
}

class Screen1ViewBase : public touchgfx::View
{
public:
 Screen1ViewBase();
 virtual ~Screen1ViewBase() {}
 virtual void setupScreen();

 virtual void scrollWheel1UpdateItem(CustomContainer1& item, int16_t itemIndex)
 {
 // Override and implement this function in Screen1

When the TouchGFX Designer generates the code for ScrollWheel, the functions
scrollWheel1UpdateItem and scrollWheel1UpdateCenterItem , highlighted above, is created for the

user to override and update the items in the ScrollWheel.

The UpdateItem function is always generated for a ScrollWheel and can be implemented to updated
the contained items, while the UpdateCenterItem function updates the item based on the Selected
Style Template and is therefore only generated if the usage of a Selected Style Template is selected.
Other than updating different items, the two functions contain the same parameters used for updating
the items in the the ScrollWheel.

The parameter itemIndex contains the index value of the item, which is used to identify which item is
being updated. The parameter item is a reference to a visible item in the ScrollWheel. Updating the
appearance for the parameter item results in an update to the render for a visible item in the
ScrollWheel.

An example implementation of scrollWheel1UpdateItem and scrollWheel1UpdateCenterItem in the
user code files Screen1View.hpp and Screen1View.cpp is shown below:

Screen1View.hpp

 }

 virtual void scrollWheel1UpdateCenterItem(CustomContainer2& item, int16_t itemIndex)
 {
 // Override and implement this function in Screen1
 }

protected:
 FrontendApplication& application() {
 return *static_cast<FrontendApplication*>(Application::getInstance());
 }

 touchgfx::BoxWithBorder boxWithBorder1;
 touchgfx::ScrollWheelWithSelectionStyle scrollWheel1;
 touchgfx::DrawableListItems<CustomContainer1, 6> scrollWheel1ListItems;
 touchgfx::DrawableListItems<CustomContainer2, 2> scrollWheel1SelectedListItems;

private:
 void updateItemCallbackHandler(DrawableListItemsInterface* items, int16_t containerInd
 touchgfx::Callback<Screen1ViewBase, DrawableListItemsInterface*, int16_t, int16_t> upd

};

#ifndef SCREEN1_VIEW_HPP
#define SCREEN1_VIEW_HPP

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include <gui/screen1_screen/Screen1Presenter.hpp>

Screen1View.cpp

In the header file Screen1View.hpp , the scrollWheel1UpdateItem and
scrollWheel1UpdateCenterItem functions are overridden and are then implemented in
Screen1View.cpp .

class Screen1View : public Screen1ViewBase
{
public:
 Screen1View();
 virtual~Screen1View() {}
 virtual void setupScreen();
 virtual void tearDownScreen();

 virtual void scrollWheel1UpdateItem(CustomContainer1& item, int16_t itemIndex);
 virtual void scrollWheel1UpdateCenterItem(CustomContainer2& item, int16_t itemIndex);
protected:
};

#endif // SCREEN1_VIEW_HPP

#include <gui/screen1_screen/Screen1View.hpp>

Screen1View::Screen1View()
{

}

void Screen1View::setupScreen()
{
 Screen1ViewBase::setupScreen();
}

void Screen1View::tearDownScreen()
{
 Screen1ViewBase::tearDownScreen();
}

void Screen1View::scrollWheel1UpdateItem(CustomContainer1& item, int16_t itemIndex)
{
 item.setIndex(itemIndex);
}

void Screen1View::scrollWheel1UpdateCenterItem(CustomContainer2& item, int16_t itemIndex)
{
 item.setIndex(itemIndex);
}

The goal of this example is to update the text in the Item Template with the index value of the items
which are visible, like the example shown in the beginning of this section. Since both the Item
Template and the Selected Style Template are based on CustomContainer, a setIndex function is
created for both CustomContainers. The setIndex function is able to take the itemIndex parameter
and update the text in the Item Template and the Selected Style Template. Calling the setIndex for
an item results in an update to the appearance of the visible items thereby showing their index value.

TouchGFX Designer Examples
To further explore the ScrollWheel, try creating a new application within TouchGFX Designer with one
of the following UI templates:

ScrollWheel and List Example UI Template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the ScrollWheel class

Version: 4.16

SlideMenu
A SlideMenu in TouchGFX is a specialization of the Container that consists of an internal Container, an
Image and an optional Button, which can animate between a collapsed and expanded state.

SlideMenu running in the simulator

Widget Group
The SlideMenu can be found in the Containers widget group in TouchGFX Designer.

SlideMenu in TouchGFX Designer

Properties

The properties for the SlideMenu are described in the following sections.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of a SlideMenu is determined by the size of its background and button
images.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Expanding
Direction Expanding Direction specifies the direction the SlideMenu should expand.

State

State specifies the initial state of the SlideMenu, either collapsed or expanded.

Collapsed: Visible Pixels specifies the amount of pixels that should be visible
when the state is collapsed.

Expanded: Hidden Pixels Specifices the amount of pixels that should be hidden
when the state is expanded.

Expanded Timeout specifies the amount of time before automatically returning
to the collapsed state from the expanded state.

Background
Background Image specifies the image to use as background.

Background Location specifies the x,y coordinate of the background image
relative to the widgets' coordinates.

Button

Use Button Specifies whether or not to make use of a button to control the
state of the widget.

Released Image specifies the image to use for the buttons' released state.

Pressed Image specifies the image to use for the buttons' pressed state.

Button Location specifies the x,y coordinate of the button relative to the
widgets' coordinates.

Property Group Property Descriptions

Animation
Easing and Easing Option specify which easing equation to use for animations.

Duration specifies the amount of time the animation should take.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the SlideMenu are described in the following sections.

Actions

Widget specific action Description

Change State of
SlideMenu Change the state of a SlideMenu to either collapsed or expanded

Reset Timer of
SlideMenu

Reset the timer automatically returning the SlideMenu state to
collapsed

Standard widget action Description

Move widget Move a widget to a new position over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers

Trigger Description

SlideMenu animation ended A SlideMenu animation from one state to another has ended.

Trigger Description

SlideMenu state changed A SlideMenu has had its state changed.

Performance
A SlideMenu is a Container type and does not per default appear in the draw chain. Therefore, the
performance is mostly dependent on the drawing performance of the children.

For more details on drawing performance, read the General UI Component Performance section.

Examples
Generated Code
In the generated code for the View base class we can see how the TouchGFX Designer sets up a
SlideMenu.

Screen1ViewBase.cpp

TIP

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"

Screen1ViewBase::Screen1ViewBase()
{
 slideMenuName.setup(touchgfx::SlideMenu::EAST,
 touchgfx::Bitmap(BITMAP_LEFT_SLIDE_MENU_BACKGROUND_ID),
 touchgfx::Bitmap(BITMAP_LEFT_SLIDE_MENU_BUTTON_ID),
 touchgfx::Bitmap(BITMAP_LEFT_SLIDE_MENU_BUTTON_ID),
 0, 0, 49, 111);
 slideMenuName.setState(touchgfx::SlideMenu::COLLAPSED);
 slideMenuName.setVisiblePixelsWhenCollapsed(24);
 slideMenuName.setHiddenPixelsWhenExpanded(0);
 slideMenuName.setAnimationEasingEquation(touchgfx::EasingEquations::circEaseInOut);
 slideMenuName.setAnimationDuration(18);
 slideMenuName.setExpandedStateTimeout(180);
 slideMenuName.setXY(0, 0);

 add(slideMenuName);
}

You can use these functions and the others available in the SlideMenu class in user code. Remember to force
a redraw by calling SlideMenuName.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples
To further explore the SlideMenu, try creating a new application within TouchGFX Designer with the
following UI template:

SlideMenu Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the SlideMenu class

Version: 4.16

BoxProgress
A BoxProgress shows the current progress by using a simple Box as the progress indicator on top of a
background Image. The Color, the Alpha of the box and the Direction towards which the box will
progress can be configured. It is possible to create a custom background image and change the
different parameters of the progress indicator such as the position and the size to fit the custom
background image.

BoxProgress running in the simulator

Widget Group
The BoxProgress can be found in the Progress Indicators widget group in TouchGFX Designer.

BoxProgress in TouchGFX Designer

Properties

The properties for a BoxProgress in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of a BoxProgress is determined by the size of the selected background
image.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image & Color
Background sets the background image.

Progress sets the color of the progress box.

Progress
Position

X and Y coordinates specify the top left corner of the progress box relative to
the position of the ProgressIndicator.

W and H specify the width and height of the progress box.

Values

Range Min and Range Max specify the minimum and maximum integer values
of the indicator.

Initial specifies the initial value of the progress indicator.Steps Total specifies at
what granularity the progress indicator reports new values. For instance, if the
progress needs to be reported as 0%, 10%, 20%, ..., 100%, the total value
should be set to 10.

Steps Min specifies the minimum steps the progress indicator shows.

Appearance
Direction specifies in which direction the progress indicator should progress.

Alpha specifies the transparency of the progress box. The alpha value ranges
between 0 and 255 for the widget. 0 is fully transparent and 255 is solid.

Property Group Property Descriptions

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the BoxProgress are described in the following sections.

Actions

Widget specific actions Description

Set value Set the value of the progress indicator.

Standard widget actions Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
The BoxProgress does not emit any triggers.

Performance
A BoxProgress consists of a Box and a background Image. Therefore, the BoxProgress is dependent on
image drawing and is considered a fast performing widget on most platforms.

For more details on image drawing performance, read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
BoxProgress.

Screen1ViewBase.cpp

User Code
The following example illustrates how to implement the handleTickEvent() function to simulate
progress. Running this code creates the application shown at the beginning of this article.

Screen1View.hpp

Screen1View.cpp

boxProgress.setXY(148, 126);
boxProgress.setProgressIndicatorPosition(2, 2, 180, 16);
boxProgress.setRange(0, 100);
boxProgress.setDirection(touchgfx::AbstractDirectionProgress::RIGHT);
boxProgress.setBackground(touchgfx::Bitmap(BITMAP_BLUE_PROGRESSINDICATORS_BG_MEDIUM_PROGRE
boxProgress.setColor(touchgfx::Color::getColorFrom24BitRGB(0, 151, 255));
boxProgress.setValue(0);

class Screen1View : public Screen1ViewBase
{
public:
 Screen1View();
 virtual ~Screen1View() {}
 virtual void setupScreen();
 virtual void tearDownScreen();
 virtual void handleTickEvent();
protected:
 bool increase = true;
};

void Screen1View::handleTickEvent()
{
 int currentValue = boxProgress.getValue();

TIP

You can use these functions and the others available in the BoxProgress class in user code. Remember to
force a redraw by calling boxProgress.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples
To further explore the BoxProgress, try creating a new application within TouchGFX Designer with the
following UI template:

ProgressIndicator Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the BoxProgress class

 int16_t max;
 int16_t min;
 boxProgress.getRange(min, max);

 if (currentValue == min)
 {
 increase = true;
 }
 else if (currentValue == max)
 {
 increase = false;
 }

 int nextValue = increase == true ? currentValue+1 : currentValue-1;

 boxProgress.setValue(nextValue);
}

Version: 4.16

ImageProgress
An ImageProgress shows the current progress by using a TiledImage as the progress indicator on top
of a background Image. The progress image, the Alpha and the Direction towards which the image will
progress can be configured. It is possible to create a custom background image and change the
different parameters of the progress indicator such as the position and the size to fit the custom
background image.

ImageProgress running in the simulator

Widget Group
The ImageProgress can be found in the Progress Indicators widget group in TouchGFX Designer.

ImageProgress in TouchGFX Designer

Properties

The properties for an ImageProgress in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of an ImageProgress is determined by the size of the selected
background image.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image
Background sets the background image.

Progress sets the image used to display progress.

Progress
Position

X and Y coordinates specify the top left corner of the progress image relative
to the position of the ProgressIndicator.

W and H specify the width and height of the progress image.

Values

Range Min and Range Max specify the minimum and maximum integer values
of the indicator.

Initial specifies the initial value of the progress indicator.Steps Total specifies at
what granularity the progress indicator reports new values. For instance, if the
progress needs to be reported as 0%, 10%, 20%, ..., 100%, the total value
should be set to 10.

Steps Min specifies the minimum steps the progress indicator shows.

Property Group Property Descriptions

Appearance

Direction specifies in which direction the progress indicator should progress.

Anchor progress image at zero specifies if the progress image should be
anchored in the 0 point relative to the progress direction, i.e. whether the
image is "revealed" or "pulled".

Alpha specifies the transparency of the widget. The alpha value ranges between
0 and 255 for the widget. 0 is fully transparent and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the ImageProgress are described in the following sections.

Actions

Widget specific actions Description

Set value Set the value of the progress indicator.

Standard widget actions Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
The ImageProgress does not emit any triggers.

Performance
An ImageProgress consists of a TiledImage and a background Image. Therefore, the ImageProgress is
dependent on image drawing and is considered a fast performing widget on most platforms.

For more details on image drawing performance, read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up an
ImageProgress.

Screen1ViewBase.cpp

TIP

You can use these functions and the others available in the ImageProgress class in user code. Remember to
force a redraw by calling imageProgress1.invalidate() if you change the appearance of the widget.

User Code
The following example illustrates how to implement the handleTickEvent() function to simulate
progress. Running this code creates the application shown at the beginning of this article.

Screen1View.hpp

imageProgress.setXY(148, 126);
imageProgress.setProgressIndicatorPosition(2, 2, 180, 16);
imageProgress.setRange(0, 100);
imageProgress.setDirection(touchgfx::AbstractDirectionProgress::RIGHT);
imageProgress.setBackground(touchgfx::Bitmap(BITMAP_BLUE_PROGRESSINDICATORS_BG_MEDIUM_PROG
imageProgress.setBitmap(BITMAP_BLUE_PROGRESSINDICATORS_FILL_TILING_PROGRESS_INDICATOR_FILL
imageProgress.setValue(0);
imageProgress.setAnchorAtZero(false);

class Screen1View : public Screen1ViewBase
{
public:
 Screen1View();

Screen1View.cpp

TouchGFX Designer Examples
To further explore the ImageProgress, try creating a new application within TouchGFX Designer with
the following UI template:

ProgressIndicator Example UI template in TouchGFX Designer

 virtual ~Screen1View() {}
 virtual void setupScreen();
 virtual void tearDownScreen();
 virtual void handleTickEvent();
protected:
 bool increase = true;
};

void Screen1View::handleTickEvent()
{
 int currentValue = imageProgress.getValue();
 int16_t max;
 int16_t min;
 imageProgress.getRange(min, max);

 if (currentValue == min)
 {
 increase = true;
 }
 else if (currentValue == max)
 {
 increase = false;
 }

 int nextValue = increase == true ? currentValue+1 : currentValue-1;

 imageProgress.setValue(nextValue);
}

API Reference
FURTHER READING

API reference for the ImageProgress class

Version: 4.16

TextProgress
A TextProgress will display progress as a number with a given number of decimals. It shows the current
progress by using a TextArea as the progress indicator on top of a background Image. The Color, the
Alpha and the Text of the TextArea can be configured. It is possible to create a custom background
image and change the different parameters of the progress indicator such as the position and the size
to fit the custom background image.

TextProgress running in the simulator

Widget Group
The TextProgress can be found in the Progress Indicators widget group.

TextProgress in TouchGFX Designer

Properties

The properties for a TextProgress in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of a TextProgress is determined by the size of the selected background
image.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image Background specifies the background image.

Text

Text specifies the text displayed. The text field is automatically set to use a
wildcard "<> %" which means that the wildcard created will be filled with a
number that fits the progress configuration. This wildcard is mandatory for the
TextProgress to work correctly but any other text can be set before and/or
after the wildcard. For more details on text configuration, refer to the Texts and
Fonts section.

Text Position &
Size

X and Y specify the top left corner of the progress text relative to its
TextProgress parent.

W and H specify the width and height of the progress text.

Property Group Property Descriptions

Values

Range Min and Range Max specify the minimum and maximum integer values
of the indicator.

Initial specifies the initial value of the progress indicator.Steps Total specifies at
what granularity the progress indicator reports new values. For instance, if the
progress needs to be reported as 0%, 10%, 20%, ..., 100%, the total value
should be set to 10.

Steps Min specifies the minimum steps the progress indicator shows.

Number of Decimals specifies the precision required to show progress. The
possible values are 0, 1 or 2.

Appearance
Color specifies the color of the displayed text.

Alpha specifies the transparency of the widget. The alpha value ranges between
0 and 255 for the widget. 0 is fully transparent and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the TextProgress are described in the following sections.

Actions

Widget specific actions Description

Set value Set the value of the progress indicator.

Standard widget actions Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Standard widget actions Description

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
The TextProgress widget does not emit any triggers.

Performance
A TextProgress consists of a TextArea and a background Image. Text drawing is very similar to general
image drawing (though due to the nature of text characters, a significant amount of alpha blending
takes place). Therefore, the TextProgress is considered a fast widget on most platforms.

For more details on text drawing performance, read the General UI Component Performance section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
TextProgress.

Screen1ViewBase.cpp

User Code
The following example illustrates how to implement the handleTickEvent() function to simulate
progress. Running this code creates the application shown at the beginning of this article.

textProgress.setXY(198, 119);
textProgress.setProgressIndicatorPosition(0, 0, 84, 34);
textProgress.setRange(0, 100);
textProgress.setColor(touchgfx::Color::getColorFrom24BitRGB(0, 0, 0));
textProgress.setNumberOfDecimals(0);
textProgress.setTypedText(touchgfx::TypedText(T_SINGLEUSEID1));
textProgress.setBackground(touchgfx::Bitmap(BITMAP_BLUE_PROGRESSINDICATORS_BG_MEDIUM_TEXT_
textProgress.setValue(50);

Screen1View.hpp

Screen1View.cpp

TIP

You can use these functions and the others available in the TextProgress class in user code. Remember to
force a redraw by calling textProgress1.invalidate() if you change the appearance of the widget.

class Screen1View : public Screen1ViewBase
{
public:
 Screen1View();
 virtual ~Screen1View() {}
 virtual void setupScreen();
 virtual void tearDownScreen();
 virtual void handleTickEvent();
protected:
 bool increase = true;
 uint8_t counter;
};

void Screen1View::handleTickEvent()
{
 counter++;
 if(counter%15 == 0) // Every 0.25 seconds
 {
 int currentValue = textProgress.getValue();
 int16_t max;
 int16_t min;
 textProgress.getRange(min, max);

 if (currentValue == min)
 {
 increase = true;
 }
 else if (currentValue == max)
 {
 increase = false;
 }

 int nextValue = increase == true ? currentValue+1 : currentValue-1;

 counter = 0;
 textProgress.setValue(nextValue);
 }
}

TouchGFX Designer Examples
To further explore the TextProgress, try creating a new application within TouchGFX Designer with the
following UI template:

ProgressIndicator Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the TextProgress class

Version: 4.16

LineProgress
A LineProgress shows the current progress by using a Line as the progress indicator on top of a
background Image. The line does not need to be either horizontal or vertical, but can start at any
coordinate and finish at any coordinate.

LineProgress running in the simulator

Widget Group
The LineProgress can be found in the Progress Indicators widget group in TouchGFX Designer.

LineProgress in TouchGFX Designer

Properties
The properties for a LineProgress in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of a LineProgress is determined by the size of the selected background
image.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image & Color

Background specifies background image.

Image specifies which image to use as fill for the line.
The image selected will be placed in top left corner of the widget.

Color specifies which color to use as fill for the line.

Values

Range Min and Range Max specify the minimum and maximum integer values
of the indicator.

Initial specifies the initial value of the progress indicator.Steps Total specifies at
what granularity the progress indicator reports new values. For instance, if the
progress needs to be reported as 0%, 10%, 20%, ..., 100%, the total value
should be set to 10.

Steps Min specifies the minimum steps the progress indicator shows.

Property Group Property Descriptions

Appearance

Start Position X and Start Position Y specify the coordinate where the line
should start.

End Position X and End Position Yspecify the coordinate where the line should
end.

Line Width specifies the width of the line.

Cap Style specifies line ending style.

Alpha specifies the transparency of the widget. The alpha value ranges between
0 and 255 for the widget. 0 is fully transparent and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the LineProgress are described in the following sections.

Actions

Widget specific actions Description

Set value Sets the value of a progress indicator to a desired value

Standard widget actions Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
The LineProgress does not emit any triggers.

Performance
A LineProgress consists of an Image and a Line. A Line is a CanvasWidget and is heavily dependent on
the MCU for rendering. Therefore, the LineProgress is considered a demanding widget on most
platforms.

For more details on CanvasWidget drawing performance, read the UI Component Performance
Overview.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
LineProgress.

Screen1ViewBase.cpp

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"
#include <touchgfx/Color.hpp>

Screen1ViewBase::Screen1ViewBase()
{
 touchgfx::CanvasWidgetRenderer::setupBuffer(canvasBuffer, CANVAS_BUFFER_SIZE);

 lineProgress.setXY(45, 71);
 lineProgress.setProgressIndicatorPosition(0, 0, 391, 130);
 lineProgress.setRange(0, 100);
 lineProgress.setBackground(touchgfx::Bitmap(BITMAP_BLUE_PROGRESSINDICATORS_BG_LARGE_PR
 lineProgressPainter.setColor(touchgfx::Color::getColorFrom24BitRGB(0, 151, 255));
 lineProgress.setPainter(lineProgressPainter);
 lineProgress.setStart(17, 17);
 lineProgress.setEnd(374, 113);
 lineProgress.setLineWidth(30);
 lineProgress.setLineEndingStyle(touchgfx::Line::ROUND_CAP_ENDING);
 lineProgress.setValue(60);

 add(lineProgress);
}

TIP

You can use these functions and the others available in the LineProgress class in user code. Remember to
force a redraw by calling lineProgress.invalidate() if you change the appearance of the widget.

User Code
The following example illustrates how to implement the handleTickEvent() function to simulate
progress. Running this code creates the application shown at the beginning of this article.

Screen1View.hpp

Screen1View.cpp

void Screen1ViewBase::setupScreen()
{

}

class Screen1View : public Screen1ViewBase
{
public:
 Screen1View();
 virtual ~Screen1View() {}
 virtual void setupScreen();
 virtual void tearDownScreen();
 virtual void handleTickEvent();
protected:
 bool increase = true;
};

void Screen1View::handleTickEvent()
{
 int currentValue = lineProgress.getValue();
 int16_t max;
 int16_t min;
 lineProgress.getRange(min, max);

 if (currentValue == min)
 {
 increase = true;
 }
 else if (currentValue == max)
 {
 increase = false;
 }

TouchGFX Designer Examples
To further explore the LineProgress, try creating a new application within TouchGFX Designer with one
of the following UI templates:

ProgressIndicator Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the LineProgress class

 int nextValue = increase == true ? currentValue+1 : currentValue-1;

 lineProgress.setValue(nextValue);
}

Version: 4.16

CircleProgress
A CircleProgress shows the current progress by using a Circle as the progress indicator on top of a
background Image. The Color, the Alpha and overall parameters regarding the Circle can be
configured. It is possible to create a custom background image and change the different parameters
of the progress indicator such as the position and the size to fit the custom background image.

CircleProgress running in the simulator

Widget Group
The CircleProgress can be found in the Progress Indicators widget group in TouchGFX Designer.

CircleProgress in TouchGFX Designer

Properties

The properties for a CircleProgress in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of a CircleProgress is determined by the size of the selected background
image.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image & Color
Background specifies background image.

Progress specifies either a color or an image to use as fill for the Circle.

Values

Range Min and Range Max specify the minimum and maximum integer values
of the indicator.

Initial specifies the initial value of the progress indicator.Steps Total specifies at
what granularity the progress indicator reports new values. For instance, if the
progress needs to be reported as 0%, 10%, 20%, ..., 100%, the total value
should be set to 10.

Steps Min specifies the minimum steps the progress indicator shows.

Property Group Property Descriptions

Appearance

Center Position X and Center Position Y specify the center position of the
progress circle relative to its CircleProgress parent.

Start & End Angle specify the start and end angle of the drawn Circle.

Radius specifies the size of the progress cirlce.

Line Width specifies the width of the progress circle. If the value is 0, the
progress circle is as large as the radius. Otherwise, the width specified will
configure the width of the progress circle starting outside and moving inwards.

Cap Style specifies line ending style.

Alpha specifies the transparency of the widget. The alpha value ranges between
0 and 255 for the widget. 0 is fully transparent and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the CircleProgress are described in the following sections.

Actions

Widget specific actions Description

Set value Set the value of the progress indicator.

Standard widget actions Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Standard widget actions Description

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
A CircleProgress does not emit any triggers.

Performance
A CircleProgress consists of a Circle and a background Image. The Circle is based on the
CanvasWidget and is heavily dependent on the MCU for rendering. Therefore, the CircleProgress is
considered a demanding widget on most platforms.

For more details on CanvasWidget drawing performance, read the General UI Component
Performance section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
CircleProgress.

Screen1ViewBase.cpp

User Code

circleProgress.setXY(188, 84);
circleProgress.setProgressIndicatorPosition(0, 0, 104, 104);
circleProgress.setRange(0, 100);
circleProgress.setCenter(52, 52);
circleProgress.setRadius(50);
circleProgress.setLineWidth(0);
circleProgress.setStartEndAngle(0, 360);
circleProgress.setBackground(touchgfx::Bitmap(BITMAP_BLUE_PROGRESSINDICATORS_BG_MEDIUM_CIR
circleProgressPainter.setBitmap(touchgfx::Bitmap(BITMAP_BLUE_PROGRESSINDICATORS_FILL_MEDIU
circleProgress.setPainter(circleProgress1Painter);
circleProgress.setValue(0);

The following example illustrates how to implement the handleTickEvent() function to simulate
progress. Running this code creates the application shown at the beginning of this article.

Screen1View.hpp

Screen1View.cpp

TIP

You can use these functions and the others available in the CircleProgress class in user code. Remember to
force a redraw by calling circleProgress1.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples

class Screen1View : public Screen1ViewBase
{
public:
 Screen1View();
 virtual ~Screen1View() {}
 virtual void setupScreen();
 virtual void tearDownScreen();
 virtual void handleTickEvent();
protected:
 bool increase = true;
};

void Screen1View::handleTickEvent()
{
 int currentValue = circleProgress.getValue();
 int16_t max;
 int16_t min;
 circleProgress.getRange(min, max);

 if (currentValue == min)
 {
 increase = true;
 }
 else if (currentValue == max)
 {
 increase = false;
 }

 int nextValue = increase == true ? currentValue+1 : currentValue-1;

 circleProgress.setValue(nextValue);
}

To further explore the CircleProgress, try creating a new application within TouchGFX Designer with the
following UI template:

ProgressIndicator Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the CircleProgress class

Version: 4.16

Box
A Box in TouchGFX is a rectangular shaped widget that can be assigned a single color for all contained
pixels. The Box can be assigned any size and position.

Box running in the simulator

Widget Group
The Box can be found in the Shapes widget group in TouchGFX Designer.

Box in TouchGFX Designer

Properties
The properties for a Box in TouchGFX Designer.

Property Group Property DescriptionsProperty Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. <InlineNote text="Making the
widget invisible also disables interacting with the widget through the screen."

Appearance
Color specifies the color of all the pixels contained within the rectangle.

Alpha specifies the transparency of the widget. The alpha value ranges between
0 and 255 for the widget. 0 is fully transparent and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the Box are described in the following sections.

Actions

Widget specific actions Description

Resize widget Resize a widget.

Change box color Change the color of a Box widget.

Standard widget actions Description

Move widget Move a widget to a new position over time.

Standard widget actions Description

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
A Box does not emit any triggers.

Performance
A Box is one of the most lightweight widgets in all of TouchGFX because it does not have to read any
pixel data or do any complicated calculations. Therefore, the Box is considered a very fast performing
widget on most platforms.

For more details on drawing performance, read the General UI Component Performance section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a Box.

Screen1ViewBase.cpp

TIP

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include <touchgfx/Color.hpp>

Screen1ViewBase::Screen1ViewBase()
{
 boxName.setPosition(260, 133, 294, 99);
 boxName.setColor(touchgfx::Color::getColorFrom24BitRGB(33, 197, 80));

 add(boxName);
}

You can use these functions and the others available in the Box class in user code. Remember to force a
redraw by calling boxName.invalidate() if you change the appearance of the widget.

API Reference
FURTHER READING

API reference for the Box class

Version: 4.16

BoxWithBorder
A BoxWithBorder in TouchGFX is a rectangular shaped widget that can be assigned a single color for
all contained pixels within a specified border with a separate color and size. The BoxWithBorder can be
assigned any size and position.

BoxWithBorder running in the simulator

Widget Group
The BoxWithBorder can be found in the Shapes widget group in TouchGFX Designer.

BoxWithBorder in TouchGFX Designer

Properties
The properties for a BoxWithBorder in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Appearance

Color specifies the color of all the pixels contained within the rectangle.

Border Color specifies the color of the outer border pixels.

Border Size specifies the size of the outer border.

Alpha specifies the transparency of the widget. The alpha value ranges between
0 and 255 for the widget. 0 is fully transparent and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by a BoxWithBorder in TouchGFX Designer.

Actions

Widget specific actions Description

Resize widget Resize a widget.

Change box color Change the color of a Box widget.

Standard widget actions DescriptionStandard widget actions Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
A BoxWithBorder does not emit any triggers.

Performance
A BoxWithBorder is one of the most lightweight widgets in all of TouchGFX because it does not have
to read any pixel data or do any complicated calculations. Therefore, the BoxWithBorder is considered
a very fast performing widget on most platforms.

For more details on drawing performance, read the General UI Component Performance section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a
BoxWithBorder widget.

Screen1ViewBase.cpp

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include <touchgfx/Color.hpp>

Screen1ViewBase::Screen1ViewBase()
{
 boxWithBorderName.setPosition(240, 56, 337, 132);
 boxWithBorderName.setColor(touchgfx::Color::getColorFrom24BitRGB(212, 27, 27));
 boxWithBorderName.setBorderColor(touchgfx::Color::getColorFrom24BitRGB(21, 24, 202));
 boxWithBorderName.setBorderSize(20);

 add(boxWithBorderName);

TIP

You can use these functions and the others available in the BoxWithBorder class in user code. Remember
to force a redraw by calling boxWithBorderName.invalidate() if you change the appearance of the widget.

API Reference
FURTHER READING

API reference for the BoxWithBorder class

}

Version: 4.16

Line
A Line is a widget based on the CanvasWidget capable of drawing a straight line from one point to
another. The Line can be filled by a single color or an image using a Painter object.

Line running in the simulator

Widget Group
The Line can be found in the Shapes widget group in TouchGFX Designer.

Line in TouchGFX Designer

Properties
The properties for a Line in TouchGFX Designer.

Property Group Property DescriptionsProperty Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Image & Color
Image specifies the image assigned to the line from the Designer skin library
or the Project folder.

If the image is not chosen, Color specifies the color of the line.

Appearance

Start Position X and Start Position Y specify the start coordinates of the line
relative to the top left corner of the widget.

End Position X and End Position Y specify the end coordinates of the line
relative to the top left corner of the widget.

Line Width specifies the width of the line.

Cap Style specifies the shape of the edges of the line.

Alpha specifies the transparency of the widget.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the Line are described in the following sections.

Actions

Standard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
A Line does not emit any triggers.

Performance
A Line is a CanvasWidget and is heavily dependent on the MCU for rendering. Therefore, the Line is
considered a demanding widget on most platforms.

For more details on CanvasWidget drawing performance, read the General UI Component
Performance.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a Line.

Screen1ViewBase.cpp

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"
#include <touchgfx/Color.hpp>

Screen1ViewBase::Screen1ViewBase()
{
 lineName.setPosition(0, 0, 800, 480);
 lineNamePainter.setBitmap(touchgfx::Bitmap(BITMAP_DARK_BACKGROUNDS_MAIN_BG_800X480PX_I
 lineName.setPainter(lineNamePainter);
 lineName.setStart(200, 200);

TIP

You can use these functions and the other available in the Line class in user code. Remember to force a
redraw by calling lineName.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples
To further explore the Line, try creating a new application within TouchGFX Designer with the following
UI template:

Line and Circle Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the Line class

 lineName.setEnd(550, 150);
 lineName.setLineWidth(50);
 lineName.setLineEndingStyle(touchgfx::Line::ROUND_CAP_ENDING);

 add(lineName);
}

Version: 4.16

Circle
A Circle is a widget based on the CanvasWidget capable of drawing a circle. This circle can be a partial
circle, and either filled or outlined. The center, radius, line width, line cap and circle arc can be
modified. The Circle can either use an image or a single color as fill.

Circle running in the simulator

Widget Group
The Circle can be found in the Shapes widget group in TouchGFX Designer.

Circle in TouchGFX Designer

Properties
The properties for the Circle are described in the following sections.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Image & Color
Image specifies the image used to fill the circle from the Designer skin library
or the Project folder.

If an image is not chosen, Color specifies the color used to fill the circle.

Appearance

Center Position X and Center Position Y specify the coordinates for the center
of the circle, relative to the top left corner of the widget.

Start & End Angle specify the angles in degrees of the start and ending points
of the circle.

Radius specifies the radius of the circle.

Line Width specifies the width of the line forming the circumference of the
circle.
Set this to 0 to get a filled circle.

Cap Style specifies the shape of the edges of the circle.

Alpha specifies the transparency of the widget.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the Circle are described in the following sections.

Actions

Standard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
A Circle does not emit any triggers.

Performance
A Circle is based on the CanvasWidget and is heavily dependent on the MCU for rendering. Therefore,
the Circle is considered a demanding widget on most platforms.

For more details on CanvasWidget drawing performance, read the General UI Component
Performance section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a Circle.

Screen1ViewBase.cpp

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"
#include <touchgfx/Color.hpp>

TIP

You can use these functions and the others available in the Circle class in user code. Remember to force a
redraw by calling circleName.invalidate() if you change the appearance of the widget.

TouchGFX Designer Examples
To further explore the Circle, try creating a new application within TouchGFX Designer with the
following UI template:

Line and Circle Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the Circle class
API reference for the Canvas class used to draw a Circle

Screen1ViewBase::Screen1ViewBase()
{

 touchgfx::CanvasWidgetRenderer::setupBuffer(canvasBuffer, CANVAS_BUFFER_SIZE);

 circleName.setPosition(40, 36, 200, 200);
 circleName.setCenter(100, 100);
 circleName.setRadius(80);
 circleName.setLineWidth(0);
 circleName.setArc(0, 225);
 circleName.setCapPrecision(180);
 circleNamePainter.setColor(touchgfx::Color::getColorFrom24BitRGB(0, 171, 223));
 circleName.setPainter(circleNamePainter);

 add(circleName);
}

Version: 4.16

Shape
The Shape allows the user to draw any shape with an arbitrary amount of points, while also supporting
scaling and rotation.

Shape running in the simulator

Widget Group
The Shape can be found in the Shapes widget group in TouchGFX Designer.

Shape in TouchGFX Designer

Properties
The properties for a Shape in TouchGFX Designer.

Property Group Property DescriptionsProperty Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Image & Color Image or Color specifies the color or image to be shown in the Shape.

Transform

Angle specifies the rotation of the Shape around its Origin point.

Scale X and Scale Y specify the scale of the shape horizontally and vertically
from the Origin point.

Origin X and Origin Y specify the location from which Points originate.

Points Points specify points that create the desired shape.
Each individual point requires an X and Y coordinate.

Appearance
Alpha specifies the transparency of the widget.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the Shape are described in the following sections.

Actions

Widget specific action DescriptionWidget specific action Description

Scale Shape Scale a Shape, either to a fixed size or relative to its current size

Rotate Shape Rotate a Shape, either to a fixed angle or relative to its current anlge

Standard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
A Shape does not emit any triggers.

Performance
A Shape is a CanvasWidget and is heavily dependent on the MCU for rendering the desired shape.
Therefore, a Shape is considered a demanding widget on most platforms.

For more details on CanvasWidget drawing performance, read the General UI Component
Performance section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a Shape.

Screen1ViewBase.cpp

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include "BitmapDatabase.hpp"
#include <touchgfx/Color.hpp>

Screen1ViewBase::Screen1ViewBase()

TIP

You can use these functions and the others available in the Shape class in user code. Remember to force a
redraw by calling shape.invalidate() if you change the appearance of the widget.

User Code
The following code shows how to set up a shape filled with some random data:

Screen1View.hpp

{
 touchgfx::CanvasWidgetRenderer::setupBuffer(canvasBuffer, CANVAS_BUFFER_SIZE);

 shape.setPosition(140, 36, 200, 200);
 shape.setOrigin(100.000f, 100.000f);
 shape.setScale(1.000f, 1.000f);
 shape.setAngle(0.000f);
 shapePainter.setColor(touchgfx::Color::getColorFrom24BitRGB(60, 180, 230));
 shape.setPainter(shapePainter);
 const touchgfx::AbstractShape::ShapePoint<float> shapePoints[4] = { { 0.000f, -100.000
 shape.setShape(shapePoints);

 add(shape);
}

void Screen1ViewBase::setupScreen()
{

}

#ifndef SCREEN1VIEW_HPP
#define SCREEN1VIEW_HPP

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include <gui/screen1_screen/Screen1Presenter.hpp>
#include <touchgfx/widgets/canvas/Shape.hpp>
#include <touchgfx/widgets/canvas/PainterRGB888.hpp>

class Screen1View : public Screen1ViewBase
{
public:
 Screen1View();
 virtual ~Screen1View() {}
 virtual void setupScreen();
 virtual void tearDownScreen();

 /*
 * Member Declarations

Screen1View.cpp

API Reference

 */
 touchgfx::Shape<100> shape;
 touchgfx::PainterRGB888 shapePainter;
protected:
 void fillData(int maxLength);
};

#endif // SCREEN1VIEW_HPP

#include <gui/screen1_screen/Screen1View.hpp>
#include <touchgfx/Color.hpp>

Screen1View::Screen1View()
{
}

void Screen1View::setupScreen()
{
 Screen1ViewBase::setupScreen();
 shape.setPosition(0, 0, 480, 272);
 shape.setOrigin(0.000f, 272.000f);
 shapePainter.setColor(touchgfx::Color::getColorFrom24BitRGB(0, 171, 223));
 shape.setPainter(shapePainter);
 fillData(100);
 add(shape);
}

void Screen1View::tearDownScreen()
{
 Screen1ViewBase::tearDownScreen();
}

void Screen1View::fillData(int maxLength)
{
 float highestX = 0.000f;
 for (int i = 0; i < maxLength - 1; ++i)
 {
 float y = static_cast <float> (rand()) / (static_cast <float> (RAND_MAX/272));
 float x = highestX + static_cast <float> (rand()) /(static_cast <float> (RAND_MAX
 highestX = x;
 shape.setCorner(i, CWRUtil::toQ5<float>(x), CWRUtil::toQ5<float>(-y));
 }
 shape.setCorner(maxLength - 1, CWRUtil::toQ5<float>(highestX), CWRUtil::toQ5<float>(0)
 shape.updateAbstractShapeCache();
}

FURTHER READING

API reference for the Shape class

Version: 4.16

Slider
A Slider uses three images to display a slider either in a vertical or horizontal orientation. The indicator
image of a Slider can be dragged to modify an internal integer value that is broadcasted through
callbacks. The value broadcasted operates on an integer value range e.g. 0 to 100.

Slider running in the simulator

Widget Group
The Slider can be found in the Miscellaneous widget group in TouchGFX Designer.

Slider in TouchGFX Designer

Properties
The properties for a Slider in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Type Type specifies whether the Slider should be vertically or horizontally oriented.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of a Slider is taken from the size of the associated images and cannot be
altered except by changing the images.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Image

Background Image specifies the background image that the indicator slides
across.

Background Filled Image specifies the image filling the area on top of the
background image behind the indicator.

Indicator Image specifies the image that can be dragged to change the value
of the slider.

The background image and background filled image must both be the same size.

Positions

Background Position X and Background Position Y specify the top left corner
position of the Background Image and Background Filled Image.

Indicator Position Min and Indicator Position Max specify the minimum and
maximum positions of the Indicator Image.
For a horizontal slider these two values are in the x-axis and for a vertical slider
they are in the y-axis.

Indicator Position Y specifies the indicator image's position in the y-axis.
If the slider is vertically oriented this value instead adjusts in the x-axis.

Property Group Property Descriptions

Values

Min and Max specifies the internal integer range that is broadcast from the
Slider using callbacks.

Start specifies the initial internal value in the Slider. This also changes the initial
position of the indicator.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the Slider are described in the following sections.

Actions

Standard widget action Description

Move widget Move a widget to a new position over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers

Trigger Description

Slider adjustment initiated A Slider has been clicked or dragged.

Slider adjustment confirmed A Slider indicator is no longer being dragged.

Slider value changed A Sliders value has changed.

Performance

A Slider consists of three images. Therefore, a Slider is dependent on image drawing and is considered
a fast performing widget on most platforms.

For more details on image drawing performance, read the General UI Component Performance
section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a Slider.

mainViewBase.cpp

TIP

You can use these functions and the others available in the Slider class in user code. Remember to force a
redraw by calling slider.invalidate() if you change the appearance of the widget.

User Code
The following code example shows how to set up the three callbacks of a Slider:

#include <gui_generated/main_screen/mainViewBase.hpp>
#include "BitmapDatabase.hpp"
#include <texts/TextKeysAndLanguages.hpp>
#include <touchgfx/Color.hpp>

mainViewBase::mainViewBase()
{
 slider.setXY(71, 173);
 slider.setBitmaps(touchgfx::Bitmap(BITMAP_BLUE_SLIDER_HORIZONTAL_MEDIUM_SLIDER2_ROUND_
 slider.setupHorizontalSlider(2, 6, 0, 0, 284);
 slider.setValueRange(0, 100);
 slider.setValue(0);

 add(slider);
}

void mainViewBase::setupScreen()
{

}

setStartValueCallback

setNewValueCallback

setStopValueCallback

mainView.hpp

mainView.cpp

#ifndef MAINVIEW_HPP
#define MAINVIEW_HPP

#include <gui_generated/main_screen/mainViewBase.hpp>
#include <gui/main_screen/mainPresenter.hpp>

class mainView : public mainViewBase
{
public:
 mainView();
 virtual ~mainView() {}
 virtual void setupScreen();
 virtual void tearDownScreen();
protected:

 /*
 * Callback Declarations
 */
 touchgfx::Callback<mainView, const touchgfx::Slider&, int> sliderValueStartedChangeCal
 touchgfx::Callback<mainView, const touchgfx::Slider&, int> sliderValueChangedCallback;
 touchgfx::Callback<mainView, const touchgfx::Slider&, int> sliderValueConfirmedCallbac

 /*
 * Callback Handler Declarations
 */
 void sliderValueStartedChangeCallbackHandler(const touchgfx::Slider& src, int value);
 void sliderValueChangedCallbackHandler(const touchgfx::Slider& src, int value);
 void sliderValueConfirmedCallbackHandler(const touchgfx::Slider& src, int value);
};

#endif // MAINVIEW_HPP

#include <gui/main_screen/mainView.hpp>

mainView::mainView():
 sliderValueStartedChangeCallback(this, &mainView::sliderValueStartedChangeCallbackHand
 sliderValueChangedCallback(this, &mainView::sliderValueChangedCallbackHandler),
 sliderValueConfirmedCallback(this, &mainView::sliderValueConfirmedCallbackHandler)
{

}

TouchGFX Designer Examples
To further explore the Slider, try creating a new application within TouchGFX Designer with one of the
following UI templates:

void mainView::setupScreen()
{
 mainViewBase::setupScreen();
 slider.setStartValueCallback(sliderValueStartedChangeCallback);
 slider.setNewValueCallback(sliderValueChangedCallback);
 slider.setStopValueCallback(sliderValueConfirmedCallback);
}

void mainView::tearDownScreen()
{
 mainViewBase::tearDownScreen();
}

void mainView::sliderValueStartedChangeCallbackHandler(const touchgfx::Slider& src, int va
{
 if (&src == &slider)
 {
 //execute code whenever the slider starts changing value.
 }
}

void mainView::sliderValueChangedCallbackHandler(const touchgfx::Slider& src, int value)
{
 if (&src == &slider)
 {
 //execute code whenever the value of the slider changes.
 }
}

void mainView::sliderValueConfirmedCallbackHandler(const touchgfx::Slider& src, int value)
{
 if (&src == &slider)
 {
 //execute code whenever the slider stops the changing value.
 }
}

Slider Example UI template in TouchGFX Designer

Pool Demo UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the Slider class

Version: 4.16

TextArea
A TextArea displays text on the screen. The text of a TextArea can be entirely configured in size, color,
custom fonts, dynamic texts etc. For more information on how to handle texts in TouchGFX Designer,
read the Texts and Fonts article.

TextArea running in the simulator

Widget Group
The TextArea can be found in the Miscellaneous widget group in TouchGFX Designer.

TextArea in TouchGFX Designer

Properties
The properties for a TextArea in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Auto-size specifies whether the size of the widget will be automatically set
according to the text input.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget.
Making the widget invisible also disables interacting with the widget through the
screen.

Text

Single Use and Ressource specify the type of text: unique or from a known
ressource.

When Single Use is selected:
Text specifies the content of the text to be displayed.
Typography specifies the format of the text.
Alignment specifies the horizontal alignment of the text.

When Ressource is selected:
Ressource ID specifies the Ressource to retrieve the text from.

Up to two wildcards can be created for dynamic text input, which are indicated
as '<tag>' where 'tag' can be any string.

Appearance

Color specifies the color of the displayed text.

Alpha specifies the transparency of the widget.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Line Spacing specifies the space between lines.

Text Rotation sets the rotation in degrees for the text.

Property Group Property Descriptions

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Interactions
The actions and triggers supported by the TextArea are described in the following sections.

Actions

Widget specific action Description

Set text Set the text of the widget.

Resize widget Resize the widget.

Set wildcard Set the wildcard of the widget. A wildcard has to be already added to
the TextArea for this action to work.

Standard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
The TextArea does not emit any triggers.

Performance

A TextArea is dependent on text drawing. Text drawing is very similar to general image drawing
(though due to the nature of text characters, a significant amount of alpha blending takes place).
Therefore, the TextArea is considered a fast performing widget on most platforms.

For more details on text drawing performance, read the General UI Component Performance section.

Examples
Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up a TextArea.

Screen1ViewBase.hpp

Screen1ViewBase.cpp

TIP

You can use these functions and the others available in the TextArea class in user code. Remember to force a
redraw by calling textArea.invalidate() if you change the appearance of the widget.

User Code
The following example illustrates how to implement the handleTickEvent() function to change the
text at runtime using a wildcard. Running this code creates the application shown at the beginning of
this section.

touchgfx::TextAreaWithOneWildcard textArea;

/*
 * Wildcard Buffers
 */
static const uint16_t TEXTAREA_SIZE = 20;
touchgfx::Unicode::UnicodeChar textAreaBuffer[TEXTAREA_SIZE];

textArea.setPosition(40, 111, 400, 50);
textArea.setColor(touchgfx::Color::getColorFrom24BitRGB(60, 180, 230));
textArea.setLinespacing(0);
Unicode::snprintf(textAreaBuffer, TEXTAREA_SIZE, "%s", touchgfx::TypedText(T_TOUCHGFXID).g
textArea.setWildcard(textAreaBuffer);
textArea.setTypedText(touchgfx::TypedText(T_SINGLEUSEID1));

Screen1View.hpp

Screen1View.cpp

TouchGFX Designer Examples
To further explore the TextArea, try creating a new application within TouchGFX Designer with one of
the following UI templates:

class Screen1View : public Screen1ViewBase
{
public:
 Screen1View();
 virtual ~Screen1View() {}
 virtual void setupScreen();
 virtual void tearDownScreen();

 virtual void handleTickEvent();
protected:
 uint8_t counter;
 bool flag;
};

Screen1View::Screen1View():
 counter(0),
 flag(true)
{}

void Screen1View::handleTickEvent()
{
 counter++;
 if(counter%120 == 0) // every 2s
 {
 if(flag)
 {
 Unicode::snprintf(textAreaBuffer, TEXTAREA_SIZE, "%s", touchgfx::TypedText(T_S
 flag = false;
 }
 else
 {
 Unicode::snprintf(textAreaBuffer, TEXTAREA_SIZE, "%s", touchgfx::TypedText(T_T
 flag = true;
 }
 textArea.invalidate();
 counter = 0;
 }
}

Text Example UI template in TouchGFX Designer

Arabic Text Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the TextArea class

Version: 4.16

AnalogClock
An AnalogClock is a widget that enables the display of a classic analog watch, as opposed to the
DigitalClock which displays time with text. The clock uses a background image as the clock face. The
hour, minute and second hands are each using an image and rotate around a configurable center.

AnalogClock running in the simulator (sped up footage)

Widget Group
The AnalogClock can be found in the Miscellaneous widget group in TouchGFX Designer.

AnalogClock in TouchGFX Designer

Properties
The properties for a AnalogClock in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.
The size of a AnalogClock is taken from the size of the associated image and
cannot be altered except by changing the image.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Appearance
Image specifies the image to be used as background.

Rotation Center X and Rotation Center Y specifies the point at which the clock
hands should rotate

Time
Use Am/Pm specifies if time should be in 12h or 24h format.

Initial Time specifies the initial time the clock shows.

Clock Hands

Clock Hands specifies which clock hands (Second, Minute and Hour Hand) the
AnalogClock should show and the order of the hands.
Each clock hand can set a Hand Image and their rotation point by setting
Rotation Position X and Rotation Position Y.

The Minute and Hour Hand have the option to use sweeping hand motion by
setting Sweeping Movement

Animations

Animate Clock Hand Movement specifies if animation of the clock hands are
enabled.

Duration specifies how long the amination is.

Easing and Easing Option specify the easing equation used.

Property Group Property Descriptions

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Time
The Time property group allows the user to set the initial time of the clock widget and whether or not
to use Am/Pm standard.

Choosing Am/Pm also results in a slight code generation change. Instead of using the following
function in Analog Clock to initialize the time:
initializeTime24Hour(uint8_t hour, uint8_t minute, uint8_t second)

The following function is used when using 12-hour notation:
initializeTime12Hour(uint8_t hour, uint8_t minute, uint8_t second, bool am)

To update the time displayed by the clock, one of the following functions can be used.
setTime24Hour(uint8_t hour, uint8_t minute, uint8_t second)
setTime12Hour(uint8_t hour, uint8_t minute, uint8_t second, bool am)

Clock Hands
In the Clock Hands property group, the user can define which hands to use and their z-order. The
hand defined first will be rendered above the others.

Hour, Minute and Second Hands

Each hand needs an image and a rotation position. The rotation position determines the point at
which the defined hand image should rotate around itself.

Clock hand properties

The hour and minute hands have the ability to use Sweeping Movement. When this option is enabled
the hand will no longer do an instantaneous jump from one position to another.

Sweeping movement disabled

Sweeping movement enabled

Animation
The animation section allows the user to define more advanced hand movement. However, if the hour
and minute hand have Sweeping Movement enabled, they will not animate.

In the following example the animation duration is set to '30', easing is set to 'Bounce' with 'Out' as its
easing option:

Example of a clock animation

Interactions
The actions and triggers supported by an AnalogClock are described in the following sections.

Actions

Standard widget actions Description

Move widget Move a widget to a new position over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
An AnalogClock does not emit any triggers.

Performance
An AnalogClock consists of an Image and three TextureMappers, which are MCU resource intensive
components. Therefore, an AnalogClock is considered a demanding widget on most platforms.

For more details on drawing performance, read the General UI Component Performance section.

Examples

Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up an
AnalogClock.

mainViewBase.cpp

TIP

You can use these functions and the others available in the AnalogClock class in user code. Remember to
force a redraw by calling analogClock.invalidate() if you change the appearance of the widget.

User Code
The following example shows how to set up clock movement:

mainView.hpp

#include <gui_generated/main_screen/mainViewBase.hpp>
#include "BitmapDatabase.hpp"

mainViewBase::mainViewBase()
{
 analogClock.setXY(124, 15);
 analogClock.setBackground(BITMAP_BLUE_CLOCKS_BACKGROUNDS_CLOCK_STANDARD_BACKGROUND_ID,
 analogClock.setupMinuteHand(BITMAP_BLUE_CLOCKS_HANDS_CLOCK_STANDARD_MINUTE_HAND_ID, 7,
 analogClock.setMinuteHandSecondCorrection(false);
 analogClock.setupHourHand(BITMAP_BLUE_CLOCKS_HANDS_CLOCK_STANDARD_HOUR_HAND_ID, 7, 52)
 analogClock.setHourHandMinuteCorrection(false);
 analogClock.setupSecondHand(BITMAP_BLUE_CLOCKS_HANDS_CLOCK_STANDARD_SECOND_HAND_ID, 3,
 analogClock.initializeTime24Hour(10, 10, 0);

 add(analogClock);
}

void mainViewBase::setupScreen()
{

}

#ifndef MAINVIEW_HPP
#define MAINVIEW_HPP

#include <gui_generated/main_screen/mainViewBase.hpp>
#include <gui/main_screen/mainPresenter.hpp>

class mainView : public mainViewBase

mainView.cpp

{
public:
 mainView();
 virtual ~mainView() {}
 virtual void setupScreen();
 virtual void tearDownScreen();
 virtual void handleTickEvent();

protected:
 int tickCounter;
 int analogHours;
 int analogMinutes;
 int analogSeconds;
};

#endif // MAINVIEW_HPP

#include <gui/main_screen/mainView.hpp>

mainView::mainView()
{
}

void mainView::setupScreen()
{
 mainViewBase::setupScreen();
 analogHours = analogClock.getCurrentHour();
 analogMinutes = analogClock.getCurrentMinute();
 analogSeconds = analogClock.getCurrentSecond();
}

void mainView::tearDownScreen()
{
 mainViewBase::tearDownScreen();
}

void mainView::handleTickEvent()
{
 tickCounter++;

 if (tickCounter % 60 == 0)
 {
 if (++analogSeconds >= 60)
 {
 analogSeconds = 0;
 if (++analogMinutes >= 60)
 {
 analogMinutes = 0;
 if (++analogHours >= 24)

TouchGFX Designer Examples
To further explore the AnalogClock, try creating a new application within TouchGFX Designer with one
of the following UI templates:

Clock Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the AnalogClock class

 {
 analogHours = 0;
 }
 }
 }

 // Update the clocks
 analogClock.setTime24Hour(analogHours, analogMinutes, analogSeconds);
 }
}

Version: 4.16

DigitalClock
A DigitalClock in TouchGFX is a widget that allows an application to display time with digital text, as
opposed to the AnalogClock which displays time using analog clock hands.

DigitalClock running in the simulator (sped up footage)

Widget Group
The DigitalClock can be found in the Miscellaneous widget group in TouchGFX Designer.

DigitalClock in TouchGFX Designer

Properties
Property Group Property Descriptions

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Time

Use Am/Pm specifies if time should be in 12h or 24h format.

Display Leading Zero for Hours specifies if leading zero for hours should be
enabled.

Display Seconds specifies if showing seconds is enabled.

Initial Time specifies the initial time the clock shows.

Text Single Use or Resource specifies which text resource to use for the DigitalClock.
Text must have a wildcard to function properly.

Appearance

Text Color specifies the color of the text in the DigitalClock.

Alpha specifies the transparency of the widget.
The alpha value ranges between 0 and 255 for the widget. 0 is fully transparent
and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Time
The Time property group is used to adjust how time is displayed in the application by changing
different properties. You can choose to use 24-hour time or 12-hour AM/PM by toggling Use Am/Pm.
Toggling Display Leading Zero for Hours specifies how hours below 10 are displayed (e.g. 09:10:00 or
9:10:00) and Display Seconds toggles the display of seconds on/off (e.g. 9:10:00 or 9:10).

Choosing Am/Pm also results in a slight code generation change. Instead of using the following
function in Analog Clock to initialize the time:
initializeTime24Hour(uint8_t hour, uint8_t minute, uint8_t second)

The following function is used when using 12-hour notation:
initializeTime12Hour(uint8_t hour, uint8_t minute, uint8_t second, bool am)

To update the time which the clock displays, one of the following functions can be used.
setTime24Hour(uint8_t hour, uint8_t minute, uint8_t second)
setTime12Hour(uint8_t hour, uint8_t minute, uint8_t second, bool am)

Interactions
The actions and triggers supported by the DigitalClock are described in the following sections.

Actions

Standard widget action Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers
A DigitalClock does not emit any triggers.

Performance
A DigitalClock consists of a TextArea, which does not impact performance in any meaningful way.
Therefore, a DigitalClock is considered a fast performing widget on most platforms.

For more details on drawing performance, read the General UI Component Performance section.

Examples

Generated Code
In the generated code for the View base class we can see how TouchGFX Designer sets up the
DigitalClock.

mainViewBase.cpp

TIP

You can use these functions and the others available in the DigitalClock class in user code. Remember to
force a redraw by calling digitalClock.invalidate() if you change the appearance of the widget.

User Code
The following example shows how to set up the clock to start.

mainView.hpp

#include <gui_generated/main_screen/mainViewBase.hpp>
#include "BitmapDatabase.hpp"
#include <texts/TextKeysAndLanguages.hpp>

mainViewBase::mainViewBase()
{
 digitalClock.setPosition(75, 88, 331, 97);
 digitalClock.setColor(touchgfx::Color::getColorFrom24BitRGB(0, 30, 65));
 digitalClock.setTypedText(touchgfx::TypedText(T_SINGLEUSEID2));
 digitalClock.displayLeadingZeroForHourIndicator(true);
 digitalClock.setDisplayMode(touchgfx::DigitalClock::DISPLAY_24_HOUR);
 digitalClock.setTime24Hour(7, 7, 0);

 add(digitalClock);
}

void mainViewBase::setupScreen()
{

}

#ifndef MAINVIEW_HPP
#define MAINVIEW_HPP

#include <gui_generated/main_screen/mainViewBase.hpp>
#include <gui/main_screen/mainPresenter.hpp>

class mainView : public mainViewBase
{

mainView.cpp

public:
 mainView();
 virtual ~mainView() {}
 virtual void setupScreen();
 virtual void tearDownScreen();
 virtual void handleTickEvent();

protected:
 int tickCounter;
 int digitalHours;
 int digitalMinutes;
 int digitalSeconds;
};

#endif // MAINVIEW_HPP

#include <gui/main_screen/mainView.hpp>

mainView::mainView()
{
}

void mainView::setupScreen()
{
 mainViewBase::setupScreen();
 digitalHours = digitalClock.getCurrentHour();
 digitalMinutes = digitalClock.getCurrentMinute();
 digitalSeconds = digitalClock.getCurrentSecond();
}

void mainView::tearDownScreen()
{
 mainViewBase::tearDownScreen();
}

void mainView::handleTickEvent()
{
 tickCounter++;

 if (tickCounter % 60 == 0)
 {
 if (++digitalSeconds >= 60)
 {
 digitalSeconds = 0;
 if (++digitalMinutes >= 60)
 {
 digitalMinutes = 0;
 if (++digitalHours >= 24)
 {

TouchGFX Designer Examples
To further explore the DigitalClock, try creating a new application within TouchGFX Designer with one
of the following UI templates:

Clock Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the DigitalClock class

 digitalHours = 0;
 }
 }
 }

 // Update the clock
 digitalClock.setTime24Hour(digitalHours, digitalMinutes, digitalSeconds);
 }
}

Version: 4.16

DynamicGraph
A DynamicGraph in TouchGFX is a widget that allows an application to display data points on a
monotonous x-axis. The DynamicGraph supports three types of dynamic behavior, that defines what
happens when the graph runs out of space on the x-axis. The chosen dynamic behavior also greatly
impacts the performance of the DynamicGraph, as the behavior chosen impacts the area needed to be
redrawn when inserting data points.

The DynamicGraph, can have its visual appearance defined via, Graph Elements, Grid Lines and Labels

DynamicGraph running in the simulator

Widget Group
The DynamicGraph can be found in the Miscellaneous widget group in TouchGFX Designer.

DynamicGraph in TouchGFX Designer

Properties
The properties for a DynamicGraph in TouchGFX Designer.

Property Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Graph Area
Margin

Margin specifies how much space for graph labels there should be.

Top specifies the amount of space above the graph area.

Bottom specifies the amount of space below the graph area.

Left specifies the amount of space left of the graph area.

Right specifies the amount of space right of the graph area.

Graph Area
Padding

Padding specifies how much room around the graph elements inside the
graph area there should be.

Top specifies the amount of room at the top of the graph area.

Bottom specifies the amount of room at the bottom of the graph area.

Left specifies the amount of room left of the graph area.

Top specifies the amount of room right of the graph area.

Property Group Property Descriptions

Data Points

Dynamic Behavior specifies the behavior of the graph when adding data
points, available options are: Wrap And Clear, Scroll and Wrap and Overwrite.

Number of Data Points specifies the number of values the graph is capable of
showing.

Value Range specifies the minimum and maximum y-axis values the graph is
capable of showing.

Level of Precision specifies how many decimal places the graph is capable of
displaying.

Visible Range (index values) specifies the range of values shown on the x-axis.

Custom Value Mapping specifies the mapping of the index values of the x-axis
to custom values.

Generate Random Values specifies whether or not random values should be
initialized in code generation. (Random values will always be shown in the
Canvas of the TouchGFX Designer)

Elements Area, Boxes, Diamonds, Dots, Histogram and Line specify which elements make
up the widgets visual appearance. More than one of each type can be added.

Vertical Grid
Lines

Major Division specifies whether or not to enable vertical major division grid
lines.

Minor Division specifies whether or not to enable vertical minor division grid
lines. Can only be enabled if Major Division has been enabled.

Horizontal Grid
Lines

Major Division specifies whether or not to enable horizontal major division grid
lines.

Minor Division specifies whether or not to enable horizontal minor division grid
lines. Can only be enabled if Major Division has been enabled.

X-Axis Labels

Major Division specifies whether or not to enable major division labels on the
x-axis.

Minor Division specifies whether or not to enable minor division labels on the
x-axis. Can only be enabled if Major Division has been enabled.

Y-Axis Labels

Major Division specifies whether or not to enable major division labels on the
y-axis.

Minor Division specifies whether or not to enable minor division labels on the
y-axis. Can only be enabled if Major Division has been enabled.

Property Group Property Descriptions

Appearance Alpha specifies the transparency of the widget. The alpha value ranges between
0 and 255 for the widget. 0 is fully transparent and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

Precision
Internally the DynamicGraph stores all data points in a 32 bit integer, therefore to add and display
data points with a certain number of digits denoting the degree of accuracy, a level of precision can be
defined.

If for example the level of precision is set to 0.1, each data point added to the DynamicGraph, will be
multiplied by 10 internally, thereby simulating one digit of precision. However it must be noted that as
the level of precision increases, the highest/lowest possible value lowers/increases by the factor of the
precision specified.

Level of Precision Lowest Possible Value Highest Possible Value

1 -1 Billion 1 Billion

0.1 -100 Million 100 Million

0.01 -10 Million 10 Million

0.001 -1 Million 1 Million

0.0001 -100 Thousand 100 Thousand

The lowest/highest numbers given above are rough estimations

Dynamic Behavior
The DynamicGraph supports three types of dynamic behavior, Wrap And Clear, Scroll and Wrap and
Overwrite. The selected dynamic behavior specifies what will happen once the graph runs out of space
on the x-axis, as can be seen in the three demontrations below.

DynamicGraph Wrap and Clear example

DynamicGraph Scroll example

DynamicGraph Wrap and Overwrite example

Graph Area, Margin and Padding
The DynamicGraph renders all graph elements and grid lines in a Graph Area, incapsulated by padding
and margin. If both padding or margin are defined as zero, the Graph Area will follow the the size
given to the DynamicGraph.

To make space for labels along the x- and y-axis, a margin can be defined. The Margin settings move
the graph area that contains the graph elements (Area, Boxes, Diamonds, etc.) inside the widget,
reserving space for labels along the x- and y-axis.

In the figure below the red area represents a 20 px margin added to right, top, left and bottom.

Depending on their sizes, some elements will not be shown fully if they are positioned close to the
edges of the Graph Area, therefore a padding can be defined. The Padding settings add some padding
inside the graph area that contains the graph elements (Area, Boxes, Diamonds, etc.), this will allow
Grid lines, Boxes, Dots, Diamonds, Histogram and Line elements drawn at the edges of the Graph Area
to be drawn fully.

Padding can also be used to create extra space between the labels along the axes and the Graph Area.

In the figure below the orange area represents a 20 px padding added to right, top, left and bottom. It
also shows how the Boxes element is allowed to draw into the padded area.

DynamicGraph margin and padding example

Elements
The DynamicGraph has six available element types to display data: Area, Boxes, Diamonds, Dots,
Histogram and Line

Area

The Area element will fill the area below the line connecting the data points in the graph.

DynamicGraph Area example

Property Property Description

Image Specifies which image to use as fill for the area.

Color Specifies which color to use as fill for the area.

Baseline Specifies the base of the area drawn. Normally, the base is 0 which means that the
area is drawn below positive y values and above negative y values.

Alpha Specifies the transparency of the area. The alpha value ranges between 0 and 255 for
the widget. 0 is fully transparent and 255 is solid.

API Reference

FURTHER READING

API reference for the GraphElementArea class

Boxes

The Boxes element will draw a square box for every data point in graph.

DynamicGraph Boxes example

Property Property Description

Color Specifies which color to use as fill for the boxes.

Box Size Specifies the size of the boxes.

Alpha Specifies the transparency of the boxes. The alpha value ranges between 0 and 255 for
the widget. 0 is fully transparent and 255 is solid.

API Reference

FURTHER READING

API reference for the GraphElementBoxes class

Diamonds

The Diamonds element will draw a diamond (a square with the corners up/down/left/right) for every
data point in graph.

DynamicGraph Diamonds example

Property Property Description

Image Specifies which image to use as fill for the diamonds.

Color Specifies which color to use as fill for the diamonds.

Diamond
Size Specifies the size of the diamonds

Alpha Specifies the transparency of the diamonds. The alpha value ranges between 0 and
255 for the widget. 0 is fully transparent and 255 is solid.

API Reference

FURTHER READING

API reference for the GraphElementDiamonds class

Dots

The Dots element will draw a circular dot for every data point in graph.

DynamicGraph Dots example

Property Property Description

Image Specifies which image to use as fill for the dots.

Color Specifies which color to use as fill for the dots.

Dot Size Specifies the size of the dots

Alpha Specifies the transparency of the dots. The alpha value ranges between 0 and 255 for
the widget. 0 is fully transparent and 255 is solid.

API Reference

FURTHER READING

API reference for the GraphElementDots class

Histogram

The Histogram element is used to draw blocks from the x-axis to the data point in the graph. If more
graphs are placed on top of each other, the histogram can be moved slightly to the left/right.

DynamicGraph Histogram example

Property Property Description

Image Specifies which image to use as fill for the histogram.

Color Specifies which color to use as fill for the histogram.

Bar
Width Specifies width of the histogram bars.

Bar
Offset Specifies bar offset along the horizontal axis.

Baseline Specifies the base of the histogram drawn. Normally, the base is 0 which means that
the histogram is drawn below positive y values and above negative y values.

Alpha Specifies the transparency of the histogram. The alpha value ranges between 0 and
255 for the widget. 0 is fully transparent and 255 is solid.

API Reference

FURTHER READING

API reference for the GraphElementHistogram class

Line

The Line element will draw a line with a given thickness through the data points in the graph.

DynamicGraph Line example

Property Property Description

Image Specifies which image to use as fill for the line.

Color Specifies which color to use as fill for the line.

Line
Width Specifies the width of the line

Alpha Specifies the transparency of the line. The alpha value ranges between 0 and 255 for
the widget. 0 is fully transparent and 255 is solid.

API Reference

FURTHER READING

API reference for the GraphElementLine class

Grid Lines
The DynamicGraph can have horizontal and vertical grid lines in both major and minor divisions.

Minor divisions are overruled by major divisions, such that minor divisions will not be drawn on
locations where major divisions are present.

DynamicGraph Grid Lines example

Property Property Description

Color Specifies which color to use as fill for the grid line.

Interval Specifies the interval at which grid lines should be drawn

Line
Width Specifies the width of the grid line

Alpha Specifies the transparency of the line. The alpha value ranges between 0 and 255 for
the widget. 0 is fully transparent and 255 is solid.

API Reference

FURTHER READING

API reference for the GraphElementGridBase class
API reference for the GraphElementGridX class
API reference for the GraphElementGridY class

Labels
. The DynamicGraph can have x-axis and y-axis labels displaying the value in both major and minor
divisions.

Minor divisions are overruled by major divisions, such that minor divisions will not be drawn on
locations where major divisions are present.

DynamicGraph Labels example

Property Property Description

Position
Specifies the location of the labels.
Possible locations for x-axis labels are "Top" and "Bottom"
Possible locations for y-axis labels are "Left" and "Right"

Text

Single Use and Ressource specify the type of text: unique or from a known
ressource.

When Single Use is selected:
Text specifies the content of the text to be displayed.
Typography specifies the format of the labels.
Alignment specifies the horizontal alignment of the labels.

When Ressource is selected:
Ressource ID specifies the Ressource to retrieve the labels from.

Text
Rotation Specifies the rotation of the labels, possible values are "0", "90", "180" and "270".

Text Color Specifies which color to use as fill for the labes.

Interval Specifies the interval at which labels should be drawn

Number of
Decimals Specifies the number of decimals the labels along the axis should show.

Decimal
Separator Specifies whether to use ',' or '.' as the decimal separator.

Alpha Specifies the transparency of the line. The alpha value ranges between 0 and 255
for the widget. 0 is fully transparent and 255 is solid.

API Reference

FURTHER READING

API reference for the GraphLabelsBase class
API reference for the GraphLabelX class
API reference for the GraphLabelsY class

Interactions
The actions and triggers supported by a DynamicGraph in TouchGFX Designer.

Actions

Standard widget actions Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers

Trigger Description

Graph Clicked A DynamicGraph has been clicked.

Graph Dragged A DynamicGraph has been dragged across.

Performance
The DynamicGraph performance will vary, depending upon the setup of the widget.

The chosen dynamic behavior impacts the performance.

"Wrap And Clear" is a fast performing behavior because it only draws the newest data point added.

"Wrap And Overwrite" is a fast performing behavior because it only draws the newest data point
added.
"Scroll" is a demanding behavior, since everytime a data point is added, all the previous data points
visible also need to be redrawn.

Certain graph elements will be faster to draw.

Boxes and Histogram are the fastest performing graph elements, because they do not have to read
any pixel data or do any complicated calculations.

Area, Diamonds, Dots and Line, are CanvasWidgets and are heavily dependent on the MCU for
rendering.

For more details on drawing performance, read the General UI Component Performance section.

Examples
Generated Code
In the generated code for the View base class we can see how the Designer sets up a DynamicGraph.

Screen1ViewBase.cpp

TIP

You can use these functions and the others available in the DynamicGraph class in user code. Remember to
force a redraw by calling dynamicGraph.invalidate() if you change the appearance of the widget.

User Code

dynamicGraph.setScale(1);
dynamicGraph.setPosition(0, 0, 320, 240);
dynamicGraph.setGraphLabelPadding(0, 0, 0, 0);
dynamicGraph.setGraphPadding(0, 0, 0, 0);
dynamicGraph.setGraphRangeY(0, 100);

dynamicGraphLine1.setScale(1);
dynamicGraphLine1Painter.setColor(touchgfx::Color::getColorFrom24BitRGB(20, 151, 197));
dynamicGraphLine1.setPainter(dynamicGraphLine1Painter);
dynamicGraphLine1.setLineWidth(2);
dynamicGraph.addGraphElement(dynamicGraphLine1);

To add data points to the DynamicGraph, the method addDataPoint() is used. The following code
example shows how to add data points to a DynamicGraph, by overwriting the handleTickEvent()
method.

Screen1View.hpp

Screen1View.cpp

TouchGFX Designer Examples
To further explore the DynamicGraph, try creating a new application within TouchGFX Designer with
one of the following UI templates:

class Screen1View
{
public:
 Screen1View();
 virtual ~Screen1View() {}
 virtual void setupScreen();
 virtual void tearDownScreen();
protected:
 int tickCounter;
 void handleTickEvent();
};

#include <gui/screen1_screen/Screen1View.hpp>

Screen1View::Screen1View()
{
 tickCounter = 0;
}

void Screen1View::handleTickEvent()
{
 tickCounter++;

 // Insert each second tick
 if (tickCounter % 2 == 0)
 {
 // Insert data point
 dynamicGraph.addDataPoint(/* Your data point here, either float or integer */);
 }
}

DynamicGraph Example UI template in TouchGFX Designer

API Reference
FURTHER READING

API reference for the AbstractDataGraph class
API reference for the GraphScroll class
API reference for the GraphWrapAndClear class
API reference for the GraphWrapAndOverwrite class

Version: 4.16

Gauge
A Gauge is a widget capable of drawing a needle and arc indicating a given value within a specified
range.

Gauge running in the simulator

Widget Group
The gauge can be found in the Miscellaneous widget group in TouchGFX Designer.

Gauge in TouchGFX Designer

Properties
The properties for a Gauge in TouchGFX Designer.

Property Group Property DescriptionsProperty Group Property Descriptions

Name Name of the widget. Name is the unique identifier used in TouchGFX Designer
and code.

Location

X and Y specify the top left corner of the widget relative to its parent.

W and H specify the width and height of the widget.

Lock specifies if the widget should be locked in its current X, Y, W and H.
Locking the widget also disables interacting with the widget through the screen.

Visible specifies the visibility of the widget. Making the widget invisible also
disables interacting with the widget through the screen.

Style
Style specifies a predefined setup of the widget, that sets select properties to
predefined values.
These styles contain images that are free to use.

Background
Background Image specifies the image to be used as background.

Background offset specifies the x- and y-axis offset of the selected background
image.

Gauge

Rotation Center specifies the x- and y-axis point in the widget at which the
needle and arc should rotate.

Start and End Angle specify the start and end angle of the needle and arc.

Value Range specifies the minimum and maximum integer values of the
indicator.

Initial Value specifies the initial value of the gauge.

Animation
Animate Movement specifies if animation of the needle and arc are enabled.

Easing and Easing Option specify the easing equation used.

Needle

Needle Image specifies the image to be used as background.

Needle Rotation Center specifies the position in the needle image around
which it will rotate.

Moving Rendering Algorithm specifies the algorithm used to draw the needle
image while moving to new value.

Steady Rendering Algorithm specifies the algorithm used to draw the needle
image while stationary.

Property Group Property Descriptions

Arc

Use Arc specifies whether or not to use an arc.

Image/Color specifies either a color or an image to use as fill for the arc.

Set Arc position specifies whether or not to override the default arc size and
position.
By default arc is placed in 0, 0 and has the same size as the gauge itself.
Overriding the default setting is useful when you want to use an image as
painter for the arc, but the arc, and thus the image, is smaller than the size of
the gauge. So instead of having a large image of the size of the gauge with a lot
of transparent lines, the the image can be cut to the wanted size and place the
arc at a specific position. The arc will still follow the same rotation center.

Arc Position X and Y specifies the x- and y-axis position of the arc.

Arc Width and Height specifies the size of the arc.

Radius specifies the radius of the arc.

Line Width specifies the line width of the arc. If the value is 0, the arc is as large
as the radius.

Cap Style specifies line ending style of the arc. If the line width is set to 0, the
capstyle selected will have no effect.

Arc on top of Needle specifies whether or not the arc is on top of the needle.

Appearance Alpha specifies the transparency of the widget. The alpha value ranges between
0 and 255 for the widget. 0 is fully transparent and 255 is solid.

Mixins

Draggable specifies if the widget is draggable at runtime.

ClickListener specifies if the widget emits a callback when clicked.

FadeAnimator specifies if the widget can animate changes to its Alpha value.

MoveAnimator specifies if the widget can animate changes to X and Y values.

By default arc is placed in 0, 0 and has the same size as the gauge itself. Overriding the default setting
is useful when you want to use an image as painter for the arc, but the arc, and thus the image, is
smaller than the size of the gauge. So instead of having a large image of the size of the gauge with a
lot of transparent lines, the the image can be cut to the wanted size and place the arc at a specific
position. The arc will still follow the same rotation center.

Interactions
The actions and triggers supported by a Gauge in TouchGFX Designer.

Actions

Widget specific actions Description

Set value Set the value of the Gauge.

Update value Update the value of the Gauge with a duration.

Standard widget actions Description

Move widget Move a widget to a new position over time.

Fade widget Modify alpha value of widget over time.

Hide widget Hides a widget (sets visibility to false).

Show widget Make a hidden widget visible (sets visibility to true).

Triggers

Trigger Description

Gauge
value set

Will be triggered for both instant updates and intermediate steps during an update
animation. Will only trigger when the new value differs from the current one.

Gauge
value
updated

Will be triggered when an update animation is completed. If duration of the update
is 0 the update will happen instantly but will still trigger this event.

Performance
A Gauge consists of an Image, Circle and a TextureMapper.

The Circle and TextureMapper components are MCU resource intensive components. Therefore, the
Gauge is considered a demanding widget on most platforms.

For more details on drawing performance, read the General UI Component Performance section.

Examples
Generated Code
In the generated code for the View base class we can see how the Designer sets up a Gauge.

MainViewBase.cpp

TIP

You can use these functions and the others available in the Gauge class in user code. Remember to force a
redraw by calling gauge.invalidate() if you change the appearance of the widget.

User Code
To set the value of the Gauge, setValue(int value) and updateValue(int value, uint16_t
duration) can be used.

setValue(int value) will immediately move the needle and arc to the new value with no animation.

#include <gui_generated/main_screen/mainViewBase.hpp>
#include "BitmapDatabase.hpp"

mainViewBase::mainViewBase()
{
 gauge.setBackground(touchgfx::Bitmap(BITMAP_BLUE_GAUGES_ORIGINAL_GAUGE_BACKGROUND_STYL
 gauge.setPosition(115, 11, 251, 251);
 gauge.setCenter(125, 125);
 gauge.setStartEndAngle(-85, 85);
 gauge.setRange(0, 100);
 gauge.setValue(0);
 gauge.setEasingEquation(touchgfx::EasingEquations::elasticEaseOut);
 gauge.setNeedle(BITMAP_BLUE_NEEDLES_ORIGINAL_GAUGE_NEEDLE_STYLE_01_ID, 11, 55);
 gauge.setMovingNeedleRenderingAlgorithm(touchgfx::TextureMapper::BILINEAR_INTERPOLATIO
 gauge.setSteadyNeedleRenderingAlgorithm(touchgfx::TextureMapper::BILINEAR_INTERPOLATIO
 gauge.setArcVisible();
 gaugePainter.setBitmap(touchgfx::Bitmap(BITMAP_BLUE_GAUGES_ORIGINAL_GAUGE_FILL_STYLE_0
 gauge.getArc().setPainter(gaugePainter);
 gauge.getArc().setRadius(94);
 gauge.getArc().setLineWidth(14);
 gauge.getArc().setCapPrecision(180);
 gauge.setArcPosition(28, 30, 196, 88);

 add(gauge);
}

updateValue(int value, uint16_t duration) animates needle and arc to new value over the
defined duration in ticks. If duration is equal to 0, the update will be done immediately. The animation
used will be the one defined on the gauge using setEasingEquation(EasingEquation
easingEquation)

MainView.cpp

TouchGFX Designer Examples
To further explore the Gauge, try creating a new application within TouchGFX Designer with one of the
following UI templates:

Gauge Example UI template in TouchGFX Designer

API Reference
FURTHER READING

#include <gui/main_screen/MainView.hpp>

MainView::MainView()
{
 tickCounter = 0;
}

void MainView::handleTickEvent()
{
 tickCounter++;

 // Change value every 120 tick.
 if (tickCounter % 120 == 0)
 {
 // Insert data point
 gauge.updateValue(/* new integer value */, 30); // animates needle and arc to new va
 }
}

API reference for the gauge class

Version: 4.16

General UI Component
Performance
This section describes the performance of general TouchGFX rendering operations used by most UI
components.

Image Drawing
Image drawing is one of the most essential drawing operations in TouchGFX, as almost all UI
components to some extent rely on drawing one or more images. The ability of your system to draw
images in a fast and effective way is therefore often very important. There are a lot of factors that
influence the performance of image drawing. However, on almost all hardware setups, TouchGFX
image drawing is considered a fast operation compared to other drawing operations.

Hardware support for data copy
TouchGFX stores the image data uncompressed in the selected image format (e.g. RGB565, L8,
ARGB8888). The advantage of the uncompressed format is that it allows TouchGFX, in most cases, to
use the image directly and transfer it unmodified to the framebuffer. If the MCU has a DMA, this can
and should be used for the memory copy, as this speeds up the transfer and minimizes the MCU load.

One limitation to this approach is if the image format includes an alpha channel. Here a normal DMA
transfer cannot be used since the MCU needs to perform pixel blending of the image data with
framebuffer pixels. However, if you are using an STM32 with graphics acceleration like Chrom-ART /
DMA2D, you can utilize the DMA for these types of images as well. Here the DMA is not only capable
of copying data, but actually does a copy and blending operation in one go, thereby improving speed
and lowering the MCU load considerably.

Image format
The image format has an impact on the image drawing performance as well, depending on the
hardware support you have. A rule of thumb is, that the less data you have to transfer, the faster you
can do it. So transfering an RGB565 image compared to a similar RGB888 will be faster in most cases,
since an RGB565 image is two thirds the size of the equivalent RGB888 image.

Access to the Image data

The time needed to access the image data is very important, since this will be accessed each time the
image is rendered. The image data can be stored in different hardware locations, with different access
times, in a TouchGFX application.

Image data location Description

External Flash

The advantage of external flash is its low cost and the size, which is often
quite large, allowing you to have a lot of images in your application.
However, access time varies a lot, but choosing QSPI or alternatives like it,
will give you a high throughput, resulting in a significant boost to the
image drawing performance.

External RAM

In some cases you might need to cache your images in External RAM. This
is often the case when you are forced to use non-memory mapped flash
(e.g. NAND, EMMC) which cannot be used directly for image rendering in
TouchGFX. In this case the access to the external RAM is essential for the
performance of image drawing in your application.

Internal Flash

In some cases you can store some or all of your images in internal flash,
even though the storage space here is very limited. Access is very fast, so
if you have some images that are essential for an animation and
performance is an issue (e.g. if it is used by a TextureMapper) it might be
worth trying to store it in internal flash if possible.

Internal RAM
In very rare cases, you will render images from the internal RAM. The
storage space is very limited but the access time is very fast, so images
stored here (using TouchGFX Image Caching) will be rendered very fast.

Access to the framebuffer
Rendering an image will always end up in an update to the framebuffer. If the image includes an alpha
channel, you will not only write, but also read pixel data in the framebuffer to perform the actual
blending. Therefore, the read/write access time to the RAM you are using for storing the framebuffer is
key to have a good image drawing performance.

Image resolution
Since the data that needs to be transfered is proportional to the resolution of the image, the image
resolution naturally has an effect on the image drawing operation.

Transparency
The opacity of an image has an effect on the rendering time for an image. An image with alpha will
have a longer rendering time than an image without due to the fact that it will have to be blended

with the framebuffer. Therefore, a blending operation has to read from the framebuffer, whereas a
solid image can simply overwrite data in the framebuffer. This is the case even if you have hardware
acceleration. The ratio between rendering solid and semi-transparent images may, however, vary from
one setup to another.

MCU Drawing
Some widgets rely on direct framebuffer manipulation. This approach performs one or more
calculations for each pixel in the invalidated area, then updates the pixel in the framebuffer. This is a
rather slow operation, especially if the calculation for each pixel is complex.

The MCU processing power is essential if your MCU drawing is performing a lot of calcuations. Access
to the framebuffer (access to either internal or external RAM) will also have an impact since writing
(and possibly reading) the framebuffer data is done per pixel in the invalidated area.

Canvas Widgets
Canvas widgets are a special type of TouchGFX widget used for drawing anti-aliased geometric shapes.
They are typically quite complex and thus potentially fairly slow to render.

The rendering time is linear to the size of the invalidated part of the geometric shape.

Canvas widgets requires a memory block to store intermediate calcuation results. The size and
performance impact of this is described in the canvas widgets section.

TIP

Most of the standard TouchGFX canvas widgets, like Circle, have update methods that will only invalidate the
changed part of the widget. So if you are updating a Circle for example, use circle::updateArc(...) ,
which will not invalidate the entire circle but only the changed part. Be sure to use these kind of operations
for optimal performance.

Texts
Text rendering depends on image drawing, as all the used characters are transformed into images as
described in the text section. The images are in A4 format which is basically a 4 bit alpha value for
each of the pixels in the image. If you apply a color to this pattern, you will have an anti-aliased image
of a character.

Since text rendering is a set of image drawing operations, one for each character, the performance
characteristics for image drawing applies to text rendering as well, including performance
improvements using hardware acceleration like Chrom-ART / DMA2D.

Version: 4.16

Achieving Better Performance
with CacheableContainer
In this section you will see how to achieve better performance in some animation scenarios by using
RAM to save some reusable drawings.

When moving widgets in your application (like Image or TextArea), either through dragging or
animation, TouchGFX needs to redraw these widgets in their new positions in every frame, while also in
most cases redraw part of the background that was previously covered by these widgets.

When these widgets are computationally complex such as the TextureMapper widget, Shapes, and also
large transparent Images it is hard for the MCU to render effeciently, as these are rendered without
hardware acceleration. This results in a screen redraw that takes many milliseconds and impacts the
performance of the application.

In this we will now see how to use the CacheableContainer to speed up animations that involve
computationally complex elements by avoiding costly redrawing. While measurements in this article
were performed using an STM32F429Discovery board, the CacheableContainer technique applies
generally to other hardware platforms. Some available RAM is required for creation of a bitmap cache.

FURTHER READING

Read also about Dynamic Bitmaps.

Performance Impact
Due to the performance implications of moving computationally expensive widgets with the MCU, an
animation that evolves in many small steps will appear slow and sluggish due to a high render time for
each frame. Programming the animation to complete faster (in time) will cause individual steps to be
large, and the animation will not appear smooth to the user.

The following is an example running on an STM32F429-DISCO board (240x320), where a fullscreen
Container is moved up vertically, while a similar Container is moved in from the bottom.

In the video below, the ToggleButton switches between CacheableContainer being enabled and
disabled. The performance difference is clearly visible.

The two Containers that are moved each consist of a background Box, a TextArea, and a
TextureMapper. The TextureMapper is configured to use the bilinear rendering algorithm and a global
alpha of 174, making it very expensive to draw. The rendering time for the whole screen is around 100
ms on the STM32F429-DISCO board.

Test Application
In order to move the two elements relative to each other, they are put in a parent Container named
masterContainer which is given twice the height of either child Container, giving it a size of 240 x
640 (2*320) . By declaring the container as a move animator in TouchGFX Designer, it will be able to
receive application ticks and animate over time during which performance can be measured.

0:00

CacheableContainer test application overview

The upper container named container1 is placed at position x=0, y=0. The lower container named
container2 is placed at position x=0, y=320 directly below container1 in the parent
masterContainer .

Since container1 and container2 are placed in the masterContainer , the two elements will move
together when we move the masterContainer . For example, if we move the masterContainer to
position x=0, y=-320, container1 will be invisible, but container2 will be fully visible. The
animation between these two states can be created using an interaction in TouchGFX Designer.

The code below will move the masterContainer up if it is down, and down if it is already up. For
simplicity, the code is inserted into the handleClickEvent eventhandler of the view, and is therefore
executed whenever the user touches anywhere on the screen (below the ToggleButton):

Screen1View.cpp

void Screen1View::handleClickEvent(const ClickEvent& evt)
{
 //Forward event to base View (for the ToggleButton to work)
 View::handleClickEvent(evt);
 //If touch is released and y > 50 (below the ToggleButton), move masterContainer
 if (evt.getType() == ClickEvent::RELEASED && evt.getY() > 50)
 {
 const int endPosition = masterContainer.getY() >= 0 ? -320 : 0;
 masterContainer.startMoveAnimation(masterContainer.getX(), endPosition,

Performance of Redrawing Complex
Containers
As mentioned, the render time for one frame is around 100 ms when the MCU has to redraw the
expensive TextureMapper at each small step of the animation. This gives us 10 frames per second (fps).
The whole animation is 20 frames and will therefore take around two seconds.

On the STM32F429-DISCO evaluation kit, the rendering time is available as a digital signal on GPIO
G14. The VSYNC signal is available on G13. The GPIO configuration is set up in the GPIO.cpp file.

The following image is a measurement of VSYNC and RENDER_TIME for the application when moving
the masterContainer upwards:

Saleae Logic Software vsync and render time measurement

The rendering time is the first signal (active low). We can see that the rendering time for the first frame
in the move animation is 99.29 ms.

The lower signal is the VSYNC, which transitions high to low on every frame when pixels are clocked
out to the display. We can see on the measurement above that drawing a single frame covers the time
for 7 frames on the display. On the 8th VSYNC signal the rendering of the next frame starts. During the
rendering, the display is repeatedly showing the previously drawn frame (in the other framebuffer).

Improving Performance Through Caching
We can improve the performance of the above move animation by caching the rendering of the
container to memory. After doing that we can simply move the pixels located in that memory (using
DMA) to the framebuffer, rather than redrawing a complex widget using the MCU. Even if an
application could achieve 60 frames per second using the MCU alone it would be busy (perhaps with
100% MCU load) making the same calculations repeatedly rather than doing something more
important.

 20 /* ticks */,
 EasingEquations::cubicEaseInOut,
 EasingEquations::cubicEaseInOut);
 }
}

This "in-memory-image" of the Container can now be shown on the screen at different places, instead
of re-rendering the Container.

The first thing to do is to enable caching through TouchGFX Designer by checking the Cacheable
property on the two Containers container1 and container2 :

CacheableContainer option on Container widget

The next step is to create two dynamic bitmaps in RAM that the Containers can be cached into.

Decide on an address in RAM where the bitmap cache should be located. In this particular example,
we placed it in SDRAM (starts at address 0xd0000000 on an STM32F429) just after the framebuffers.

For the Windows simulator, the cache is allocated in a global variable:

Screen1View.hpp

Initialize the bitmap cache and create two dynamic bitmaps for caching:

#ifdef SIMULATOR
 uint32_t sdramBuffer[8*1024*1024/4];
 uint16_t* sdram = (uint16_t*)sdramBuffer;
#else
 uint16_t* sdram = (uint16_t*)(0xd0000000 + 320*240*2*2);
#endif

Screen1View.cpp

Assign the dynamic bitmaps to the Containers and set them in caching mode:

Screen1View.cpp

Calls to Container::updateCache() will render the two Containers into their respective bitmaps. Call
this method whenever an updated state of the containers is needed. This must be handled in
application code by the developer.

With caching enabled for container1 and container2 , performance measurements now show a
factor 20 improvement in render time from ~99ms to ~5ms meaning we can easily render in 60
frames per second completing the entire animation within 20 frames.

Saleae Logic Software vsync and render time measurement

Conclusion
Using CacheableContainer with DynamicBitmap when animating (frequent moves) can improve the
render time dramatically when the subject is computationally complex and does not change between
animation steps. In the event that the cache must update (e.g. a watch face when the time is updated)
the contents of the cache can be recomputed at certain points during the animation controlled by the
application.

//Create bitmap cache and two dynamic bitmap for caching, each bitmap is 150Kb
Bitmap::setCache(sdram, 320*1024, 2); //320Kb cache
dynamicBitmap1 = Bitmap::dynamicBitmapCreate(240, 320, Bitmap::RGB565);
dynamicBitmap2 = Bitmap::dynamicBitmapCreate(240, 320, Bitmap::RGB565);

//Assign the bitmaps to the CacheableContainers
container1.setCacheBitmap(dynamicBitmap1);
container2.setCacheBitmap(dynamicBitmap2);

//Enable caching
container1.enableCachedMode(true);
container2.enableCachedMode(true);

//Finally update the cached bitmaps
container1.updateCache();
container2.updateCache();

FURTHER READING

Dynamic Bitmaps
Dynamic Bitmaps: Load images at runtime

Version: 4.16

Loading Images at Runtime
This section describes how dynamic bitmaps can be used to create applications where some of the
graphic content is read from files or other input at runtime. The dynamic bitmaps can be used to show
e.g. image files from an SD-card.

NOTE

Read first about Dynamic Bitmaps.

Recall that standard bitmaps are compiled into the application and therefore must be available at
compile time. The Dynamic Bitmap feature allows you to read images from files at runtime, or even
download images through an internet connection.

Loading BMP file Example
Here we will see how to use a BMP loader to load pixels from a Windows BMP file. The code for the
loader is later in the article.

Insert first an Image widget in the view. This widget will show the BMP:

Load the image date in setupScreen:

class TemplateView : public View
{
private:
 Image image;
}

void TemplateView::setupScreen()
{
 FILE* f = fopen("image.jpg", "rb");
 uint16_t width, height;

 //Get the image dimensions from the BMP file
 BMPFileLoader::getBMP24Dimensions(f, width, height);
 BitmapId bmpId;

 //Create (16bit) dynamic bitmap of same dimension
 bmpId = Bitmap::dynamicBitmapCreate(width, height, Bitmap::RGB565);

 //Load pixels from BMP file to dynamic bitmap

The BMP loader
Here is the code for a simple BMP file loader. It only supports 24bpp BMP files. You may have to adjust
the file system calls to match your system.

BMPFileLoader.hpp

BMPFileLoader.cpp

 BMPFileLoader::readBMP24File(Bitmap(bmpId), f);

 //Make Image show the loaded bitmap
 image.setBitmap(Bitmap(bmpId));

 //Position image and add to View
 image.setXY(20, 20);
 add(image);
 ...
}

#include <touchgfx/hal/Types.hpp>
#include <touchgfx/Bitmap.hpp>

using namespace touchgfx;

class BMPFileLoader
{
public:
 typedef void* FileHdl;

 static void getBMP24Dimensions(FileHdl fileHandle, uint16_t& width, uint16_t& height);
 static void readBMP24File(Bitmap bitmap, FileHdl fileHandle);
private:
 static int readFile(FileHdl hdl, uint8_t* const buffer, uint32_t length);
 static void seekFile(FileHdl hdl, uint32_t offset);
};

#include <gui/common/BMPFileLoader.hpp>
#include <touchgfx/Color.hpp>

int BMPFileLoader::readFile(FileHdl hdl, uint8_t* const buffer, uint32_t length)
{
 uint32_t r = fread(buffer, 1, length, (FILE*)hdl);
 if (r != length)
 {
 return 1;
 }
 return 0;
}

void BMPFileLoader::seekFile(FileHdl hdl, uint32_t offset)
{
 fseek((FILE*)hdl, offset, SEEK_SET);
}

void BMPFileLoader::getBMP24Dimensions(FileHdl fileHandle, uint16_t& width, uint16_t& heig
{
 uint8_t data[50];
 seekFile(fileHandle, 0);
 readFile(fileHandle, data, 26); //read first part of header.

 width = data[18] | (data[19] << 8) | (data[20] << 16) | (data[21] << 24);
 height = data[22] | (data[23] << 8) | (data[24] << 16) | (data[25] << 24);
}

void BMPFileLoader::readBMP24File(Bitmap bitmap, FileHdl fileHandle)
{
 uint8_t data[50];
 seekFile(fileHandle, 0);
 readFile(fileHandle, data, 26); //read first part of header.

 const uint32_t offset = data[10] | (data[11] << 8) | (data[12] << 16) | (data[12] << 2
 const uint32_t width = data[18] | (data[19] << 8) | (data[20] << 16) | (data[21] << 24
 const uint32_t height = data[22] | (data[23] << 8) | (data[24] << 16) | (data[25] << 2

 readFile(fileHandle, data, offset - 26); //read rest of header.

 //get dynamic bitmap boundaries
 const uint32_t buffer_width = bitmap.getWidth();
 const uint32_t buffer_height = bitmap.getHeight();

 const uint32_t rowpadding = (4 - ((width * 3) % 4)) % 4;

 const Bitmap::BitmapFormat format = bitmap.getFormat();
 uint8_t* const buffer8 = Bitmap::dynamicBitmapGetAddress(bitmap.getId());
 uint16_t* const buffer16 = (uint16_t*)buffer8;

 for (uint32_t y = 0; y < height; y++)
 {
 for (uint32_t x = 0; x < width; x++)
 {
 if (x % 10 == 0) //read data every 10 pixels = 30 bytes
 {
 if (x + 10 <= width) //read 10
 {
 readFile(fileHandle, data, 10 * 3); //10 pixels
 }
 else
 {
 readFile(fileHandle, data, (width - x) * 3 + rowpadding); //rest of li
 }
 }

This code is for illustrative purposes. A more optimal reader for RGB888 can read directly from the file
to the dynamic bitmap memory (remember to skip the row padding). The reader above reads 10 pixels
from the BMP file to a temporary buffer. The pixels are then copied to the bitmap while converting to
the correct format.

Configure memory for dynamic bitmaps
Before you can create and use dynamic bitmaps you must configure TouchGFX. It is a prerequisite to
provide a buffer and the maximum number of dynamic bitmaps (also for the simulator).

Here is an example for STM32F7xx where we allocate a buffer in external RAM: We wish to load and
show a 24-bit bitmap of size 320x240. The memory requirement is thus 320x240x3 = 230400. We also

 //insert pixel, if within dynamic bitmap boundaries
 if (x < buffer_width && ((height - y - 1) < buffer_height))
 {
 switch (format)
 {
 case Bitmap::RGB565:
 buffer16[x + (height - y - 1) * buffer_width] =
 touchgfx::Color::getColorFrom24BitRGB(data[(x % 10) * 3 + 2], data
 break;
 case Bitmap::RGB888:
 {
 //24 bit framebuffer
 const uint32_t inx = 3 * (x + (height - y - 1) * buffer_width);
 buffer8[inx + 0] = data[(x % 10) * 3 + 0];
 buffer8[inx + 1] = data[(x % 10) * 3 + 1];
 buffer8[inx + 2] = data[(x % 10) * 3 + 2];
 break;
 }
 case Bitmap::ARGB8888:
 {
 //24 bit framebuffer
 const uint32_t inx = 4 * (x + (height - y - 1) * buffer_width);
 buffer8[inx + 0] = data[(x % 10) * 3 + 0];
 buffer8[inx + 1] = data[(x % 10) * 3 + 1];
 buffer8[inx + 2] = data[(x % 10) * 3 + 2];
 buffer8[inx + 3] = 255; //solid
 break;
 }
 default:
 assert(!"Unsupported bitmap format in BMPFileLoader!");
 }
 }
 }
 }
}

need a little space for bookkeeping, so we allocate 232000 bytes for the buffer.

The final argument is the maximum number of dynamic bitmaps, so adjust this according to your
needs.

NOTE

Note that in case of insufficient memory, the BitmapId returned by dynamicBitmapCreate will be
BITMAP_INVALID.

Loading JPEG files
A JPEG File Loader example can be found here which shows how to use LibJPEG to use JPEG-files. It
uses a JPEGLoader class similar to the above BMPFileLoader.

static uint32_t bmpCache = (uint32_t)(0xC00C0000); // SDRAM
void touchgfx_init()
{
 HAL& hal = touchgfx_generic_init<STM32F7HAL>(dma, display, tc, 480, 272, (uint16_t*)bmpC
 ...
}

Version: 4.16

Using the L8 Image Format to
Reduce Memory Consumption
Images in the L8 format take up less flash storage and are faster to draw than e.g. ARGB8888.

An image in L8 format consists of a color palette and a pixel array: The color palette lists up to 256
different colors specified in either 16-bit format RGB565, 24-bit format RGB888, or 32-bit format
ARGB8888. The pixel array consists of one byte for each pixel. This byte is an index into the color
palette (list of colors), pointing out the color for the pixel. The TouchGFX framework draws an L8 image
by reading the pixels one-by-one, looking up the colors in the palette and writing these to the
framebuffer. This happens automatically and is accelerated by the STM32 Chrom-ART hardware
accelerator, if available on the hardware.

8-bit per pixel means that one L8 image can use 256 different colors. Another L8 image can use 256
other colors, since the two images each have their own palette.

An L8 image with 4 x 4 pixels and a palette with 4 colors

Pixels are one byte (8-bit) each. The size of the pixels is therefore width x height bytes. The palette
colors can be 16-bit, 24-bit, or 32 bit colors. Each color definition will therefore take up 2, 3, or 4 bytes.

Solid images should be stored in L8_RGB565 if the framebuffer is 16-bit (RGB565 format). If the
framebuffer is 24-bit (RGB888) the L8 images must be stored in L8_RGB888 format. If the image is
transparent the 32-bit format (ARGB8888) must be used:

Format Framebuffer format Supports transparent pixels

Format Framebuffer format Supports transparent pixels

L8_RGB565 16-bit RGB565 No

L8_RGB888 24-bit RGB888 No

L8_ARGB8888 Both Yes

FURTHER READING

Read more about palette image formats here: https://en.wikipedia.org/wiki/Indexed_color

Example L8 Image
Here is a typical logo image. This image only uses 16 different colors:

200 x 200 pixels L8 image with 16 different 24-bit colors.

The size in flash of this image is significant lower than the original image in the standard 24-bit format
(RGB888). The table below lists the flash usage for this concrete image for the three different palette
formats and for the non L8 format

We see that the size reduction is very large, and that the size of the palette is insignificant on a
medium sized image.

Format Size of pixels (bytes) Size of palette (bytes) Total size (bytes) Reduction

RGB888 120,000 0 120,000 -

L8_RGB565 40,000 32 40,032 66.6%

L8_RGB888 40,000 48 40,048 66.6%

L8_ARGB8888 40,000 64 40,064 66.6%

Using L8 Images in TouchGFX Designer
It is very easy to use the L8 image format in TouchGFX. The only thing to do is to configure the image
converter to convert the image from PNG to L8 format. Here we will go through the whole process:

Start a new project in the TouchGFX Designer. Copy your image to the assets/images folder in the new
project:

Images folder of TouchGFX project

Now go to the TouchGFX Designer and click the Images tab in the top bar and select the image:

Logo in Images view of TouchGFX Designer

On the right side on the window, select image format L8_RGB888 (this example is running 24 bit
colors).

An image Widget can now be inserted on the canvas (here we inserted a Box in the background):

Image widget on Canvas in TouchGFX Designer

Nothing needs to be changed in the UI code. The Image Converter converts the PNG file and
generates an image in L8 format because of the configuration we did in the Images tab.

Transparent Images
As mentioned above it is also possible to use L8 format for images with transparency.

170 x 60 pixels button image in 32 bit format ARGB8888

The above image uses 108 colors (many shades of blue). This image can use the format L8_ARGB8888.
The size will be significantly lower:

Format Size of pixels (bytes) Size of palette (bytes) Total size (bytes) Reduction

ARGB888 40,800 0 40,800 -

Converting an image to 256 colors
Many images use more than 256 colors. This is common for images that are photo-realistic or images
with gradients. These images cannot directly be converted to L8 image format in the TouchGFX
Designer, because they contain to many colors.

In many cases though, it is possible to reduce the number of colors used in a specific image. Ideally, a
graphics artist will convert/supply the images in 256 colors, however image manipulation tools can
also perform the conversion without loosing too much of the image quality.

Paint.NET
The simplest way is to use Paint.NET. Open the original image and use Save As to save the image in
another file. In the Save Configuration dialog, select 8-bit, as pixel depth:

Paint.NET saving image in 8 bit format

Format Size of pixels (bytes) Size of palette (bytes) Total size (bytes) Reduction

L8_ARGB8888 10,200 432 10,632 73.9%

Now use the new PNG in your project. Remember to select the L8_ARGB8888 format in the Images tab
in the TouchGFX Designer. Shadows are not handled very well, but icons with transparent edges looks
good in many cases. It is possible to adjust the "Transparency threshold" value and in some cases
improve the result.

ImageMagick
Another suitable tool, that sometimes results in better L8 images, is ImageMagick (download from
www.imagemagick.org). This tool can convert images from the command line. This makes it suitable
for use in scripts. To convert the clock_bg.png to an image using at most 256 colors, use the following
command:

ImageMagick can also tell you how many colors are used in an image. Use this command:

Comparison
The three images (original, L8 using Paint.NET, L8 using ImageMagick) are seen below for comparison:

Clock image comparison, left to right: original, Paint.NET, ImageMagick

The middle clock lost the details in the border shadow. In both cases the central part of the clock
background looks useable.

Manual Configuration

magick convert clock_bg.png -colors 256 clock_bg_l8_256.png

magick identify -format %k Blue_Buttons_Round_Edge_small.png

It is also possible to select image formats without using the TouchGFX Designer. The image formats
are specified in file application.config located in the project root:

application.config

The "images" section under "image_configuration" specifies the format for individual images. If an
image is not mentioned here, the image will be generated in the default format
(opaque_image_format or nonopaque_image_format).

We recommend using the TouchGFX Designer for image configuration when possible.

{
 "image_configuration": {
 images": {
 "Blue_Buttons_Round_Edge_small.png": {
 "format": "L8_ARGB8888"
 }
 },
 "dither_algorithm": "2",
 "alpha_dither": "yes",
 "layout_rotation": "0",
 "opaque_image_format": "RGB888",
 "nonopaque_image_format": "ARGB8888",
 "section": "ExtFlashSection",
 "extra_section": "ExtFlashSection"
 }
}

Version: 4.16

Creating Dynamic L8 Images
This section explains the use of dynamic L8 images and especially how to create the palette.

Read in general about Dynamic Bitmaps here and about the L8 image format here.

Dynamic L8 Images
Dynamic L8 bitmaps are created like any other dynamic bitmap, except that we also have to specify
the type of palette to create for the bitmap.

TouchGFX supports 3 types of palettes:

Palette Description

CLUT_FORMAT_L8_ARGB8888 32-bit, 8 bits for each of red, green, blue and per pixel alpha
channel

CLUT_FORMAT_L8_RGB888 24-bit, 8 bits for each of red, green and blue, no per pixel alpha
channel

CLUT_FORMAT_L8_RGB565 16-bit, 5 bits for red, 6 bits for green, 5 bits for blue, no per pixel
alpha channel

Creating a Dynamic L8 image with 24-bit palette
Here we create a 100x100 pixels L8 bitmap with a 24-bit palette:

Screen1View.cpp

This call allocated a 100x100 L8 bitmap and a 24-bit palette in the bitmap cache. The palette always
holds 256 colors for dynamic bitmaps.

Accessing the palette
The palette is located 4 bytes after the pixels (aligned on 32-bit). The bytes contains information about
the palette type and length of the palette.

BitmapId dynamicBitmap1 = Bitmap::dynamicBitmapCreate(100, 100, Bitmap::L8, Bitmap::CLUT_F

We can get a pointer to the (so far uninitialized) palette like this:

Screen1View.cpp

Dynamic L8 Bitmap Example
We will now go through an example of creating a dynamic L8 bitmap and manipulating the palette.
Manipulating the palette if not a typical thing to do for a general application. The example serves the
purpose of illustrating how to access and generate a palette.

First we create a Screen in TouchGFXDesigner and insert a white Box in the background and an Image
at e.g. x=140, y=8:

Creating a Screen

//Get a pointer to the bitmap data (pixels and palette)
uint8_t* data = Bitmap::dynamicBitmapGetAddress(dynamicBitmap1);

//1 byte pr pixel, round up to 32-bit
uint32_t byteSize = 100*100;
byteSize = ((byteSize + 3) & ~3);

//Palette starts four bytes after the pixels
uint8_t* pal = (data + byteSize + 4);

Now generate the code and open the Screen1View.cpp file. We must insert code in setupScreen to
initialize the bitmap cache and create a dynamic bitmap.

We create a bitmap of 200*256 pixels. Remember each pixel in an L8 bitmap is one byte. We color
each row of the image with a different color. First row has color 0, last row has color 255.

Then we initialize the colors in the palette. We calculate the start address of the palette and set the
RGB values of the 256 colors. Here we create colors that go from green to red and back to green
again.

Screen1View.cpp

#ifdef SIMULATOR
uint32_t cacheBuffer[320*1024/4]; //simulate PSRAM
uint16_t* psram = (uint16_t*)cacheBuffer;
#else
uint16_t* psram = (uint16_t*)(0xd0000000 + 480*272*2*2); //Address after two 16bit framebu
#endif

Screen1View::Screen1View()
{

}

void Screen1View::setupScreen()
{
 Screen1ViewBase::setupScreen();

 //Create one dynamic bitmap
 Bitmap::setCache(psram, 320*1024, 1); //320Kb cache
 BitmapId dynamicBitmap1 = Bitmap::dynamicBitmapCreate(200, 256, Bitmap::L8, Bitmap::CL
 imageDynamic.setBitmap(Bitmap(dynamicBitmap1));

 if (dynamicBitmap1 == BITMAP_INVALID)
 {
 touchgfx_printf("Unable to create dynamic bitmap\n");
 }
 else
 {
 uint8_t* data = Bitmap::dynamicBitmapGetAddress(dynamicBitmap1);

 uint8_t* pixel = data;
 //make colored rows
 for (int y = 0; y<256; y++)
 {
 for (int x = 0; x<200; x++)
 {
 *pixel++ = y;
 }
 }

This gives us a Screen that looks like this:

Showing L8 image

Manipulating the Palette
Since we have access to the palette used for the dynamic L8 bitmap, we can easily manipulate it.

Here we cycle the colors one index down and force a redraw of the image in every frame:

Screen1View.cpp

 uint32_t byteSize = 200*256;
 byteSize = ((byteSize + 3) & ~3);

 //Palette starts four bytes after the pixels
 uint8_t* pal = (data + byteSize + 4);

 //Make palette with 256 colors from green to red to green
 for (int i = 0; i<256; i++)
 {
 //BGR
 pal[i*3 + 0] = 0x00;
 pal[i*3 + 1] = 127*(1+cosf(i*6.28f/255));
 pal[i*3 + 2] = 255*(sinf(i*3.14f/255));
 }
 }
}

...
void Screen1View::handleTickEvent()
{
 //get palette address
 uint8_t* data = Bitmap::dynamicBitmapGetAddress(imageDynamic.getBitmap());

This will move colors in the dynamic bitmap "upwards":

Cycling the L8 palette

 uint32_t byteSize = 200*256;
 byteSize = ((byteSize + 3) & ~3);
 uint8_t* pal = (data + byteSize + 4);

 //Cycle palette, copy color 0
 int8_t blue = pal[0], green = pal[1], red = pal[2];

 //Move palette down, 1->0, 2->1, ...
 for (int i = 0; i<255*3; i+=3)
 {
 pal[i] = pal[i+3];
 pal[i+1] = pal[i+4];
 pal[i+2] = pal[i+5];
 }

 //Insert color 0 as color 255
 pal[255*3+0] = blue;
 pal[255*3+1] = green;
 pal[255*3+2] = red;

 //Force redraw by invalidating
 imageDynamic.invalidate();
}

Version: 4.16

TouchGFX on Low Cost
Hardware
This section discusses how to use TouchGFX on low cost hardware with limited amount of RAM and
flash, no acceleration and slow connection to external flash and display.

We will try to give some advice on writing the best applications of the given hardware.

Throughout this section we will use the application template for the STM32G071 nucleo board with
the X-Nucleo-GFX01M1 expansion board as example hardware.

Nucleo-G071RB with X-Nucleo-GFX01M1 expansion board

Hardware Overview

The hardware setup in this kit consist of the STM32G071 MCU, a SPI NOR flash, a SPI display, and
joystick button.

Component

MCU STM32G071RB

MCU RAM 32 Kb

MCU Flash 128 Kb

Display Displaytech DT022CTFT

Display resolution 240 x 320

Display controller ILI9341V

Display connection SPI

Display connection speed 32 MHz

NOR Flash Macronix MX25L6433F

NOR Flash size 64 Mbit

NOR Flash connection speed 32 MHz

The display is connected to the SPI1 peripheral and the flash is connected to the SPI2 peripheral. This
allows the MCU to read data from the flash while transmitting data to the display.

Nucleo-G071RB with X-Nucleo-GFX01M1 architecture

GPIO Allocation

Signal GPIO Pin

Display CS PB5

Signal GPIO Pin

Display DCX PB3

Display SCK PA5

Display MOSI PA7

Display TE PA0

Flash CS PB9

Flash SCK PB13

Flash MOSI PC3

Flash MISO PC2

The table above lists the GPIO allocation for the signals to the flash and display. These signal can be
monitored with a oscilloscope or logic analyzer. This is very usefull during debugging of e.g.
performance problems.

Starting a Project
It is easy to start a project for the STM32G071RB Nucleo evaluation kit in the TouchGFX Designer. Click
"Change" on the Application Template and select the STM32G071 Nucleo. This template is developed
specifically for the Nucleo-G071RB kit with the X-Nucleo-GFX01M1 display shield.

New project for Nucleo-G071RB

The application template supports the NOR flash, the display, and the buttons. The display can be
used both in portrait and horisontal mode.

The display orientation can be change in the TouchGFX Designer in the Config -> Display section:

Selecting portrait or horizontal display orientation

The display on the X-Nucleo-GFX01M1 shield is natively portrait orientated (higher than wide), but it
can easily be used with horizontal orientation.

Display Updates
As mentioned above the display resolution is 240 x 320 pixels. A total of 76.800 pixels or 153.600
bytes. The SPI connection between the MCU and the display is running at 32 MHz. This allows us to
transfer 4 MBytes/s or 2M pixels/s.

The refresh rate of the display is 76.1 Hz which gives us a frame time of 13.14 ms.

Tearing effect signal from the display

This means that we have at most 13 ms to send data for the next frame. In that time we can send
2.000.000 pixels/s / 76 fps = 26.280 pixels / frame or 34% of a full screen.
In practice we cannot sustain that transfer speed on the SPI bus because of the protocol overhead so
we cannot expect to send more than approximately 30% of a full frame.

If the application updates more than that amount of pixels the hardware cannot complete the
transmission within the frame time. The result is that the display will start showing the updated frame
before it is completely updated. The user will then in some cases see a mix of the old frame and the
new frame.

For some animations this is not noticeable to the user, for others the result will be unacceptable.

We therefore recommend to keep the level of updates below the 30% limit. E.g. by incrementally
updating the frame step-by-step.

Because of this, it is generally better to expand an item on the screen, than moving the item.

Tearing effect signal from the display

When the star is moved to the right, all the pixels covered by the star must be updated. When the star
is expanded only the new pixels must be updated. The pixels updated in previous frame remain
unchanged.

Drawing Speed
The transmission to the display is running at maximum 32 MHz.

The serial flash can run at the same speed as the display transmission. This means that the serial flash
is fast enough to feed bits to the display at maximum speed.

This is only achieved if the pixel format of an image in the flash is RGB565. In this case is two bytes
read from the flash equal to 1 pixel, which is also two bytes on the display.
If the pixel format in the flash is ARGB8888, we need to read double the amount of data from the flash
to produce a pixel on the display, and the serial flash will not be able to keep up with the display.

When this happens we are not sending data to the display continously and it will not be possible to
update all 30% of the display in a frame. One possibility is to move the image to internal flash, another
of course to change the pixel format.

Other widgets are not bound by the speed of the flash. E.g. the Box Widget, which draws a colored
rectangle. This widget is of course very fast and much faster than the display transmission. Other
widgets like Line and Circle uses much more CPU resources. These Widget are not able to produce
pixels in the speed they can be transmitted to the display. Using these Widgets an application cannot
expect to be able to update 30% of the display in every frame.

Find about pixel rendering complexity here

TouchGFX Limitations with Serial Flash
TouchGFX on STM32G0 with serial flash has a few limitations that the application programmer must be
aware of.

Texture Mapper
The texture mapper widgets (TextureMapper, AnimationTextureMapper, ScalableImage) can not draw
an image that is stored in the external SPI flash. The reason is that it is not possible to get an
acceptable performance of e.g. image rotation with an image stored in a serial flash.

To use an image with a texture mapper you must store the image in internal flash or RAM. An image is
easily stored in internal flash by modifying the image configuration in TouchGFX Designer.

Go to the Images tab and select the image. In the right side of the window, change the "Section"
attribute to "IntFlashSection".

Placing an image in internal flash

The texture mapper code is too large to include in all projects. It is therefore disabled pr. default for
STM32G0 projects. This means that you must enable the texture mapper before you can use it in your
STM32G0 projects.

Go to the "Config" tab, select "Framework Features", and click the relevant texture mapper or a group
of texture mappers.

Enabling a texture mapper for a specific image format

It is also possible to temporarily move an image to RAM using the Bitmap Cache

Bitmap Painter
Line, Circle, and DynamicGraph widgets can be colored with an image. This is not possible with images
located in the SPI flash. Images used with these widgets must be placed in internal flash or RAM.

L8 Palette
Images in L8 format can be used on hardware with a serial flash. The limitation is that the palette data
must be in the internal flash (also for performance reasons).

The palette can be moved to internal flash by changing the "Extra Section" to "IntFlashSection" in the
TouchGFX Designer.

Drivers
The application template is created using the TouchGFX Generator. Read more about the Generator
here. The TouchGFX Generator generates a HAL layer that links the TouchGFX framework with a set of
low-level drivers (already implemented in this application template). The low-level drivers for this
application template are located in the Core/Src folder in your project.

The drivers are in 3 files:

Driver File

Display Core/Src/MB1642BDisplayDriver.c

Driver File

Flash Core/Src/MB1642BDataReader.c

Buttons Core/Src/MB1642BButtonController.cpp

Display
The display uses a fairly standard SPI protocol. A number of registers is the diplay can be written to
configure the display. The chip select is asserted when data is transmitted to the display. An extra
GPIO, DCX, is used to differentiate command bytes from data bytes.

The driver uses a DMA channel to send display pixel data. This allows the transmission to run while the
MCU is calculating pixels. An DMA complete interrupt is used to free the memory transmitted for
reuse in a future drawing and to restart the transmission if new data is already available.

Configuration data is not send with DMA, because the CS and CDX pins must be toggle between and
in the small configuration packages.

The driver uses the SPI in 8 bit mode when sending configuration data, but changes to 16-bit mode
when transmitting the pixel data. The reason for this is that the MCU memory is read in little endian
mode. A pixel in RGB565 format is stored in RAM with the low byte (G and B) first and the high byte (R
and G) second. This order is preserved when the 8-bit SPI is reading the memory for transmission.
When the SPI is in 16-bit mode, the data is read as 16-bit RGB565 from memory and transmitted in
correct order for the display.

A driver not using 16-bit DMA must swap the bytes in a pixel before transmitting.

Initialisation

The display initialisation is found in the function MB1642BDisplayDriver_DisplayInit(void)

The driver sends 6 commands to the display which follows the recommended power on sequence:

1. Exit Sleep Mode (11h)
2. Enter Normal Mode (13h)
3. Set Memory Access Control (36h) with MX and BGR bits set
4. Set Pixel Format (3Ah) with format 16 bits
5. Tearing Effect Line On (35h)
6. Set Tear Scanline (44h) with line = 0

The driver sleeps for 100 ms between these command.

Tearing Effect

The Tearing Effect (TE) signal from the display is very important. It allows the application to
synchronize correctly with the display. This helps the application to avoid tearing on the display. The
display asserts the signal whenever it starts an update cycle. The MCU uses this signal to also sending
data to the display.

The TE signal is connected to the external interrupt input of the MCU. CubeMx generates and
configures an interrupt on this pin.

The callback in the driver signal TouchGFX to start drawing:

MB1642BDisplayDriver.c

External flash
The SPI NOR flash on the display shield is a standard SPI flash. The driver is simpler than the display
driver. No special initialisation is required to read data from the flash.

The driver can read data using polled SPI (busy waiting for each byte) or DMA. The time to start a
DMA reception is similar to the time it takes to read 20 bytes in polled mode, so it is often slower for
short reads. On the other hand, the DMA continues to run during interrupt and can run in the
background when the MCU is busy rendering pixels. For this reason both methods are used.

The flash driver is using another DMA channel than the display driver, so both reception of data and
transmission of pixels can run concurrently.

Linker Script

The linker controls where the various data in the application is located. This is specified in the linker
script. Here is the first part of the linker script for the gcc compiler:

void HAL_GPIO_EXTI_Rising_Callback(uint16_t GPIO_Pin)
{
 ...
 touchgfxSignalVSync();
}

MEMORY
{
 RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 36K
 FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 128K
 SPI_FLASH (r) : ORIGIN = 0x90000000, LENGTH = 8M
}

It declares the NOR flash as starting from the address 0x90000000. This value is arbitrarily chosen but
required by the flash loader.

This next section puts the image (ExtFlashSection) and font (FontFlashSection) data in the SPI flash.

Other data can be put into the SPI flash by adding similar sections to the linker script.

Flash Loader

The G071 application template contains a flash loader for STM32CubeProgrammer. This flash loader
can write data to the SPI NOR flash.

The flash loader is found in the file gcc/S25FL032P_STM32G071B-NUCLEO.stldr

A STM32CubeIde project can be flashed directly from the IDE, but an IAR or Keil application must be
flashed from STM32CubeProgrammer.

The flashloader is not available in STM32CubeProgrammer initially, so it must be installed by copying
the stldr to the installation:

Copy flash loader to STM32CubeProgrammer installation

Now the flashloader can be selected in STM32CubeProgrammer as normal:

 ExtFlashSection :
 {
 (ExtFlashSection ExtFlashSection.)
 (.gnu.linkonce.r.)
 . = ALIGN(0x4);
 } >SPI_FLASH

 FontFlashSection :
 {
 (FontFlashSection FontFlashSection.)
 (.gnu.linkonce.r.)
 . = ALIGN(0x4);
 } >SPI_FLASH

Copy flash loader to STM32CubeProgrammer installation

TIP

The flash loader is only working with the specific GPIO configuration that is used on the Nucleo-G071RB
board.
If a different GPIO configuration for the serial flash is used on custom hardware, the flash loader must be
modified similarly.

Buttons
The button driver is very simple. It samples the state of the 5 GPIOs used for the joystick on MB1642B
and the blue user button on the Nucleo board.

This button driver is installed as BottonController in TouchGFX. This means that the button presses are
available directly in the TouchGFX Designer to use in interactions. They can also be used in user code
like this:

The key codes used are:

Key Code

Left '4'

void Screen1View::handleKeyEvent(uint8_t key)
{
 if (key == '6')
 {
 application().gotoScreen2Screen();
 }
}

Key Code

Right '6'

Up '8'

Down '2'

Center '5'

Blue User Button '0'

These keys are also available in the Simulator bye using the keyboard numpad.

Version: 4.16

Lowering Memory Usage with
Partial Framebuffer
This section explains, by exemplifying with a clock application, how to configure and use Partial Frame
Buffers, to lower memory requirements at the expense of some performance.

A video of the application running on the STM32L4R9Discovery evaluation kit can be seen below

Full-size Frame Buffer Memory
Normally, your frame buffer is a big memory array with enough memory to hold all the pixels available
on your display. If you are running on a 24-bit display with a resolution of 480 x 272, a full-size frame
buffer holds 480 x 272 x 3 bytes = 391.680 bytes.

Some applications may have 2- ("Double buffering") or even 3 frame buffers. The total memory
requirement in these cases would then be 783.360 and 1.175.040 bytes.

TouchGFX writes pixel values to the frame buffer when drawing any part of the UI, after all drawing
operations have completed, the frame buffer is transferred to the display. Typically, the whole frame

0:00

buffer is transferred to the display even if only a part of the UI is updated. Generally, the framebuffer
can be updated in many small blocks before itis transferred.

Update1, Update 2, Update 3, ..., Update N, Transfer to display

In some cases, particularly in low cost solutions with no external RAM, frame buffers are required to be
small enough to allow the rest of the application to fit in the internal RAM together with the
framebuffer. This is where partial frame buffers are useful.

Partial Frame Buffer Memory
Partial frame buffers allows a TouchGFX application to run on top of a few, less than full-size frame
buffers. The number and size of the frame buffers are configurable. This technique can lower the
memory requirements of an application by a substantial amount, but comes with some limitations:

Partial frame buffers will only work on displays that have built-in memory. These are typically DSI
displays or displays with a parallel bus connection (DBI type A/B, 8080/6800) or SPI-bus connection.
Potential tearing for complex applications.

Rather than using a frame buffer representing every pixel on the display, partial frame buffers typically
cover a smaller part. In the clock example used in this article, three frame buffers of 11.700 bytes each
are used. This results in a memory footprint for frame buffers of 35.100 bytes.

Whenever the application needs to update a part of the UI, TouchGFX will select one of the configured,
partial frame buffers, complete its drawing operation in the partial framebuffer, and transfer that part
to the display. This is repeated for all areas of the UI that need to be rendered - This changes the
formula for updating and transferring data to:

Update1, Transfer1, Update2, Transfer2, Update3, Transfer3, ..., UpdateN, TransferN

In some cases the transfer of one partial frame buffer can run while the update of the next buffer is
running.

Display Tearing
Contrary to using full-size frame buffers, TouchGFX will transfer parts of the UI as soon as they are
updated, when using partial frame buffers. The display will show the received updates on its glass after
at most 16 ms (for 60 fps displays) because the display needs to be refreshed regularly. Because of
this, the first updates to the display can potentially be visible to the user before all updates have been
transferred.

If the total sequence of draw operations and transfers take a long time to complete (> 16 ms) it is
highly possible that the user will see a combination of the previous frame and some of the new
updates. This is called display tearing and is not desirable. For this reason, partial frame buffers are not
suitable for applications that make use of complex animations that take a long time to render.

Display Update Example
Before we get into how to configure partial frame buffers in your application let's have a look at a
concrete example showing a digital clock with a moving circle arc representing seconds. The green
circle arc is moving 6 degrees each second and does a full rotation in a minute. The UI is built from
four Widgets as seen in the image below:

Line
Circle
Digital Clock
Box

Here is the code that updates the digital clock and circle arc:

MainView.cpp

void MainView::handleTickEvent()

The following images shows the areas that are updated in the first few seconds when the circle arc
approaches the top and digital clock is updated (the grey rectangles). In the first two frames, only the
seconds are changing (58 and 59 seconds). In the thirs the seconds reaches 60 and the hour and
minutes text is updated:

{
 ticks++;
 if (ticks == 10)
 {
 ticks = 0;
 secs += 1;
 if (secs == 60) //increment minutes
 {
 secs = 0;
 min += 1;
 if (min == 60) //increment hours
 {
 min = 0;
 hour += 1;
 if (hour == 24)
 {
 hour = 0;
 }
 }
 //Only update digital clock when minutes or hours change
 digitalClock.setTime24Hour(hour, min, secs);
 }
 //Always update seconds
 circleSeconds.updateArc(secs*6 - 20, secs*6);
 }
}

The rectangles updated in the third image above are 154 x 60 pixels, 20 x 12 pixels, and 33 x 8 pixels.
When using standard frame buffers these three rectangles would be drawn into the full frame buffer
(overwriting the previous pixels), which would afterwards be transferred to the display. When using
partial frame buffers, these three rectangles would be drawn into their own little frame buffers which
would then immediately be transferred to the display and shown.

Configuring Partial Frame Buffers

There are two steps to configuring TouchGFX for partial frame buffers: Creating a frame buffer
allocator object with a memory buffer, and configuring the TouchGFX HAL class to use it. Later we also
need to write code to transmit the buffers to the display. The first two steps are typically done in the
BoardConfiguration.cpp file.

Creating a frame buffer allocator as a global variable:

BoardConfiguration.cpp

This frame buffer allocator allocates 2 blocks of each 10 x 390 x 3 bytes = 11.700 bytes.

Configure HAL to use it:

BoardConfiguration.cpp

With this configuration TouchGFX will allocate small frame buffers and draw the UI in them. What is
left now, is to transfer the small frame buffers to the display.

Lets first see the position and size of the two frame buffers allocated to draw the small circle updates
(second image above):

Rectangle x y width height Pixels

Rectangle 1 112 56 22 14 308 pixels = 924 bytes

Rectangle 2 153 42 29 11 319 pixels = 957 bytes

Both these rectangles are so small, they can fit into the blocks allocated by the frame buffer allocator.

In the third image above, we have 3 updated rectangles: The small updates to the circle, and the larger
rectangle covering the text:

//2 or more blocks of 10*390 pixels, one pixel is 3 bytes
ManyBlockAllocator<10*390*3, 2, 3> frameBufferAllocator;

void touchgfx_init()
{
 HAL& hal = touchgfx_generic_init(dma, display, tc, GUI_DISPLAY_WIDTH,
 GUI_DISPLAY_HEIGHT, 0, 0, 0);
 hal.setFrameBufferStartAddress((uint16_t*)0, GUI_DISPLAY_BPP, false, false);
 hal.setFrameBufferAllocator(&frameBufferAllocator);
 hal.setFrameRefreshStrategy(HAL::REFRESH_STRATEGY_PARTIAL_FRAMEBUFFER);
 ...

Rectangle x y width height PixelsRectangle x y width height Pixels

Rectangle 1 126 51 20 12 240 pixels = 720 bytes

Rectangle 2 165 42 33 8 264 pixels = 792 bytes

Rectangle 3 118 165 154 60 9.240 pixels = 27.720 bytes

Again, the rectangle 1 and 2 are so small, they can fit into the blocks allocated by the frame buffer
allocator, but frame buffer 3 is too large. This rectangle is to large and will be split into multiple
rectangles that each can fit into the frame buffers (11.700 bytes).

Here we are updating 3 rectangles, but the allocator only has 2 blocks. In that situation, TouchGFX will
wait for the first blocks to transferred and then reuse the blocks.

Transferring Frame Buffers to the Screen
TouchGFX will allocate a frame buffer from the FrameBufferAllocator, when a rectangle needs to be
redrawn. After drawing to the buffer TouchGFX will call this method:

This function can be overridden in a HAL subclass to transfer the frame buffer to the screen. This
special implementation is required for partial framebuffers to work. The following sections will
illustrate how to configure this for the STM32G081 and STM32G071 evaluation kits with a SPI displays,
and the STM32L4R9Discovery evaluation kit which has a DSI display.

Transferring Frame Buffers to the STM32G081 SPI Display
The STM32G081 evaluation kit has a SPI display. The basic principle is to start a DMA transfer to the
display as soon as a block is drawn or when a transfer is completed if a new block is ready to be
transferred.

First, when a rectangle is drawn, we start a transfer if none is already in progress:

STM32G0HAL.cpp

void HAL::flushFrameBuffer(const Rect& rect);

void STM32G0HAL::flushFrameBuffer(const touchgfx::Rect& rect)
{
 HAL::flushFrameBuffer(rect);
 frameBufferAllocator->markBlockReadyForTransfer();
 //start transfer if not running already!

The function LCDManager_SendFrameBufferBlockWithPosition starts a SPI transfer to the display using
DMA. This function is highly dependent on the display and the GPIO configuration. It must be
developed by the application programmer. The STM32G0 CubeFW HAL function
HAL_SPI_Transmit_DMA is used to start the DMA.

The SPI transfer complete interrupt handler calls a function when the transfer is complete:

STM32G0HAL.cpp

The LCDManager_TransferComplete functions starts a new transfer. An important piece here is to call
freeBlockAfterTransfer. This will allow TouchGFX to reuse the just transmitted block for a new drawing.

STM32G0HAL.cpp

 if (!LCDManager_IsTransmittingData())
 {
 touchgfx::Rect r;
 const uint8_t* pixels = frameBufferAllocator->getBlockForTransfer(r);
 LCDManager_SendFrameBufferBlockWithPosition((uint8_t*)pixels, r.x, r.y, r.width, r
 }
}

void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
{
 UNUSED(hspi);
 LCD_CS_HIGH();
 isTransmittingData = 0;

 //Change to SPI datasize to 8 bit from 16 bit
 heval_Spi.Instance->CR2 &= ~(SPI_DATASIZE_16BIT - SPI_DATASIZE_8BIT);

 //signal transfer complete
 LCDManager_TransferComplete();
}

void LCDManager_TransferComplete()
{
 touchgfx::startNewTransfer();
}

void startNewTransfer()
{
 FrameBufferAllocator* fba = HAL::getInstance()->getFrameBufferAllocator();
 fba->freeBlockAfterTransfer();
 blockIsTransferred = true;

 if (fba->hasBlockReadyForTransfer())
 {

Transferring Frame Buffers to the X-NUCLEO-GFX01M1 SPI
Display
In this section we will discuss the application template for the STM32G071 nucleo board with the X-
Nucleo-GFX01M1 expansion board. This expansion board, MB1642B, contains a 2.2" 240x320 SPI
display and a 64-Mbit SPI NOR flash.

Nucleo-G071RB with X-Nucleo-GFX01M1 expansion board

In this application template we use a C++ class from the framework to help managing the partial
framebuffer blocks. This makes the code in the application template a little shorter.

The application template is build with the TouchGFX Generator. Read more about that here

The most important part is the flushFrameBuffer function:

TouchGFXGeneratedHAL.cpp

 touchgfx::Rect r;
 const uint8_t* pixels = fba->getBlockForTransfer(r);
 LCDManager_SendFrameBufferBlockWithPosition((uint8_t*)pixels, r.x, r.y, r.width, r
 }
}

void TouchGFXGeneratedHAL::flushFrameBuffer(const touchgfx::Rect& rect)
{
 HAL::flushFrameBuffer(rect);
 // Try transmitting a block
 PartialFrameBufferManager::tryTransmitBlock();
}

Here we just call the PartialFrameBufferManager framework class to get the block transmitted.

In the TouchGFXGeneratedHAL::endFrame function we call PartialFrameBufferManager to get any
remaining framebuffer blocks transmitted also:

TouchGFXGeneratedHAL.cpp

The PartialFrameBufferManager uses three functions to interact with the display driver code. These
must be implemented in the Application Template:

TouchGFXGeneratedHAL.cpp

The code above just forwards the calls to C functions in the MB1642B driver code.

void TouchGFXGeneratedHAL::endFrame()
{
 // We must guard the next frame until we're done transferring all blocks over our disp
 // through either a semaphore if user is running an OS or a simple variable if not
 PartialFrameBufferManager::transmitRemainingBlocks();

 HAL::endFrame();
 touchgfx::OSWrappers::signalRenderingDone();
}

/**
 * Check if a Frame Buffer Block is beeing transmitted.
 */
__weak int transmitActive()
{
 return touchgfxDisplayDriverTransmitActive();
}

/**
 * Check if a Frame Buffer Block ending at bottom may be sent.
 */
__weak int shouldTransferBlock(uint16_t bottom)
{
 return touchgfxDisplayDriverShouldTransferBlock(bottom);
}

/**
 * Transmit a Frame Buffer Block.
 */
__weak void transmitBlock(const uint8_t* pixels, uint16_t x, uint16_t y, uint16_t w, uint1
{
 touchgfxDisplayDriverTransmitBlock(pixels, x, y, w, h);
}

MB1642BDisplayDriver.c

The implementation of this driver code depends highly on the display used. For the MB1642B module
this involves two GPIO to control SPI chip select and data/command mode.

The transmission state is implemented using a volatile uint8t variable *IsTransmittingBlock*. This
variable is set to 1 when a transmission is started and set to zero in the DMA callback:

MB1642BDisplayDriver.c

As we see above, the DMA callback also calls the transfer complete callback. This function is
implemented in the generated HAL:

TouchGFXGeneratedHAL.cpp

int touchgfxDisplayDriverTransmitActive(void)
{
 return IsTransmittingBlock_;
}

void touchgfxDisplayDriverTransmitBlock(const uint8_t* pixels, uint16_t x, uint16_t y, uin
{
 Display_Bitmap((uint16_t*)pixels, x, y, w, h);
}

void MB1642BDisplayDriver_DMACallback(void)
{
 /* Transfer Complete Interrupt management ***********************************/
 if ((0U != (DMA1->ISR & (DMA_FLAG_TC1))) && (0U != (hdma_spi1_tx.Instance->CCR & DMA_IT_
 {
 /* Disable the transfer complete and error interrupt */
 __HAL_DMA_DISABLE_IT(&hdma_spi1_tx, DMA_IT_TE | DMA_IT_TC);

 /* Clear the transfer complete flag */
 __HAL_DMA_CLEAR_FLAG(&hdma_spi1_tx, DMA_FLAG_TC1);

 IsTransmittingBlock_ = 0;

 ...

 // Signal Transfer Complete to TouchGFX
 DisplayDriver_TransferCompleteCallback();

extern "C"
void DisplayDriver_TransferCompleteCallback()
{
 // After completed transmission start new transfer if blocks are ready.
 PartialFrameBufferManager::tryTransmitBlockFromIRQ();

The call to the PartialFrameBufferManager here makes it start a new transfer if possible.

Transferring Frame Buffers on DSI Display
The STM32L4R9Discovery evaluation kit uses a DSI display. The normal HAL class is called
STM32HAL_DSI (located in STM32HAL_DSI.cpp).

We override the HAL::flushFrameBuffer method to notify the FrameBufferAllocator that a block has
been drawn:

STM32HAL_DSI.hpp

The FrameBufferAllocator subclass ManyBlockAllocator will call the global function
FrameBufferAllocatorSignalBlockDrawn() when a block is ready for transfer. This method must be
implemented in the BSP layer:

BoardConfiguration.cpp

This function is calling the sendBlock function, unless a transfer is already ongoing on the DSI. For the
first block drawn by TouchGFX, this will never be the case, so a transfer is started. If another block
drawing is completed while the DSI transfer is still running, the block will be kept in the "ready to
transfer state", and drawing will continue in another free block (if available).

When a DSI transfer is completed, we must first free the transferred block, so it can be reused for
another rectangle, and then check to see if the next block is ready for transfer. This is all done in the
ER interrupt:

BoardConfiguration.cpp

}

void STM32HAL_DSI::flushFrameBuffer(const Rect& rect)
{
 frameBufferAllocator->markBlockReadyForTransfer();
 HAL::flushFrameBuffer(rect); //call normal implementation
}

void FrameBufferAllocatorSignalBlockDrawn()
 {
 if (!dsiIsTransferring)
 {
 sendBlock();
 }
 }

The function sendBlock is more complicated. Here we configure the LTDC and DSI peripherals to
transfer the framebuffer. We also configure the display to put the transferred data into the correct
place in the display memory. This part of the code is dependent on the specific display. Check the
display datasheet for the command specifications.

BoardConfiguration.cpp

__irq void DSI_IRQHandler(void) {
 if (__HAL_DSI_GET_FLAG(&hdsi, DSI_IT_ER))
 {
 // End-of-refresh interrupt. Meaning last DSI transfer is complete
 __HAL_DSI_CLEAR_FLAG(&hdsi, DSI_IT_ER);
 if (dsiIsTransferring)
 {
 HAL::getInstance()->getFrameBufferAllocator()->freeBlockAfterTransfer();
 dsiIsTransferring = 0;
 }
 sendBlock(); //transfer next block if availble
 }

static void sendBlock()
{
 FrameBufferAllocator* fbAllocator = HAL::getInstance()->getFrameBufferAllocator();

 //Is a block ready for transfer?
 if (fbAllocator->hasBlockReadyForTransfer())
 {
 Rect transfer_rect;
 const uint8_t* src = fbAllocator->getBlockForTransfer(transfer_rect);
 dsiIsTransferring = 1;

 //1. Setup LTDC and layer address and dimension
 //2. Configure display active area
 //3. Start DSI

 __HAL_DSI_WRAPPER_DISABLE(&hdsi);

 //1: Setup LTDC
 LTDC_Layer1->CFBAR = (uint32_t)src;

 const uint32_t width = transfer_rect.width;
 const uint32_t height = transfer_rect.height;

 LTDC->AWCR = ((width + 1) << 16) | (height + 1);
 LTDC->TWCR = ((width + 1 + 1) << 16) | (height + 1 + 1);

 const uint16_t layer_x0 = 2 + 0;
 const uint16_t layer_x1 = 2 + width - 1;
 LTDC_Layer1->WHPCR = (layer_x1 << 16) | layer_x0;

Transferring Frame Buffers on SPI Display
The STM32G081 evaluation kit has a SPI display. The principle for transferring the rectangles to the
display is the same as for the DSI, but some details are different.

First, when a rectangle is drawn, we start a transfer if none is already in progress:

STM32G0HAL.cpp

 const uint16_t layer_y0 = 2 + 0;
 const uint16_t layer_y1 = 2 + height - 1;
 LTDC_Layer1->WVPCR = (layer_y1 << 16) | layer_y0;

 LTDC_Layer1->CFBLR = ((width * 3) << 16) | (width * 3 + 3);
 LTDC_Layer1->CFBLNR = height;

 LTDC->SRCR = (uint32_t)LTDC_SRCR_IMR;

 //2: Configure display
 const int16_t x = transfer_rect.x + 4;
 const int16_t x2 = transfer_rect.x + 4 + width - 1;
 uint8_t InitParam1[4] = { (uint8_t)(x >> 8), (uint8_t)(x & 0xFF), (uint8_t)(x2 >>
 HAL_DSI_LongWrite(&hdsi, 0, DSI_DCS_LONG_PKT_WRITE, 4, DSI_SET_COLUMN_ADDRESS, Ini

 const int16_t y = transfer_rect.y;
 const int16_t y2 = transfer_rect.y + height - 1;
 uint8_t InitParam2[4] = { (uint8_t)(y >> 8), (uint8_t)(y & 0xFF), (uint8_t)(y2 >>
 HAL_DSI_LongWrite(&hdsi, 0, DSI_DCS_LONG_PKT_WRITE, 4, DSI_SET_PAGE_ADDRESS, InitP

 //3: Start DSI transfer
 __HAL_DSI_WRAPPER_ENABLE(&hdsi);
 HAL_DSI_Refresh(&hdsi);
 }
}

void STM32G0HAL::flushFrameBuffer(const touchgfx::Rect& rect)
{
 HAL::flushFrameBuffer(rect);
 frameBufferAllocator->markBlockReadyForTransfer();
 //start transfer if not running already!
 if (!LCDManager_IsTransmittingData())
 {
 touchgfx::Rect r;
 const uint8_t* pixels = frameBufferAllocator->getBlockForTransfer(r);
 LCDManager_SendFrameBufferBlockWithPosition((uint8_t*)pixels, r.x, r.y, r.width, r
 }
}

The function LCDManager_SendFrameBufferBlockWithPosition starts a SPI transfer to the display using
DMA.

The SPI transfer complete handler calls a function when the transfer is complete:

STM32G0HAL.cpp

The LCDManager_TransferComplete functions starts a new transfer:

STM32G0HAL.cpp

Conclusion

void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
{
 UNUSED(hspi);
 LCD_CS_HIGH();
 isTransmittingData = 0;

 //Change to SPI datasize to 8 bit from 16 bit
 heval_Spi.Instance->CR2 &= ~(SPI_DATASIZE_16BIT - SPI_DATASIZE_8BIT);

 //signal transfer complete
 LCDManager_TransferComplete();
}

void LCDManager_TransferComplete()
{
 touchgfx::startNewTransfer();
}

void startNewTransfer()
{
 FrameBufferAllocator* fba = HAL::getInstance()->getFrameBufferAllocator();
 fba->freeBlockAfterTransfer();
 blockIsTransferred = true;

 if (fba->hasBlockReadyForTransfer())
 {
 touchgfx::Rect r;
 const uint8_t* pixels = fba->getBlockForTransfer(r);
 LCDManager_SendFrameBufferBlockWithPosition((uint8_t*)pixels, r.x, r.y, r.width, r
 }
}

In this article we saw how the partial frame buffer strategy can help lowering the memory
requirements for platforms that have displays with integrated frame buffer memory.

The method for configuring and setting up partial framebuffers is the same across all platforms, but
the method of sending the content of the blocks to the display varies. We saw how, for an LTDC/DSI
based platform (STM32L4R9-DISCO) we were able to reconfigure the LTDC Layer to fit the next block
ready for transfer on DSI, while on a platform with no LCD controller (STM32G081) we were able to
send the blocks to the display using SPI.

Version: 4.16

Using Non-Memory Mapped
Flash for Storing Images
In this section we will discuss how to link all your images to a binary file that you can put in a non-
memory mapped flash and how to use that file at runtime together with the bitmap cache. TouchGFX
cannot draw bitmaps that are stored in non-memory mapped flash, but by caching the bitmaps in
RAM we can make the bitmaps useable in the application.

See the article Caching Bitmaps for a general discussion on the bitmap cache.

In this article we assume that you have setup a bitmap cache, and that you want to store your bitmaps
in non-memory mapped flash. This can be e.g. USB storage, NAND flash etc.

The goal is to link the images to a specific address, copy the images to a file, and help TouchGFX to
copy from the file to the cache.

Copying bitmap data from flash to cache
Recall that when you cache a bitmap, TouchGFX copies the pixels from the original location to the
bitmap cache.

This copying is done by calling this method from the HAL class:

HAL.hpp

If your bitmaps are stored in normal addressable flash (like internal flash or memory mapped external
flash), then the normal blockCopy function provided in the TouchGFX library is fine, and you do not
need to do anything.

On the other hand, if your bitmaps is stored in storage that is not addressable, e.g. a filesystem, then
the normal implementation is not sufficient and you need to provide an updated version that is able
to read from your specific flash storage.

But first we need to make sure that our bitmaps is linked to a fixed address.

The BitmapDatabase table

bool HAL::blockCopy(void* RESTRICT dest, const void* RESTRICT src, uint32_t numBytes);

All bitmaps in TouchGFX is generated to .cpp files in the folder generated/images/src. Here the
bitmaps are represented as byte arrays.

These arrays are compiled by the C++ compiler as any other source code file and are linked into the
application.

Here is a screenshot of a simple application with a Button and a TextureMapper showing a rotating
logo:

Button and TextureMapper

This application uses 3 images: Button_Pressed, Button_Released, and Logo.

These 3 bitmaps are converted to .cpp files and linked in as part of the application. The images are
referenced in a table called the bitmap_database. This table is located in the file BitmapDatabase.cpp.
Here is the table from the above example (some details removed):

BitmapDatabase.cpp

The arrays declared first are the arrays containing the pixels of the individual bitmaps. These arrays are
defined in other .cpp files. The bitmap_database array is holding the addresses of these arrays.

extern const unsigned char _blue_buttons_round_edge_small[];
extern const unsigned char _blue_buttons_round_edge_small_pressed[];
extern const unsigned char _blue_logo_touchgfx_logo[];

const touchgfx::Bitmap::BitmapData bitmap_database[] =
{
 { _blue_buttons_round_edge_small, ... },
 { _blue_buttons_round_edge_small_pressed, ... },
 { _blue_logo_touchgfx_logo, ... }
};

TouchGFX uses this array to find the address of the pixels of a bitmap.

When the programmer requests a bitmap to be cached, TouchGFX finds the address of the bitmap in
flash (in the bitmap_database array) and copies data from here.

Linker script modifications
The linker selects an address for the bitmaps. This selection is based on the section the bitmaps are
placed in. All bitmaps in TouchGFX is by default put into the ExtFlashSection.

The standard linker scripts (here for GCC) puts this section into flash together with other read-only
data.

In this example we will put the image data in the ExtFlashSection at address 0x24000000. You can
select any address that is otherwise unused (not part of the code or data address space).

First we define a new memory area (USB-flash at address 0x24000000), in addition to the normal
internal FLASH and RAM areas:

STM32F746.ld

Then we instruct the linker to put the ExtFlashSection in the USB area:

STM32F746.ld

After linking we can check the addresses of the bitmaps by inspecting the map file (application.map).
Here is the relevant part:

application.map

MEMORY
{
 RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 320K
 FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 1024K
 USB(r) : ORIGIN = 0x24000000, LENGTH = 1M
}

ExtFlashSection :
{
 (ExtFlashSection ExtFlashSection.)
} >USB

ExtFlashSection

We can see here that the total size of the images is 0x23ec0 = 147.136 bytes. The 3 arrays holding the
bitmaps are located sequentially from address 0x24000000.

Let's now assume the you want the bitmap data to go to a SD-card. We can extract the binary data for
the bitmaps from the .elf file with a simple objcopy command:

This gives us a file (images.bin) containing the image byte arrays only. This file can be copied to an
USB flash, an SD-card, or even programmed to a flash chip.

The idea is now that when TouchGFX asks for data above address 0x24000000 we take the data from
the images.bin file on the SD-card.

Modifying the BlockCopy function
Recall that when you cache a bitmap to RAM TouchGFX calls HAL::BlockCopy to get the data.

To get this linked to the data on your SD-card we can implement a new BlockCopy in your specific HAL
class. Here we assume the class is called TouchGFXHAL (as generated by the TouchGFX Generator):

TouchGFXHal.hpp

 0x24000000 0x23ec0
 (ExtFlashSection ExtFlashSection.)
 ExtFlashSection
 0x24000000 0x10000 TouchGFX/build/.../Blue_Logo_touchgfx_logo.o
 0x24000000 _blue_logo_touchgfx_logo
 ExtFlashSection
 0x24010000 0x9f60 TouchGFX/build/.../Blue_Buttons_Round_Edge_small.o
 0x24010000 _blue_buttons_round_edge_small
 ExtFlashSection
 0x24019f60 0x9f60 TouchGFX/build/.../Blue_Buttons_Round_Edge_small_pre
 0x24019f60 _blue_buttons_round_edge_small_pressed

$ arm-none-eabi-objcopy.exe --dump-section ExtFlashSection=images.bin TouchGFX/build/bin/t
$ ls -l images.bin
-rw-r--r-- 1 christef Administrators 147136 Feb 20 11:56 images.bin

class TouchGFXHAL : public TouchGFXGeneratedHAL
{
public:
 ...
 virtual bool blockCopy(void* RESTRICT dest, const void* RESTRICT src, uint32_t numByte
}

TouchGFXHal.cpp

Now you can start caching bitmaps from the SD-card.

If TouchGFX tries to draw a bitmap that is not cached it will try to read the pixels from the address
found in the bitmap_database table. This address will be in the range 0x24000000 - 0x24100000 and
the read will result in an exception.

Linking images to RAM
If your available RAM is big enough to hold all the images (in the above example that is more than
147.136 bytes) then you do not need to use the bitmap cache to copy the images.

The strategy is as follows:

Select a fixed address and range in RAM for the images
Remove that range from the RAM area in the linker script
Create a new area IMAGES with the selected address and size
Place the ExtFlashSection in IMAGES area
Link the application and check the .map file
Create the images.bin file from the application.elf

// This function is called whenever a bitmap is cached. Must copy a number of bytes from t
// to the cache.
bool TouchGFXHAL::blockCopy(void* RESTRICT dest, const void* RESTRICT src, uint32_t numByt
{
 // If requested data is located within the memory block we have assigned for ExtFlashSec
 // provide an implementation for data copying.
 if (src >= 0x24000000 && src < 0x24100000)
 {
 void* dataOffset = src - 0x24000000;
 // In this example we assume graphics is placed in SD card, and that we have an approp
 // for copying data from there.
 sdcard_read(dest, dataOffset, numBytes);
 return true;
 }
 else
 {
 // For all other addresses, just use the default implementation.
 // This is important, as blockCopy is also used for other things in the core framework
 return HAL::blockCopy(dest, src, numBytes);
 }
}

Before TouchGFX is started, copy the whole images.bin file from the SD-card to the selected
address in RAM

This solution is simple, but has some drawbacks:

The available RAM must be big enough to hold all the images
Start up time will be larger because of the copying from the SD-card (megabytes can take seconds)

Version: 4.16

Using Serial Flash for images
and fonts
This section discusses how to use a serial flash (or other unmapped storage) to store images and fonts.
The technique described here is especially usefull on STM32G0 and other deviced with very little RAM.

See the article Lowering Memory Usage with Partial Framebuffer for a introduction to partial
framebuffers which are often used together with a serial flash.
See also the article Using Non-Memory Mapped Flash for storing images for an introduction to
caching bitmaps from unmapped flash to RAM.

Configuration
To use a serial flash with your TouchGFX application you must change the TouchGFX Generator
configuration to enable the "External Data Reader" in "Additional Features".

Additional Features: Data Reader

With this feature enabled the TouchGFX Generator changes the configuration to use the
LCD16bppSerialFlash LCD class. It also generates a subclass of the touchgfx::FlashDataReader :

TouchGFXConfiguration.cpp

This code creates an instance of the TouchGFXDataReader class and passes that instance to the
display object, to the HAL object, and to the ApplicationFontProvider object. These three objects will
use the dataReader object to access data in the serial flash. The data can be both images and font
data.

The system programmer must finish the implementation of the TouchGFXDataReader class to actually
read data from a flash.

Implementation
The TouchGFXDataReader class implements the touchgfx::FlashDataReader interface. This interface has
the following 4 methods that needs to be implemented on a specific hardware.

include/touchgfx/hal/FlashDataReader.hpp

The addressIsAddressable method is used by the LCD16bppSerialFlash class to decide if some
data can be directly read (i.e. is located in internal RAM or internal flash) or if it should be read
through the dataReader object.

The copyData *` method is used to copy data synchronously from the flash to RAM. This function is
typically used when the data is not further processed. E.g. when copying a solid image to a
framebuffer.

The startFlashLineRead method is used when multiple lines of data are required from the flash. The
startFlashLineRead method initiates a read of data. The method can initiate an asynchronous read

static TouchGFXDataReader dataReader;
static LCD16bppSerialFlash display(dataReader);
static ApplicationFontProvider fontProvider;
...
void touchgfx_init()
{
 ...
 hal.setDataReader(&dataReader);
 fontProvider.setFlashReader(&dataReader);
 ...
}

 bool addressIsAddressable(const void* address)
 void copyData(const void* src, void* dst, uint32_t bytes)
 void startFlashLineRead(const void* src, uint32_t bytes)
 const uint8_t* waitFlashReadComplete()

and should return immediately after starting the read. The waitFlashReadComplete method should
wait for the read to finish, and return a pointer to a buffer holding the data.

The LCD16bppSerialFlash can issue one flash read while processing the previously read data (in
some situations). This means that at least two buffers are required in the dataReader to gain full
concurrency.

The TouchGFX Generator generates the FlashDataReader in two classes:
TouchGFXGeneratedDataReader and TouchGFXDataReader . The TouchGFXGeneratedDataReader is

the superclass of the two and contains a default implementation. If that implementation is not
suitable, the application programmer can change the implementation of the virtual functions in the
TouchGFXDataReader class.

The TouchGFXGeneratedDataReader implementation calls C-functions to do the work. These
application are implemented by the system programmer.

TouchGFX/target/generated/TouchGFXGeneratedDataReader.cpp

The implementation is found in the MB1642BDataReader.c file:

Core/Src/MB1642BDataReader.c

extern "C" __weak void DataReader_WaitForReceiveDone();
extern "C" __weak void DataReader_ReadData(uint32_t address24, uint8_t* buffer, uint32_t l
extern "C" __weak void DataReader_StartDMAReadData(uint32_t address24, uint8_t* buffer, ui

void TouchGFXGeneratedDataReader::startFlashLineRead(const void* src, uint32_t bytes)
{
 /* Start transfer using DMA */
 DataReader_StartDMAReadData((uint32_t)src, (readToBuffer1 ? buffer1 : buffer2), bytes)
}

void DataReader_StartDMAReadData(uint32_t address24, uint8_t* buffer, uint32_t length)
{
 readDataDMA(address24, buffer, length);
}

void readDataDMA(uint32_t address24, uint8_t* buffer, uint32_t length)
{
 // Pull Flash CS pin low
 isReceivingData = 1;
 FLASH_CS_GPIO_Port->BRR = FLASH_CS_Pin;

 ((__IO uint8_t)&hspi2.Instance->DR) = CMD_READ;

 ...
}

This implementation is specific to the protocol used by the flash and the GPIO used for SPI and CS. All
three C functions must be implemented for the TouchGFXGeneratedDataReader class to work.

Images
As mentioned in the introduction the LCD16bppSerialFlash class can read image pixels through the
dataReader object. For this to work we must change the lnker script to put images in an address range
outside the internal flash range.

On the STM32G071 we have selected the address 0x90000000 as start address for the serial flash:

gcc/STM32G071RBTX_FLASH.ld

This puts the ExtFlashSection and FontFlashSection into the 0x90000000 address range.

The remaining task is to write the data to the external flash using a flasher tool.

A short description on writing flash loaders for STM32CubeProgrammer can be found in section 2.3.3
in this document:

MEMORY
{
 RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 36K
 FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 128K
 SPI_FLASH (r) : ORIGIN = 0x90000000, LENGTH = 8M
}

/* Sections */
SECTIONS
{
 ...

 ExtFlashSection :
 {
 (ExtFlashSection ExtFlashSection.)
 (.gnu.linkonce.r.)
 . = ALIGN(0x4);
 } >SPI_FLASH

 FontFlashSection :
 {
 (FontFlashSection FontFlashSection.)
 (.gnu.linkonce.r.)
 . = ALIGN(0x4);
 } >SPI_FLASH
}

UM2237 STMCubeProgrammer User Manual

Font data
The above linker script puts the font pixel data and the font character metadata (with and height) into
the external flash (both types of data are in the FontFlashSection). This data is also read through the
dataReader object when drawing characters on the Screen

If you are not using the "Unmapped Storage Format" for your you must change the linker script and
the file include/touchgfx/hal/Config.hpp to move the font character metadata to internal flash.

See the article about Fonts in unmapped storage for more information on the font formats.

Version: 4.16

Using Non-Memory Mapped
Flash for Font Data
In this section we will discuss how to use a new font-layout that will allow you to put almost all font
data into unmapped external flash. The effect is that you can have many thousand letters in an
application using only 50 kb of flash.

Font Layouts
TouchGFX supports two different font layouts for the fonts compiled into your application. The layout
used is selected in TouchGFX Designer in the configurations tab:

Configurating font layout

The Mapped storage format is the default font layout and should be used on systems where fonts
are stored in memory mapped flash (internal or e.g. external QSPI flash).

The Unmapped storage format is the new font layout. It allows most of the font data to be stored in
unmapped flash. This will typically be a SPI-flash, but can be any type of storage.

Mapped Storage Format
The mapped storage format keeps the font data in two tables.

The first table is an array of touchgfx::GlyphNode. These contain the properties of the individual
characters: height, width, unicode, and similar.

generated/fonts/src/Table_verdana_20_4bpp.cpp

The second table (split in multiple files for large fonts) contains the pixel-patterns for the characters.

generated/fonts/src/Font_verdana_20_4bpp_0.cpp

The GlyphNodes will be used by the TouchGFX engine during text layout. The pixels will be read by the
DMA2D or software routines during drawing.

On platforms using the normal LCD classes, e.g. LCD16Bpp or LCD24Bpp, these tables must be stored
in internal flash or memory mapped external flash.

On platforms using a unmapped external flash, the LCD16BppSerialFlash can read the pixels-patterns
from unmapped serial flash, but the GlyphNodes must be in internal flash.

FONT_TABLE_LOCATION_FLASH_PRAGMA
KEEP extern const touchgfx::GlyphNode glyphs_verdana_20_4bpp[] FONT_TABLE_LOCATION_FLASH_A
{
 { 0, 0x0020, 0, 0, 0, 0, 7, 0, 0, 0x00 },
 { 0, 0x002C, 5, 7, 3, 1, 7, 0, 2, 0x00 },
 { 21, 0x0030, 11, 14, 14, 1, 13, 0, 0, 0x00 },
 { 105, 0x0032, 11, 14, 14, 1, 13, 0, 0, 0x00 },
 { 189, 0x0033, 11, 14, 14, 1, 13, 0, 0, 0x00 },
 { 273, 0x0034, 12, 14, 14, 0, 13, 0, 0, 0x00 },
 ...
}

FONT_GLYPH_LOCATION_FLASH_PRAGMA
KEEP extern const uint8_t unicodes_verdana_20_4bpp_0[] FONT_GLYPH_LOCATION_FLASH_ATTRIBUTE
{
 // Unicode: [0x0020]
 // (Has no glyph data)
 // Unicode: [0x002C]
 0x00, 0x87, 0x04, 0x20, 0xFF, 0x03, 0x60, 0xBF, 0x00, 0xA0, 0x5F, 0x00, 0xE0, 0x0D, 0x
 0x07, 0x00, 0xF6, 0x01, 0x00,
 // Unicode: [0x0030]
 0x00, 0xA3, 0xFE, 0x9D, 0x01, 0x00, 0x40, 0xFF, 0x9B, 0xFC, 0x1D, 0x00, 0xD0, 0x4F, 0x
 0x9F, 0x00, 0xF3, 0x0B, 0x00, 0x10, 0xEE, 0x00, 0xF7, 0x07, 0x00, 0x00, 0xFB, 0x03, 0x
 ...
}

Unmapped Storage Format
The unmapped storage format splits the font data in three tables. The two tables from the mapped
storage layout is reused, but a third table is added:

generated/fonts/src/Table_verdana_20_4bpp.cpp

This third table just contains the unicodes present in the font.

When this font layout is used, the third table must be present in internal flash, but the other two tables
can be moved to external flash. This is a considerable saving, as the third table uses two bytes for each
character, whereas the GlyphNode table uses 14 bytes. This reduces the storage requirement in
internal flash.

When the font data is placed in unmapped flash, the mcu cannot access it directly. We therefore have
to provide a flash reader object to the font subsystem.
The code for this is automatically generated by TouchGFXGenerator:

TouchGFXConfiguration.cpp

If you are not using the generator, you must do this manually.

FONT_SEARCHTABLE_LOCATION_FLASH_PRAGMA
KEEP extern const uint16_t unicodelist_verdana_20_4bpp[] FONT_SEARCHTABLE_LOCATION_FLASH_A
{
 0x0020,
 0x002E,
 0x003F,
 0x004E,
 0x0054,

}

static TouchGFXDataReader dataReader;
static LCD16bppSerialFlash display(dataReader);
static ApplicationFontProvider fontProvider;
static Texts texts;
static TouchGFXHAL hal(dma, display, tc, 240, 320);
void touchgfx_init()
{
 Bitmap::registerBitmapDatabase(BitmapDatabase::getInstance(), BitmapDatabase::getInstanc
 TypedText::registerTexts(&texts);
 Texts::setLanguage(0);
 hal.setDataReader(&dataReader);
 fontProvider.setFlashReader(&dataReader);
...

Remember to implement the functions in TouchGFXDataReader so data is actually read from your
flash.

Example
Below is a screenshot of an application using the new font layout:

Example application with 4000 Chinese characters

This application runs on a STM32G071 Nucleo board with a MB1642A display module:

Example application running on STM32G071Nucleo

In this application we have 4000 Chinese characters in size 20, 4 bits pr pixel. The application and data
takes up 61Kb of 128 Kb available on the STM32G071. The font data is distributed as follows
(excluding minor objects):

Table Location Size

GlyphNodes External SPI flash 57.372 bytes

Pixel patterns External SPI flash 3.116.296 bytes

Unicode list Internal flash 8.000 bytes

Linker Script Modifications
To use the unmapped font layout correctly, you must update your linker script to place the tables
correctly.

STM32F746.ld

define symbol __ICFEDIT_region_ROM_start__ = 0x08000000;

In this linker script we put both the ExtFlashSection (images and font pixels) and FontFlashSection (the
GlyphNodes) in the external flash. Any other read-only data is in the internal flash (ROM_region).

define symbol __ICFEDIT_region_ROM_end__ = 0x0801FFFF;
define symbol __ICFEDIT_region_RAM_start__ = 0x20000000;
define symbol __ICFEDIT_region_RAM_end__ = 0x20008FFF;
define symbol __ICFEDIT_region_SERIAL_FLASH_start__ = 0x90000000;
define symbol __ICFEDIT_region_SERIAL_FLASH_end__ = 0x91000000;

place in ROM_region { readonly };
place in RAM_region { readwrite,
 block CSTACK, block HEAP };

place in SERIAL_FLASH_region {section ExtFlashSection, section FontFlashSection };

Version: 4.16

Changing the Pixel Format of
an Application
This article shows how to change the pixel format of an application after a project has been created.
Concretely, this article exemplifies modifying a 24-bit RGB888 application to be 16-bit RGB565
through the TouchGFX Generator and also shows the impact on the TouchGFX project configuration.
Reasons to change the pixel format could be the following:

1. Modified display requirements
2. Modified application requirements
3. Mistake during initial project creation

FURTHER READING

Please read the article on Color Formats.

Generally, the following changes could be required to change the pixel format of your application.

1. Board Bring Up: Change the pixel format of the LTDC.
2. HAL Development: Modify TouchGFX Generator settings to reflect LTDC settings or location of

framebuffer(s) in memory.
3. TouchGFX Designer: Ensure that the designer is using this new converted bit depth and correct

format for image assets.

Starting from the designer we can inspect the current configuration for Display and Image and return
to these screens later to validate.

Image configuration

Display configuration.

Board Bring Up
If certain settings in the CubeMX project can impact the desired pixel format of the application, as is
the case for LTDC, developers are required to make appropriate changes here such that TouchGFX
renders in the format expected by the LTDC.

FURTHER READING

Please read the article on LTDC for details on valid pixel format settings for TouchGFX applications.

HAL Development
If the bit-depth of the applications changes along with the pixel format of the framebuffer (e.g.
changing ARGB2222 to BRGA2222 you would still have an 8-bit application), developers may be
required to modify the memory locations of the framebuffers. In the case below:

Modify pixel format

Generating code using this configuration will generate a TouchGFXConfiguration that uses the 16-bit
TouchGFX LCD class.

TouchGFXConfiguration.cpp

If the project is open in TouchGFX Designer, developers will be prompted to update to reflect the
newly generated configuration changes.

static LCD16bpp display;

{
 "image_configuration": {
 "images": {},
 "dither_algorithm": "2",
 "alpha_dither": "yes",
 "layout_rotation": "0",
 "opaque_image_format": "RGB565",
 "nonopaque_image_format": "ARGB8888",
 "section": "ExtFlashSection",

The table below lists the impact on opaque and non-opaque image formats given a pixel format:

Framebuffer pixel format Opaque format Non-Opaque format

Gray2 Gray2 Gray2

Gray4 Gray4 Gray4

ABGR2222 ABGR2222 ABGR2222

ARGB2222 ARGB2222 ARGB2222

BGRA2222 BGRA2222 BGRA2222

RGBA2222 RGBA2222 RGBA2222

RGB565 RGB565 ARGB8888

RGB888 RGB888 ARGB8888

TouchGFX Designer
Once the TouchGFX project has been updated based on the new TouchGFX Generator settings defined
in CubeMX, developers will find that the TouchGFX Designer configuration has changed to match.

 "extra_section": "ExtFlashSection"
 },

Image configuration

Display configuration.

After generating code from within TouchGFX Designer the code for image assets now reflect the
updated pixel format:

TouchGFX\generated\images\src\my_image.png

Conclusion
Modifying the current pixel format of an application can be done by simply using TouchGFX
Generator. For MCUs with an LTDC, the layer running TouchGFX must match the Framebuffer pixel
format defined in TouchGFX Generator (Limited to RGB565 and RGB888 for LTDC) settings to ensure
compliance with the format rendered by TouchGFX Core.

Once code has been generated from CubeMX, the TouchGFX project will be updated and upon
subsequent code generation in TouchGFX Designer both image assets and framebuffer driver will have
the specified formats.

LOCATION_PRAGMA("ExtFlashSection")
KEEP extern const unsigned char my_image[] LOCATION_ATTRIBUTE("ExtFlashSection") = // 320x

Version: 4.16

Creating an Application
Template
Application Templates (ATs) are .tpa files that define the platform on which a TouchGFX application
runs. This approach is for developers who wish to be able to distribute easy-to-use ATs separately from
the UI code that runs on top of them. This article describes how an existing TouchGFX project can be
packaged into a redistributable AT using the built-in tool tgfx.exe . For the duration of this article
examples are based on an application called "MyApplication".

Once you have a fully functional TouchGFX project the following steps are required to create an AT.

Describe Application Template Call tgfx.exe and edit json file (inherits from .touchgfx)
Create Application Template Call tgfx.exe to finalize .tpa
Test & Verify Import into designer, create- and verify application

Describe Application Template
The tgfx.exe tool generates a configuration file (.json) that describes the internals of the AT. This
information is read by TouchGFX Designer and presented to the user. Open a TouchGFX Environment
console and execute the following command in the parent directory of the application:

Prepare files for .tpa

The following files are created in the directory where the command was run:

$ /d/TouchGFX/4.13.0/designer/tgfx.exe pack -d MyApplication

List of generated files

Before creating the final .tpa file, edit MyApplication.json to control how the AT is displayed to
users in TouchGFX Designer. Users should edit the following sections:

Author Use the fields in the Author section to specify name of author, contact email and a URL.
Data Use the fields in the Data section to specify AT version, images, board name, vendor,
description, and link to further information.

MyApplication.json

TIP

 ...
 "Author": [
 {
 "Name": "Chad Brody",
 "Contact": "chad.brody@mycompany.com",
 "URL": "http://mycompany.com/"
 }
],
 ...
 "Data": {
 "Version": {
 "Major": 1,
 "Minor": 0,
 "Build": 0
 },
 "Name": "MyApplication",
 "HumanFriendlyName": "MyApplication",
 "BoardName": "Custom STM32 Board",
 "Type": "TGAT",
 "Vendor": "MyCompany",
 "Description": "This is a working project on which to base your UI on top of.",
 "DocumentationLink": "",
 "Category": "",
 "Images": [
 "http://mysite.com/MyCustomBoard-front.png",
 "http://mysite.com/MyCustomBoard-back.png"
],
 ...
 }
}

Be sure to set the 'Type' attribute to TGAT. Otherwise the AT won't show up in TouchGFX Designer!

TIP

TouchGFX Designer is able to display up to three images (Image references must be URLs) from this list when
displaying the extended information card for an AT. The optimal resolution for the images is 400x280 pixels.

Create Application Template
Execute the following command to create the final ´.tpa´ file and finalize the Application Template.

Create Application Template

Test & Verify
To verify that the .tpa file can be seen by TouchGFX Designer as an AT and used to create new
applications, perform the following steps:

1. Rename the .tpa file to your requirements.
2. Copy or move the .tpa file to C:\TouchGFX\4.13.0\app\packages . This allows users to import

ATs into TouchGFX Designer from a local folder.

$ /d/TouchGFX/4.13.0/designer/tgfx.exe pack -rc -d MyApplication

Install AT to local folder

3. Open the Designer and select the AT.

MyApplication-1.0.0.tpa displayed in Designer

Information about the AT

Final Notes
The following section contains tips about what to consider when developing code for/distributing ATs.

General Tips
Generally, before distributing the .tpa one should:

1. Ensure that all supplied IDE projects work as expected.
2. Delete build- and generated folders to reduce the size of the AT.
3. Ensure that custom commands (PostGenerate-, etc.) defined in the TouchGFX project file

.touchgfx work as expected.
4. Ensure that the AT can be read by TouchGFX Designer and used to create a new application.
5. There is no immediate way to specify an upgrade procedure between versions of ATs.

TIP

Be sure to re-pack the application template after modifying the content of either the TouchGFX Project or
the `.json` file.

After distributing the .tpa one should instruct users to copy the .tpa file into
C:\TouchGFX\4.13.0\app\packages and restart the designer, if open.

Version Control
Usually, developers will keep an entire development project (Board bringup, TouchGFX AL, TouchGFX
UI) in the same repository which eliminates the need for distributable .tpa files. However, for team
members to be able to start a new TouchGFX application, unified platform code is powerful when it
comes to test and verification.

For those that do distribute .tpa files and/or use tools like repo , git submodules to modularize
their codebase it is wise to let the version of the AT-component follow the version specified in the
.json descriptor mentioned previously in this article. If using a modularized approach, the platform

code could still be used to create a distributable .tpa file while also being used as a module in a
main project struture.

 "Data": {
 "Version": {
 "Major": 3,
 "Minor": 0,
 "Build": 0
 },

$ git tag
v1.1.0
v2.0.0
v2.1.0
v3.0.0

Version: 4.16

External Events as Triggers
This section describes how to use external events, such as physical buttons, as triggers in TouchGFX
Designer.

Application requirements to respond to input from peripherals, such as physical buttons, requires that
GPIO pins on the MCU are configured in accordance with board schematics.

In this example the H7B3I-DK is used to show how to make the UI react to the press of a physical
button. This example uses polling, while EXTI could also be used instead.

The schematic can be downloaded here at: st.com

TIP

If a GPIO pin is readable it is usable as a trigger to an event in TouchGFX Designer.

Board Bringup
The following images depict a part of the schematics for the STM32H7B3I-DK board, and the examples
that follow use CubeMX to configure the appropriate GPIO port and pin as an input to read the state
of the button.

Start a new application based on the STM32H7B3I-DK application template. According to the User
Button is attached to GPIO Port C Pin 13 (PC13).

In CubeMX PC13 can be configured as an input and configured as a pull-down in the GPIO section of
the System Core category.

The following code has been generated by CubeMX based on the name given to it in the Pinout View.

#define MCU_ACTIVE_GPIO_Port GPIOI
#define VSYNC_FREQ_Pin GPIO_PIN_12
#define VSYNC_FREQ_GPIO_Port GPIOA
#define BTN_USER_Pin GPIO_PIN_13
#define BTN_USER_GPIO_Port GPIOC
#define LED2_Pin GPIO_PIN_2
#define LED2_GPIO_Port GPIOG
#define LCD_INT_Pin GPIO_PIN_2

static void MX_GPIO_Init(void)
 __HAL_RCC_GPIOJ_CLK_ENABLE();

TouchGFX HAL Development
A part of the rendering cycle of TouchGFX engine is to check for possible input

Once the input state can be read (external event), TouchGFX HAL can now read this event as part of
the rendering cycle through the ButtonController interface.

 __HAL_RCC_GPIOI_CLK_ENABLE();
 __HAL_RCC_GPIOA_CLK_ENABLE();
 __HAL_RCC_GPIOC_CLK_ENABLE();
 __HAL_RCC_GPIOD_CLK_ENABLE();
 __HAL_RCC_GPIOH_CLK_ENABLE();
 __HAL_RCC_GPIOB_CLK_ENABLE();
 ...
 /*Configure GPIO pin : BTN_USER_Pin */
 GPIO_InitStruct.Pin = BTN_USER_Pin;
 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
 GPIO_InitStruct.Pull = GPIO_PULLDOWN;
 HAL_GPIO_Init(BTN_USER_GPIO_Port, &GPIO_InitStruct);
 }

#include <platform/driver/button/ButtonController.hpp>
class H7B3ButtonController : public touchgfx::ButtonController
{
 virtual void init() { }
 virtual bool sample(uint8_t& key)
 {

 if (HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_13) != GPIO_PIN_RESET)
 {
 key = 1;
 return true;
 }
 return false;
 }
private:

};

...
H7B3ButtonController bc;
void touchgfx_init()
{
 ...
 hal.initialize();
 hal.setButtonController(&bc);
}

TouchGFX Designer

To use a value sampled by the ButtonController in interactions from the TouchGFX designer a
name/value-mapping must be created in the .touchgfx project file.

"Hardware Button is clicked" is now available as a trigger when creating an interaction. Selecting the
"Key"/"Name" pair defined in the .touchgfx file allows users to specify an action, such as "Change
screen".

 "PhysicalButtons": [],

 "PhysicalButtons": [
 {
 "Key": 1,
 "Name": "BTN_USER"
 }
],

Running on target
After pressing "Generate code" in the designer, open the CubeIDE project, configure the debug
configuration.

Links
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-
mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-discovery-kits/stm32h7b3i-dk.html#

Version: 4.16

Updating to a new TouchGFX
Version
When a TouchGFX Designer application is created, the .touchgfx project file created will have the same
version as the TouchGFX version used to create the application. But this does not mean that you are
only able to use that specific version of TouchGFX to further develop your application.

TouchGFX is backwards-compatible by design and in most cases it requires a very simple procedure to
make an older versioned application work with a new version of TouchGFX.

Simply open your newly installed version of TouchGFX Designer and try to open your older application
either through recent applications or the Open dialog. You will be greeted with the following popup:

Update popup

CAUTION

As stated in the popup, it is recommended to always have a backup of your application before running the
updater.

Press 'Yes' and the updater will start. After it is finished, the application will open as normal in
TouchGFX Designer and you are ready to use the new version.

In rare cases, you will have to do some manual changes to an application to make it fully updated to a
new TouchGFX version. Consult the Known Issues section if you are having additional problems
updating an application to a new version.

Update TouchGFX Generator

After installing X-Cube-TouchGFX-4.14.0 in CubeMX 6.0.0 or later by following Installing TouchGFX
Generator in CubeMX open the project and navigate to Software Packs -> Select Components (or
press ALT + U)

Software Pack Component Selector

In the details and warnings pane select the version to migrate to and press try. CubeMX will perform a
trail migration and present the result, some refparameters are not able to be migrated to the new
version and therefore will be presented as null values. Select accept to save the migration and then
press OK to close the Software Pack Component Selector window.

Software Pack Component Selector : Migrate Parameters for TouchGFX Generator

Now TouchGFX Generator is migrated to the new version and the changes are saved in the .ioc file.
Please validate the configuration of TouchGFX Generator before generating code with CubeMX. After
generating code with CubeMX open TouchGFX Designer and validate the ui before generating code
from TouchGFX Designer.

CAUTION

The migration is a two step process to update TouchGFX to the new version. It requires code generation
from both CubeMX and TouchGFX Designer.

C++ code provided by TouchGFX Generator is first written to disk after the Generate Code button in
CubeMX has been pressed.

Version: 4.16

Getting Help
There are numerous ways you can seek help on TouchGFX relative issues in case you get stuck or
needs more information in certain areas. First of all you should look through this TouchGFX
Documentation. This is the greatest source of knowledge to TouchGFX related issues and cover a lot of
areas. If this does not answer your question you can seek for further information at following:

TouchGFX Community
Public forum site in ST Community dedicated for GUI/TouchGFX related topics. Here you will find a
lot of questions and answers, some tutorial and videos covering all kind of development issues. And
with an myST account (easy and free registration) you can ask specific technical questions and get
answers.
Webinar and videos

MOOC TouchGFX Webinar (Training videos)
Other TouchGFX Webinars
ST Youtube channel (TouchGFX playlist)

Online Support
Online support site for support requests via web form. Can be used when it was not possible to find
any information in the community nor the TouchGFX documentation.
Your local ST support channel
Your local ST contact can either help you directly or get required back-office support
TouchGFX Implementer (ST partner)
Get assistance in any stage of your UI project from one of our dedicated and highly skilled
TouchGFX Implementers (scroll down the webpage for a list of implementers). Covering display
solutions ready to embed into your project, and services within graphical design, hardware
development and production, and software development. Their innovative approach as well as
extensive knowledge about TouchGFX and STM32 microcontrollers make them your ideal partner
for your next embedded product. Find your implementer and go from idea to end-product fast and
easy.
ST blog
Technical news on STM32 graphics and TouchGFX.
ST Graphic website
Website covering ST Graphics.

Version: 4.16

Known Issues
This article lists the issues that are known to be present in all TouchGFX versions, along with potential
workarounds. Also, if there are any specific upgrade steps you need to perform to upgrade TouchGFX
to a certain version, these will be mentioned. Note that if your current version is several releases old,
you need to perform the upgrade steps for all the releases up to the new one.

Issues with CubeMX 6.1.0 and CubeProgrammer 2.6
As of version CubeMX 6.1.0 EWARM projects generated by CubeMX do not work with X-CUBE-
TOUCHGFX because of a wrong setting for "C/C++ Compiler" / "Language" option which was changed
from "Auto" to "C++" causing compilation errors. This issue will be fixed in CubeMX 6.1.1. In the mean
time, changing the option back to "Auto", manually, will solve compilation issues but will be reverted
upon code generation from CubeMX.

A bug in CubeProgrammer 2.6 related to how external loaders (.stldr) are referenced breaks
Makefiles for all existing Application Templates (AT) and also prevents the "Run Target" feature in
TouchGFX Designer from functioning correctly. This issue also extends to user projects based on
current versions of the ATs. Application templates will receive an update to compensate for this bug
and will work for both CubeProgrammer 2.5 and 2.6. If you've got a project based on an AT that does
not work with CubeProgrammer 2.6, you can make the following modifications to add support. Users
must execute STM32CubeProgrammer_CLI.exe from within the bin folder when making a reference
to an external loader. Generally, speaking:

cd into the bin folder of the STM32CubeProgrammer installation folder.
Execute the command to program the connected target with a relative reference to the .stldr
file.

TouchGFX 4.15.0
MCU support
While Cortex-M33 is fully supported by TouchGFX, "Software Packs" (TouchGFX Generator, among
others) cannot be enabled in the current verison of CubeMX (v6.0.1) for multi-context MCUs until
support is added in CubeMX. Disabling "Trust Zone" for Cortex-M33 based MCUs, thus limiting the

@cd "$(st_stm32cube_programmer_bin_path)" && ./$(stm_stm32cube_programmer_exe) -c port=SWD

MCU to a single context, will allow you to enable TouchGFX Generator. TrustZone should be enabled
manually in User Code sections.

TouchGFX 4.14.0
ARMCLANG Support
While TouchGFX now provides an ARMCLANG (ARM compiler v6.x) library for Cortex-M0, Cortex-M4f,
Cortex-M7 and Cortex-M33, CubeMX is not able to generate projects that enable the ARMCLANG
compiler (ARM Compiler v6.x). This requires users who wish to use the compiler in their projects to
select the compiler manually from the project options in Keil uVision.

If configuring the FreeRTOS middleware from within CubeMX, any generated project using ARMCC
(ARM compiler v5.x) will have FreeRTOS portable files that are not compatible with ARMCLANG; And
these have to be replaced manually. Whenever "Generate code" is run from within CubeMX any
manual changes will be overwritten and it would be wise to keep the project under version control (git,
etc.) to undo these particular changes.

In summary. Since CubeMX can only generate ARM Compiler v5.x compiler projects, users have to
modify the following every time code is generated from CubeMX unless they keep their project under
version control.

1. Select ARM Compiler v6.x in project options.
2. Link with the ARMCLANG library instead of the ARMCC library (configured by CubeMX).
3. If configuring FreeRTOS from within CubeMX, then the FreeRTOS portable files should be taken

from the portable/GCC folder rather than portable/RVDS (default for ARM Compiler v5.x) in
order to be compatible with ARM Compiler v6.x.

Workflow

The following workflow describes how to use v6.x ARM Compiler from Keil uVision with CubeMX
generated projects and a TouchGFX ARMCLANG library.

1. Select ARMCLANG (v. 6.x) in Keil uVision.

ARMCLANG Support

2. If you're configuring FreeRTOS from CubeMX, CubeMX will generate the wrong portable files and
configure your project to use those. You have to manually replace these with the ones (from
https://github.com/FreeRTOS/FreeRTOS-
Kernel/tree/6199b72fbf57a7c5b3d7b195a3bd1446779314cd/portable/GCC (port.c and
portmacro.h) or download a FreeRTOS release and find the files in there.

Replace port.c :

port.c

Change your include path settings to include portmacro.h from the portable/GCC folder (in this
case for Cortex-M7):

Portable include path

3. TouchGFX designer Post-Generate step during "Generate Code" will automatically insert the correct
library based on the compiler version you've chosen.

TouchGFX 4.13.0
Bugs
Font Converter

The FontConverter tool would generate glyph pixel data for unicodes that were a part of a rule in the
font, regardless of that glyph being used in an actual text in the application. This led to several
megabytes, potentially, of additional glyph pixel data. New FontConverter tools (windows and linux)
that no longer generate pixel data for glyphs that aren't in use by the application can be found here:

fontconvert_fix.zip

Extracting this file at the root of your 4.13.0 installation will update the fontconverter binaries inside

touchgfx\framework\tools

Additional Compiler Support
A library built with ARMCLANG compiler (v6.12) can be found here:

touchgfx_core_clang.zip

Extracting this file at the root of your 4.13.0 installation will place the library
touchgfx_core_clang.lib inside.

touchgfx\lib\core\cortex_m7\Keil

Backwards Compatibility
Deprecated Features

The following deprecated features have been removed. If you have referenced them in your code, you
may need to rewrite parts of your application:

Definition of deprecated TRANSPARENT_COL
Drawable::getType()

HAL::blitSetTransparencyKey()

HAL::registerTextCache()

HAL::cacheTextString()

TextureMapper is Disabled by Default

The TextureMapper is disabled by default to reduce the code space used by TouchGFX. TouchGFX
designer will insert code to enable texture mapper in all new project.

If you are migrating an old project to TouchGFX 4.13 and you are updating to TouchGFX 4.13 this is
handled by TouchGFX Designer.

If you are updating manually then you need to insert code to enable the TextureMapper. Otherwise
any TextureMapper will not draw on the screen.

Read more here: Configuring TouchGFX Features.

HAL SDL1 incompatible

Two functions were moved from the TouchGFX library code to the HALSDL2.cpp . This makes no
difference for applications that uses the HALSDL2.cpp as HAL for the Windows simulator.

If you have a old application (before TouchGFX 4.8.0) your simulator is maybe using HALSDL (not 2).
This simulator HAL is not included in TouchGFX anymore. The HALSDL is missing the two functions
that were previously included in the TouchGFX library. You need to add them manually to
HALSDL.cpp :

HALSDL.cpp

TouchGFX 4.12.3
Backwards compatibility
Screen transitions

void simulator_enable_stdio();
void simulator_enable_stdio()
{
 HWND consoleHwnd = GetConsoleWindow(); // Get handle of console window
 if (!consoleHwnd) // No console window yet?
 {
 HWND activeHwnd = GetActiveWindow(); // Remember which window is active

 AllocConsole(); // Allocate a new console
 consoleHwnd = GetConsoleWindow(); // Get handle of console window

 FILE* dummy;
 freopen_s(&dummy, "CONIN$", "r", stdin); // Redirect stdin/stdout/stderr to the ne
 freopen_s(&dummy, "CONOUT$", "w", stdout);
 freopen_s(&dummy, "CONOUT$", "w", stderr);

 SwitchToThisWindow(activeHwnd, true); // Switch back to the originally active wind
 }
 if (consoleHwnd)
 {
 ShowWindow(consoleHwnd, SW_SHOW); // Show/hide it!
 }
}
void simulator_printf(const char* format, va_list pArg);
void simulator_printf(const char* format, va_list pArg)
{
 // Create a console window, if window is visible.
 simulator_enable_stdio();
 if (GetConsoleWindow()) // Only print if we have a console window
 {
 vprintf(format, pArg);
 }
}

Earlier versions are redrawing the entire screen after a screen transition is completed. This additional
redraw caused performance issues on some slow platforms. If you require this redraw for some reason,
you need to invalidate the relevant part of the screen, e.g. by calling container.invalidate() in the
Screen::afterTransition() virtual of the Screen transitioned to.

Binary Fonts

The format of the binary fonts has changed because kerning data is now also included in the binary
fonts. Binary font files needs to be regenerated, old files will not work correctly. Depending on how
your Makefiles are setup, this is normally done by regenerating all assets (e.g. make -f
simulator/gcc/Makefile clean assets).

TouchGFX 4.11.0
Backwards compatibility
In touchgfx/framework/include/touchgfx/lcd/LCD.hpp we have removed an include of the file
touchgfx/hal/HAL.hpp that was inserted by mistake in an earlier version. This may give you a

compile error in a file where you have included LCD.hpp and also make use of the HAL.hpp content.
The solution is to also include touchgfx/framework/include/touchgfx/hal/HAL.hpp in your file.

TouchGFX 4.10.0
Upgrading from 4.9.x
From version 4.10.0 TouchGFX runs exclusively on STM32 MCUs.

You need to do the following if updating an old project.

Add the highlighted code below at application startup to inform TouchGFX that you are running on
STM32 hardware. A suitable location is the end of the hw_init() function in
BoardConfiguration.cpp

BoardConfiguration.cpp

void hw_init() {
 ...
 //Enable CRC engine for STM32 Lock check
 __HAL_RCC_CRC_CLK_ENABLE();
}

Backwards compatibility
Unused file \touchgfx\framework\include\touchgfx\canvas_widget_renderer\RGBA8.hpp removed.

Project Updater Issue
IAR and Keil project updaters invoked from TouchGFX Designer do not respect custom file level
optimization set in the respective IDE.

TextArea and ChromART (DMA2D)
Rendering of TextAreas with ChromART (when TextArea is the top most element / last to be drawn)
cause a premature unlocking of the framebuffer and subsequently a premature completion/transfer of
the current frame to the display. Once endFrame() is called by TouchGFX all drawing operations,
including DMA operations, should already be completed. Due to a breach of contract by TextArea in
how to appropriately protect the framebuffer, DMA operations are allowed to continue even after
returning from endFrame() .

The contract for a widget is to either:

1. Lock the framebuffer (returns a pointer to framebuffer).
2. Draw something in the framebuffer.
3. Unlock the framebuffer.

Or to use DMA operations, in which case syncronization of the framebuffer is handled automatically.

TextArea, in 4.10.0, mixes the two procedures which can cause glitches if it is the top most element
(last to be drawn) of the current screen. The bug can be fixed by manually guarding endFrame() with
the following override of endFrame() (based on F4 HAL). It ensures that endFrame() does not return
if ChromART operations are still being processed.

TouchGFX 4.9.0

void STM32F4HAL::endFrame()
{
 if (dma.isDMARunning())
 {
 OSWrappers::tryTakeFrameBufferSemaphore();
 }
 HAL::endFrame();
}

Upgrading from 4.8.0
With the introduction of Application Templates, which essentially separates board support packages
from the core framework, we have removed a lot of low-level drivers and other files from the touchgfx
folder in 4.9.0. These files are now provided by application templates instead. However, this means
that you cannot upgrade to 4.9.0 by just replacing the touchgfx folder, since that would likely lead to
some BSP files missing. Instead, the TouchGFX Designer is able to perform the upgrade automatically.
The upgrade can be done in two different ways, and you will need to decide which one is most
suitable for you.

CAUTION

Please make sure you have a backup of your project before upgrading

Method 1: retain original file structure
This method is done by simply opening your project in the new 4.9.0 Designer. TouchGFX Designer will
prompt you whether you want to upgrade, and by clicking OK, TouchGFX Designer will apply the
necessary changes. TouchGFX Designer will perform the following operations:

1. Unpack the new reduced touchgfx folder into your application, and modify your TouchGFX path to
match this

2. Download and unpack all the files we have removed from the touchgfx folder, so that your project
still compiles

This approach will leave pretty much everything as they used to be, so if the old file structure suits
your project, this is the easiest choice. The main drawback is that you will not have the benefit of the
image converter speedup (by working on image folders instead of individual files). But you can modify
your makefile manually to use this approach though.

Method 2: import into new template
Using this method you can transition your project into the new template-based file organisation. To
achieve this, you must first let the Designer upgrade your project using Method 1 above. Then, create
a new project using the appropriate application template (simulator, or one matching your eval
board). With this new project opened in the Designer, go to the top menu and click "Edit -> Import
GUI". In the dialog box point out the .touchgfx file of your project. The Designer will then
automatically import all the UI files, including assets, into the newly created project. If you have added
additional code outside of the gui folder, you would need to manually copy those files over to the new
project.

Method 3: Manual upgrade without Designer
If you are not using the Designer, you can perform the upgrade by:

1. Replacing the touchgfx folder used by your project with the one from the 4.9.0 installation.
2. Download this zip and unpack it into the touchgfx folder, restoring the removed files.

Version: 4.16

Changelog
Version 4.16.0

Release date: December 15th, 2020

New TouchGFX Designer Features:

New widget: Gauge.
Added new trigger "When Screen Transition Begins".
Renamed "When Screen Entered" Trigger to "When Screen Transition Ends".
Added new "Set Language" Action.
Adding one image via the Image Picker on a widget now selects it.
Added link to shortcuts documentation in 'Help->Keyboard Shortcuts'.
Added a better code editor for 'Execute C++ code' actions.
Added new Block Transition for 'go to screen' actions.
Improved usability/user experience of 'Add Widget' menu.
Added preliminary support for LCDNemaP.

Bugfixes in TouchGFX Designer:

Fixed generated mainBase.cpp compilation failing on unix by adding: '#include <string.h>'.
Fixed image file validation reporting an image to be erroneous when file name contained
underscores.
Fixed being able to create an application with a space in its name.
Fixed Dynamic Graph callback handlers being genereated twice in Custom Containers.
Fixed Dynamic Graph crashing the TouchGFX Designer in certain edge cases.
Fixed labels in Dynamic Graph not updating when switching between single use and resource
text.
Fixed labels in Dynamic Graph not updating their position when changing the size og the
Dynamic Graph.

New TouchGFX Core Features:

New invalidation algorithm for improved performance.
Added new container Gauge.
BoxWithBorder is now a subclass of Box.

LCD16 and LCD8 fillRect functions now write 32/16 bits at a time for improved performance.
Added CanvasWidget::resetMaxRenderLines().
Moved LCD2shiftVal(), LCD2getPixel() and LCD2setPixel() to class LCD2bpp.
Moved LCD4getPixel() and LCD4setPixel() to class LCD4bpp.
ScrollableContainer::setScrollbarsPermanentlyVisible() now takes a boolean argument to allow
disabling permanently visibility.
TextureMapper and ScalableImage are now each a subclass of Image.
Added AnimatedImage::setEndBitmap().
Added AbstractClock::getCurrent12Hours and AbstractClock::getCurrentAM().
Unicode::itoa() and Unicode::utoa() can handle radix up to 36.
Added AnalogClock::setAlpha() and getAlpha().
ScrollableContainer::setScrollbarsPermanentlyVisible() now takes a boolean argument to allow
disabling permanently visibility.
Added TextArea::resizeHeightToCurrentTextWithRotation().
Added Drawable::setWidthHeight() to set width and height in one call given by (width,height),
Drawable, Bitmap or Rect.
Added Drawable::setXY(Drawable&) to set top left corner of a Drawable at the same position as a
nother Drawable.
Added Drawable::setPosition(Drawable&) to place a Drawable at the same position as another
Drawable.
Added Color::getRGBFrom24BitHSV() and Color::getHSVFrom24BitRGB() to convert between
(hue, saturation, value) and (red, green, blue).
Added Color::getColorFrom24BitHSV() and Color::getHSVFromColor() to convert between (hue,
saturation, value) and colortype.
Added Color::getHSVFromHSL() and Color::getHSLFromHSV() to convert between value and
luminance
Added Color::getRGBFrom24BitHSL() and Color::getHSLFrom24BitRGB() to convert between (hue,
saturation, luminance) and (red, green, blue).
Added Color::getColorFrom24BitHSL() and Color::getHSLFromColor() to convert between (hue,
saturation, luminance) and colortype.
PainterBW now supports alpha.
SnprintFloat(s) now handles NaN ("nan") and Inf ("inf").
SnprintFloat(s) now defaults to 6 digits after the decimal point instead of 3. ANSI C says "If the
precision is missing, 6 digits are given".
Added Circle::setPixelCenter().
Added updateValue(), setEasingEquation(), setValueSetAction() and setValueUpdatedAction() to
progress indicators, to allow smooth transition from one value to another value.

Added SwipeContainer::getSelectedPage.
Added BlockTransition.
Added CacheableContainer::setSolidRect() and getCacheBitmap().

Bugfixes in TouchGFX Core:

Corrected spelling of getGraphAreaPaddingRight().
In rare occations the TextureMapper would draw some scanlines twice.
AnimationTextureMapper, ZoomAnimationImage, MoveAnimation and FadeAnimation all work if
steps=0 and will notify of animation ended on the last animation step.
Fixed bug in Keyboard when dragging away from pressed key, and releasing.
Slider::getIndicatorMin() would return indicator max instead of min.
ImageConvert would corrupt the heap (and most likely crash) on BMP images.
Fixed the border of images drawn in bilinear mode by the texture mapper.
Fixed BoxWithBorder with a very wide border when alpha<255.
Fixed ProgressIndicators' range and value to all be type 'int'.

Deprecated TouchGFX Core Features:

All deprecated functions from 4.15 and earlier has been removed.
Removed ST1232TouchController.
ZoomAnimationImage::setDimension is deprecated. Use setWidthHeight.
Drawable::setXY and Drawable::setPosition are no longer virtual functions. Only setX, setY,
setWidth and setHeight are virtual.
AbstractProgressIndicator::getRange methods with int16_t& parameters.

Version 4.15.0
Release date: October 5th, 2020

New TouchGFX Designer Features:

New widget: Dynamic Graph.
M0 platforms now have all texture mapper features disabled by default.
Added support for Wipe-transition.
Overhauled the Add Widget Menu (is now found by clicking a button in the top left of the
canvas toolbar or pressing 'A' on the keyboard): added search functionality, resizability.
The whole bottom status bar can now be clicked to bring forward the log.
The status bar now turns red on error and green on success.

Moved zoom functionality to top right of toolbar.
Added button to center canvas in the viewport.
Added keyboard shortcuts for zoom in (Ctrl + '+'), zoom out (Ctrl + '-') and reset zoom (Ctrl + 0).
It is now possible to lock the position of a widget, which also disables selection on canvas (useful
for background images, boxes).
A black Box is now always generated in base views for a better experience when inserting
widgets on an empty canvas.
Many tooltips have received a visual overhaul and also display keyboard shortcuts.
It is now possible to select if fonts should be output in mapped or unmapped format.

Bugfixes in TouchGFX Designer:

Designer would sometimes crash when importing a project with identical fonts, bitmaps.
Generated code in FrontendHeapBase.hpp would include multiple copies of the same transition
header file.
It was possible to drag and drop widgets into a scroll-list or scroll-wheel in the treeview.
"Choose button key" for interactions were cleared when adding widgets.
Wrong default version of packages were sometimes chosen.
Packages would be downloaded even if they already existed on disk.

New TouchGFX Core Features:

New font format that allows most font data to be stored in unmapped flash.
Improved partial framebuffer block transfer algorithm.
Added new prototypes to OSWrapper: isVSyncAvailable() and signalRenderingDone() for use on
platforms that cannot be block in waitForVSync.
touchgfx::SingleBlockAllocator is removed, use touchgfx::ManyBlockAllocator<block_size, 1,
bytes_per_pixel>
New method on HAL, enableDMAAcceleration(), to disable hardware accelerations.
Added TextureMapper::invalidateBoundingRects().
ImageConvert is using updated nlohmann-json 3.9.1. Generated images look the same.
Added single stepping in simulator. Pressing F9 will start/stop execution. Pressing F10 will
execute one tick. This can also be controlled using HALSDL2::setSingleStepping(),
HALSDL2::isSingleStepping() and HALSDL2::singleStep().
Added new Graph classes.

Bugfixes in TouchGFX Core:

Armenian (and some Cyrillic) characters were written right-to-left.
Quick touch and release after swipe could result in an extra unwanted GestureEvent.

Very large glyphs that required only partial redraw would not render correctly.

Deprecated TouchGFX Core Features:

Update procedure:

For this release additional steps might be needed. Please refer to the Known Issues article for
details: https://support.touchgfx.com/docs/miscellaneous/known-issues

Version 4.14.0
Release date: July 2nd, 2020

New TouchGFX Designer Features

Updated all links to direct to new documentation website.
Added support for the SlideMenu widget.

Bugfixes in TouchGFX Designer:

FrontendHeap.hpp model declared before app to prevent potential errors.
Fixed UI Template selector not comparing available color-depths correctly.
Fixed .touchgfx.part file version not being checked before loading.
Fixed code generation of included painter when selecting a specific format for an image, L8
images and all 8 bit LCDs supported.
Fixed application name validation when creating new application.
Fixed error when dragging container type widgets inside themselves via treeview.

New TouchGFX Core Features:

HAL::lockDMAToPorch default value is set to false instead of true.
Font::getDataFormatA4() is now called Font::getByteAlignRow() as it may be set for 2bpp fonts
and 1bpp fonts as well as 4bpp fonts.
GestureType is now called GestureEventType for consistency. GestureType has been deprecated
and will be removed soon.
Added Version.hpp with macros for current version of TouchGFX.
ImageConvert supports image files starting with a digit.
ImageConvert output .cpp files with "image_" prefix.
ImageConvert built-in help improved.
ImageConvert can write an application.config template file.

Added Unicode::strncmp_ignore_whitespace which ignores whitespace and not just spaces.
FontConvert is using updated freetype 2.10.2. This results in slightly nicer and better aligned
characters.
ImageConvert is using updated libpng 1.6.37. Generated images look the same.
Added setDurationSpeedup, getDurationSpeedup, setDurationSlowdown and
getDurationSlowdown to ScrollableContainer. This allows better control of the number of
animation steps to use on a swipe gesture.
Extended SlideMenu widget with possibility of not needing a button.
Using a colortype variable as a number will automatically cast it to uint32_t instead of uint16_t.
Added ARMCLANG-6.x support in Keil project.
Support for Cortex-M33.

Bugfixes in TouchGFX Core:

BoxWithBorder would not set borderColor and borderSize in constructor.
Several fixes in Unicode::snprintf(): Removed limit of 64 characters for format string. Do not force
sign character on %o, %x and %X. No zeroes prefixed on %05c. Correct handling of %c with 0 as
value. Sign on %s (%+s, %0s) handled properly.
ScrollListWithCenterSelect could crash if size was changed.
ScrollList with snapping would not report the correct clicked item.
ScrollList without snapping, non-circular could report wrong item.
ScrollList repects padding when item is clicked.
CWR Painters with setColor(color,alpha) now only accepts color. Use setAlpha(alpha) to set the
alpha.
Cached bitmaps was not 32bit aligned with an unenven number of dynamic bitmaps.
LED.hpp no longer includes lpc_types.h.

Deprecated TouchGFX Core Features:

Deprecated functions are now marked deprecated so the compiler can issue a warning on these
functions. Deprecated functions will be removed in the future.
Removed definition of Unicode::EMPTY.
Definition of PI moved from Math3D.hpp to Types.hpp.
The 'pi' defined in EasingEquation.hpp has been replaced by PI.
ImageConvert no longer supports -f, -o and -header.
Image::hasTransparentPixels removed.

Update procedure:

For this release additional steps might be needed. Please refer to the Known Issues article for
details: https://support.touchgfx.com/docs/miscellaneous/known-issues/#project-updater-issue

Version 4.13.0
Release date: December 12th, 2019

New TouchGFX Designer Features:

Support for ".touchgfx.part" files. These can be used for external input to a project (e.g. CubeMX
integration).
Select supported image formats for the TextureMapper by navigating to the "Framework
Features" category in the "Config" tab.
It is now possible to override the Generate Assets, Post Generate, Compile Simulator, Run
Simulator, Compile Target and Flash Target commands from within the Designer.
Improved zoom/scroll on canvas and auto scrolling is now enabled when dragging widgets to
the outskirts of the canvas.
The Generate Code button shows if the current code is up to date, by displaying a blue dot if it is
out of date.
The File, Edit and Help menus can now be opened with the shortcuts Alt + F, Alt + E, and Alt + H.
The Help menu includes a direct link to the TouchGFX Help Center.
Modify text configurations through the "Config" tab
The detailed log can be floated or docked within the Designer and can be opened with the
shortcut Alt + L.
The Designer version is shown in the title bar of the window.
The Recent Projects list now displays the full path to a project instead of just the project name.
Performance improvements when moving widgets on the canvas.
Performance improvements when rendering rows in the image manager.
Performance improvements when reordering items in the widget tree.

Bugfixes in TouchGFX Designer

Fixed a bug where having delay and button callback interactions could cause faulty generated
code.
Fixed a bug where using the TouchGFX CLI to generate projects did not properly include used
TouchGFX assets.
Fixed a bug where the canvas buffer for a screen would not be properly updated in some cases.
Fixed a visual bug where the error message displayed on the startup window would not
disappear when retrying a download.

Fixed a bug where the function name of a call virtual function interaction was not properly
validated.
Fixed a bug where progress indicator in some cases would not render correctly on the Designer
canvas.
Fixed a bug where creating a new project and not saving would cause the default typographies
to disappear when reloading the project.
Fixed a visual bug where the text manager would seemingly keep focus on wrong cells.
Fixed a bug where the properties tab for a widget would not properly display errors.
Fixed a bug where generating button click handlers would sometimes yield empty if/else
statements.
Improved search fields in startup window.
Fixed a bug where copying a shape widget and editing a point in one of them would cause the
change to happen for both.
Fixed a bug where scrolling by using the mouse wheel while changing fonts from within the
typography picker would close the popup.
Fixed a bug where loading project containing a go to screen action would not load correctly.
Fixed a bug where expanding/collapsing a node in the widget tree view would also select the
node.
Fixed a bug where some values were imported incorrectly when importing a UI into an
application.
Fixed a bug where navigating through folders in the image picker was faulty.
Fixed a bug where the order of pages in a swipe container was presented wrongly.
Fixed a bug where the rendering of the texture mapper on the Designer canvas was faulty.
Fixed a bug where validation of a removed interaction source was faulty.
Fixed a bug where renaming a folder with subfolders located under assets/images could crash
the Designer.
Fixed interactions on RadioButtons generating duplicate code.
Fixed a bug where dragging the same image from file explorer to the Designer twice would
result in faulty behavior.
Fixed a bug where radio button interactions would sometimes generate duplicate code.
Fixed a bug where overriding a canvas buffer could result in a newline missing in the generated
code.
Fixed a bug where the Designer would generate faulty code when using Turkish region format.
Fixed a visual bug where having long text in custom action/trigger text boxes would cause
unwanted shifts in the UI.
Fixed a crash bug where a sequence of steps after deleting the last custom container in an
application would cause the Designer to crash.

Fixed a bug where copying a custom container instance from a screen to a custom container
definition did not work.
Fixed the Matching UI Templates filter not working as intended.
The Designer now supports application names that include periods.
Fixed a bug where changing a slider with a style from horizontal to vertical would result in the
style not being correctly set.
Fixed a bug where changing the font of a typography would visually not display the correct font
name some places in the UI.

New TouchGFX Core Features:

TextureMapper performance improvement. Decreased rendering time in the range of -10% to
-60% depending on the image format, rendering algorithm, hardware setup and image layout.
Texture Mappers are disabled by default, must be enabled before use. Read more about this
feature here: https://support.touchgfx.com/docs/miscellaneous/known-issues/#texturemapper-
is-disabled-by-default
Added simple string printing for debugging in all LCD types. See:
https://support.touchgfx.com/docs/development/ui-development/working-with-
touchgfx/debugging/#using-the-debugprinter
Font caching now supports GSUB tables as used in Hindi. See:
https://support.touchgfx.com/docs/development/ui-development/touchgfx-engine-
features/font-cache/#caching-gsub-tables
Updated arm gcc compiler to version 7.3.1 2018q2.
Updated gcc compiler to version 7.3.0.
Updated mingw environment with latest version of packages.

Bugfixes in TouchGFX Core:

TextureMapper: blending on edges corrected/improved in Bilinear mode.
TextureMapper: minor image quality improvements in Nearest Neighbor mode.
Bugfix for text order in arabic text "12:34" which would previously render as "34:12" in RTL.

Deprecated TouchGFX Core Features:

Removed definition of deprecated TRANSPARENT_COL.
Removed Drawable::getType().
Removed HAL::blitSetTransparencyKey().
Removed HAL::registerTextCache().
Removed HAL::cacheTextString().

Update procedure:

For this release additional steps might be needed. Please refer to the Known Issues article for
details: https://support.touchgfx.com/docs/miscellaneous/known-issues/#project-updater-issue

Version 4.12.3
Release date: September 25th, 2019

New TouchGFX Core Features (since 4.12.0):

Binary Fonts: Binary fonts can be used as an alternative to compiling and linking font information
in to your application. The main advantages of this approach is to get a smaller application
binary and get a flexibility in providing different sets of fonts with your device.
Font Caching: Support for caching binary fonts, suitable for loading only the required characters
from a file system, when a string is displayed.
Binary Translations: Support for binary translations, suitable for loading translations from a file
system as opposed to linking them into the application. Read more about these feature here:
https://support.touchgfx.com/docs/development/ui-development/touchgfx-engine-
features/using-binary-translations/
Support for non-memory-mapped flash storage for 16bpp displays, allows storage of images
and fonts in e.g. inexpensive SPI flashes.
Recognition of Unicode sequences for Arabic ligatures Allah, Akbar, Mohammad, Salam, Rasoul,
Alayhe, Wasallam and Rial Sign.

Bugfixes in TouchGFX Core:

TextureMapper (bilinear) would fail to draw L8_RGB888 and RGB888 bitmaps on 24bpp displays
correctly.
Setting a text with a wildcard in a TextArea without wildcard support in combination with RTL
could cause a crash.
If a CacheableContainer was smaller than the associated bitmap, the size of the container would
not be correct.
Fixed SnapshotWidget on 8bpp LCDs.
Fixed rendering of some Arabic ligatures.
Fixed rendering of some Hindi ligatures.
Fixed bug when applying certain GSUB substitution rules.
Fixed bug that binary fonts contained extra rules.

Version 4.12.2

Release date: August 22nd, 2019

New TouchGFX Core Features:

WordWrapping wide text using TextArea::setWideTextAction() now wraps at normal space as well
as Unicode characters 0x200B (Zero Width Space).

Bugfixes in TouchGFX Core:

Binary fonts: The fontConverter tool was not writing kerning data into binary font files when the
"binary_fonts" option was specified in the application configuration. This caused texts to appear
incorrect when using binary fonts.

Version 4.12.1
Release date: August 15th, 2019

Updated "Third Party Components.pdf" to reflect updated components

libpng-1.6.36
zlib-1.2.11
freetype-2.9.1

Bugfixes in TouchGFX Designer:

Fixed a bug where having a delay action together with a button clicked action would result in
compilation errors.
Fixed a bug where Canvas Buffer for a Screen was not correctly updated when adding a Canvas
Widget to a Custom Container Instance.
Fixed a bug where an error message in the Online Applications window would get stuck.
Fixed faulty rendering on the Canvas in the Designer when using the Alpha value of the different
Progress Indicators.
Fixed a bug where creating a new project, closing the Designer without saving it, and reloading
the project would cause the project to have no available typographies.
Updated error message when trying to import an already open UI into another project to be
more clear.
Fixed a bug where the Text Manager could have multiple foci visually in a specific circumstance.
Fixed a bug where the Properties tab for a Widget would not display a red border correctly,
when an error is present on the Widget.
Fixed a bug where using the Consolas font would render incorrectly on the Canvas in the
Designer after reloading a project using that font.

Bugfixes in TouchGFX Core:

TextureMapper bug if Display Rotation was in use.
Disregard kerning data for CachedFont.
CachedFont did not look in font cache for the fallback character.

Version 4.12.0
Release date: 06-07-2019

Important upgrade information:

Public version of drawGlyph has been removed. Use drawString instead.
Using bitmap format ARGB8888 for opaque images will no longer dither to 565 but keep full 888
colors. Using ARGB8888 for non-opaque images will still dither to 565 when the opaque format
is RGB565.
Images converted to BW_RLE will no longer fall back to BW if the BW_RLE format causes the
converted image to be larger. Instead a warning will be generated by the image converter. Use
the Designer (or the new configuration file) to specify BW or BW_RLE for each individual image.

New TouchGFX Designer Features:

A custom container can now be nested within another custom container. This enables
composing custom components into larger custom components indefinitely.
A custom container supports defining custom triggers and custom actions, a screen supports
defining custom actions. These triggers and actions support the flow of information from one
component to another component. Using such triggers and actions in interactions within the
Designer enables doing more real world application behaviour without leaving the Designer.
Check out the documentation for further introduction.
A Container can now be generated as a CacheableContainer.
A new "Images" tab has been added for setting up individual image configurations (Image
Format, Dither Algorithm, Layout Rotation, etc.).
Application settings and other new settings have been relocated to the "Config" tab.

New TouchGFX Core Features:

Upgraded 3rd party libraries used by framework tools. This results in much nicer looking texts.
Improved kerning through larger kerning table.
Thai fonts are now rendered better with tighter line spacing and better rendering of Sara Am in
some cases.

Preliminary support for Hindi (Devanagari). The following GSUB tables are applied: nukt (Nukta
Forms), akhn (Akhands), rkrf (Rakar Forms), cjct (Conjunct Forms), vatu (Vattu Variants), rphf
(Reph Forms), pref (Pre-Base Forms), half (Half Forms), blwf (Below-base Forms), abvf (Above-
base Forms), pstf (Post-base Forms), and cfar (Conjunct Form After Ro). The following are NOT
currently supported: abvs (Above-base Substitutions), blws (Below-base Substitutions), and psts
(Post-base Substitutions). Also, not all GSUB tables types are supported.
Added a new Line::updateLengthAndAngle() API.
Added support for partial framebuffers rendering and updates.
Added simple string printing for debugging.
Allow changing the BitmapCache after initialization.
New macros for setting sections names for flash programming.
Added Circle::updateArc() to update arc start and arc end with minimal invalidation areas.
Updated CircleProgress to use higher precision calculations for updates.
Added CacheableContainer for offscreen widgets rendering.
Added support for L8 graphics assets with 16bit, 24bit and 32bit palettes.
Added support for L8 hardware acceleration via DMA2D.
Added new LCD32bpp framebuffer renderer.

Bugfixes in TouchGFX Designer:

ProgressIndicator is updated automatically after call to CircleProgress::setStartEndAngle(),
ImageProgress::setAnchorAtZero() and TextProgress::setNumberOfDecimals().

Bugfixes in TouchGFX Core:

Fixed redraw of circleProgressIndicator when setting new value.
Removed additional screen redraw after a screen transition is complete. This additional redraw
caused performance issues on some platforms. Invalidating the entire screen in
Screen::afterTransition(), if required, is now the responsibility of the application developer.

Update procedure:

For this release additional steps might be needed. Please refer to the Known Issues article for
details: https://support.touchgfx.com/docs/miscellaneous/known-issues/#project-updater-issue

Version 4.11.0
Release date: March 1st, 2019

Important upgrade information:

If your application includes LCD.hpp and expects to have access to HAL, this will no longer work
since LCD.hpp no longer includes HAL.hpp. Make sure to include HAL.hpp in this case. Older
versions of sample applications Demo1 and Demo2 had this issue and have been updated.

New TouchGFX Designer Features:

Added Bring Forward/Send Backwards support for widgets, via UI Buttons and keyboard
shortcuts Ctrl + F, Ctrl + B.
Added support for copy and paste of Screens and CustomContainerDefinitons.
Added support for reordering CustomContainerDefinitions.
Switching between Screen and CustomContainerDefinitions now remembers the previously
selected Screen and CustomContainerDefinition.
The last used typography is now used when creating new texts and widgets that use text.
Added new tree icon for CustomContainerInstances.
Disabled continuous code generation and compiling.
Improved readability of the output in Detailed Log window.
Widget Wildcard Characters added to the Texts tab, which adds default wildcard characters when
using some widgets
Improved performance when loading a project.
Improved performance when generating a project.
Improved performance of validation engine.
Added support for 6 bit color displays (8bpp).
Added support for setting RadioButtonGroup for RadioButtons.
Added support for Display Rotation (Landscape/Portrait).
Added support for setting Landscape/Portrait simulator skins in the Designer.
Added support for the following widgets: AnalogClock, DigitalClock, TextureMapper,
AnimatedTextureMapper & Shape.
The Designer now generates the Makefile and Visual Studio files used for running the Simulator.

New TouchGFX Core Features:

Added support for 6 bit color displays (RGBA2222, BGRA2222, ARGB2222 and ABGR2222
framebuffer formats).
Added support for Thai.
Improved rendering of Arabic text.
Added handling of negative line spacing.

Bugfixes in TouchGFX Designer:

Fixed Ctrl + A (select all) not working for CustomContainerDefinitions.

Fixed reordering of Screens selecting the first screen in the list and deleting the undo/redo
history for the Screen that was moved.
Fixed bug where the undo/redo history would become broken after selecting the Application
node.
Fixed application names not being allowed to start with a number or contain "-" or "_".
Fixed loading an application while on the CustomContainer tab resulting in erroneous content
on the canvas.
Fixed pressing undo after moving multiple elements into a container resulting in a crash.
Fixed font files being locked when loading a project.
Fixed error not showing up on components that use text, when removing their Resource Text.
Fixed bug where loading a faulty application by double-clicking a TouchGFX file would cause the
splash screen to get stuck.
Fixed faulty position code generation for ModalWindow.
Fixed missing "Move widget" interaction support for ScrollableContainer, ScrollList &
ScrollWheel.
Fixed the ordering of the Recent Applications list. Now correctly updates when opening an
application.
Fixed bug where inserting a widget could add an empty undo item to the undo/redo history.
Fixed missing header text and description in the properties pane for
CustomContainerDefinitions.
Fixed bug where idle CPU usage was higher than expected.
Fixed bug where setting an interaction on a FlexButton inside a CustomContainer would
generate faulty code.
Fixed bug where setting a mixin on a widget was not undo-able.
Fixed missing undo/redo functionality for adding styles to FlexButton.
Fixed wrong order of initializations when using numerous slider callbacks in interactions.

Bugfixes in TouchGFX Core:

Fixed precision in CWR Painters for 4bpp and 2bpp.
Fixed precision in alpha blending formulaes for 8bpp, 16bpp and 24bpp.

Update procedure:

For this release additional steps might be needed. Please refer to the Known Issues article for
details: https://support.touchgfx.com/docs/miscellaneous/known-issues/#project-updater-issue

Version 4.10.0

Release date: November 5th, 2018

Requirements:

TouchGFX is now only available for STM32 microcontrollers.

New TouchGFX Designer Features:

Added support for the following widgets: ImageProgress, BoxProgress, TextProgress,
LineProgress, CircleProgress, Line, Circle, BoxWithBorder, FlexButton, ScrollList, ScrollWheel and
SwipeContainer.
Canvas Buffer setting can be adjusted on screens.
Support for screen transition: CoverTransition.
Now logs the following system information for use in support scenarios: Username, Designer
version, Designer installation path, Windows version, Current culture, Installed .NET versions.
It is now possible to import a UI with any resolution to an application (resolution check has been
removed).
Added button to show/hide clipped widgets.
Improved performance when dragging and resizing widgets on the canvas.

New TouchGFX Core Features:

Circle and AbstractShape now supports higher precision on arc start and arc end for smoother
arcs.
The internal Q5 structure now uses 32 bit instead of 16 bits for increased value range.
Added Circle::getPrecision().
Added functons FadeAnimator::isFadeAnimationRunning(),
MoveAnimator::isMoveAnimationRunning(), AnimatedImage::isAnimatedImageRunning() and
ZoomAnimationImage::isZoomAnimationImageRunning(). The old isRunning() functions have
been deprecated.
ListLayout::setDirection() and getDirection() added.
Updated roo gem from 1.13.1 to 2.7.1.
Pressing SHIFT-F3 will copy the screen to the clipboard (Windows only).
Pressing CTRL-F3 will save the next 50 screens to the screenshots folder.
Generated assets are now indented properly.
ScrollableContainer::setScrollbarsPermanentlyVisible() added.

Bugfixes in TouchGFX Designer

Fixed ModalWindow widget not resizing when Screen or Custom Container size changes.
Fixed generating code failing if a files hidden attribute was set to hidden.

Fixed changing the casing of a screen or custom container name resulting in a recompilation
error.
Fixed bug where internet loss would crash the Designer if no Online Applications are available.
Fixed ModalWindow widget position being generated incorrectly after loading a project.
Removed unnecessary recompilation when loading Designer project.
Fixed visual bug in ImagePicker where the "empty placeholder" would show up even though you
have subfolders in current folder.
Fixed bug where the Designer was not using default credentials through proxy server.
Fixed bug where the Designer would not correctly report an error when trying to flash to a
wrong target.
Fixed bug where having insufficient permissions to write to the chosen touchgfx path would
crash the Designer.
Fixed bug where the Designer was incorrectly interpreting screen changes as an unsaved change.
Fixed a visual bug, where widgets inside a Container would not display properly when resizing
the Container.
The Designer now closes a running Simulator process, when you load another application.
Fixed a bug where it was possible to drag widgets inside an instance of a Custom Container.
Circle did sometimes not render correctly, and invalidated rectangle was not calculated properly.
Fixed Circle when half line width was greater than radius.

Bugfixes in TouchGFX Core:

Fixed erroneous calculation of x & y values in setValue in LineProgress.cpp.
Circle did sometimes not render correctly, and invalidated rectangle was not calculated properly.
Fixed Circle when half line width was greater than radius.
Fixed drawing lines longer than 2047 pixels, e.g. 1449 pixels wide and 1449 pixels high.
Fixed bug preventing some Arabic ligatures from being rendered correctly.

Update procedure:

For this release additional steps might be needed. Please refer to the Known Issues article for
details: https://support.touchgfx.com/docs/miscellaneous/known-issues/#project-updater-issue

Version 4.9.4
Release date: January 25th, 2018

Bugfixes:

Reduced the time it takes to load an application in the Designer.

Version 4.9.3
Release date: December 15th, 2017

Bugfixes:

Designer now uses default Windows proxy settings.
Package manager updates available packages when online.
Improved error description when offline.
Set text interaction works with resource texts.
Project updater updates MSVS projects with correct image formats.
Text size calculated wrongly in Designer in rare occasions.
Recent files ordered by date.
Corrected initialization of counter in Wait For interaction.
Fixed drawing of child elements in list layout, when resized.
Fixed loading of application with list layout widgets.
.otf font files now correctly rendered.
Dragging containers could in rare cases introduce wrong coordinates.
Fixed null-termination of wildcard text buffers.
Button With Label text rendering correction.
tgfx.exe packager works for more complex file layouts.
Source code included for containers.
Additional minor Designer UI fixes and improvements.

Version 4.9.2
Release date: November 20th, 2017

Bugfixes:

Fixed Designer issue where dragging elements on the canvas would in some cases cause an
exception.

Version 4.9.1

Release date: November 16th, 2017

Bugfixes:

Fixed several Designer issues with TextArea widgets when placed inside containers.
Fixed an issue with interactions triggered by "Another interaction is done" dissappearing when
loading a project.
On PCs with certain security policy configurations, the Designer was not able to create new
projects correctly.
Improved error handling in Designer if the asset generation, code compilation or post
generation commands fail.
Fixed an issue where the TouchgfxPath in Designer project files was not interpreted correctly.
Some typography changes in Designer did not cause new code to be generated.
Fixed issue with ImageConverter when assets folder was under svn control.
ImageConverter could in certain cases fail to detect changes in assets.

Version 4.9.0
Release date: November 8th, 2017

New Features:

Added a package manager for handling board support packages, demos and examples. The
Designer will now fetch these from an online repository.
All the old examples, demos and ports for various boards have been removed from the
framework, and are now available as packages instead.
Substantially improved text handling in the Designer. It is now possible to work with translations
and wildcards in the Designer, so it should no longer be necessary to edit the texts.xlsx file
manually.
Designer is now much more flexible regarding application file structure, and is now able to auto-
update IAR and Keil IDE projects regardless of file location.
Added Designer support for the ScrollableContainer and ListLayout widgets.
Added support for the SW4STM32 IDE.
Added support for version 8.10 of IAR Embedded Workbench.
Image converter now has an option to operate on folders, instead of being invoked once per
.png file. This substantially speeds up the process of converting images. This mode is the default
behavior for new projects.
The GNU Arm Embedded toolchain (GCC cross-compiler) has been updated to version 6-2017-
q2-update (gcc version 6.3.1).

The GNU compiler for the PC simulator has been updated to version 6.3.0.
Added gcc core libs compiled with -mfloat-abi=hard for Cortex-M4f and Cortex-M7.
Increased number of widgets that can be registered as timer widgets from 24 to 32. Also added
functions for obtaining information about which widgets are currently registered.

Bugfixes:

AnimationTextureMapper::cancelMoveAnimation() is renamed to
cancelAnimationTextureMapperAnimation() to avoid problems with
MoveAnimator::cancelMoveAnimation().
Fixed bug in PainterRGB565Bitmap when rendering solid pixels from an ARGB8888 Bitmap.
Fixed rare bug in FontConvert if all used characters are missing from the font.
Fixed unitialized variables in the DMA class.

Update procedure:

For this release additional steps might be needed.

Version 4.8.0
Release date: March 10th, 2017

Performance

LCD4bpp now draws characters up to 15% faster.
Canvas widgets now render slightly faster in certain situations.

New Features:

TouchGFX Designer released. The core framework, Designer and environment shell are now
bundled in a single installation.
Support for Farsi and Arabic ligatures where squences of up to three character are recognized.
Added support for Microsoft Visual Studio 2017.
TextArea and TextAreaWithWildcard(s) now support setWideTextAction() to automatically break
lines and insert ellipsis at end of line, when the line is too long.
Added getter functions to Slider.
MoveAnimator and FadeAnimator can now clear the callback set for animation ended.
Errors from ImageConvert, TextConvert and FontConvert are now shown in the Error List window
of Visual Studio.
Simulator applications are now Windows programs instead of Console programs.

Bugfixes

AbstractShape::updateAbstractShapeCache() is now a public function and should be called after
one or more calls to AbstractShape::setCorner(), to ensure shape is correct.
Simulator window can no longer be unintentionally resized.
F2 to highlight invalidated areas now works with old HALSDL.
PainterGRAY2Bitmap, PainterGRAY4Bitmap, PainterRGB565Bitmap and PainterRGB888Bitmap all
failed to validate that painting was inside the size of the bitmap in some situations.
HALSDL2 (simulator) now uses 24bpp on screen to make colors in screenshots correct.
TiledImage::setOffset() now handles an empty bitmap correctly.
TiledImage::getSolidRect() would sometimes report wrong rect.
If text in a TextArea was rotated, resizeToCurrentText() and resizeHeightToCurrentText() would
swap the width/height.
Function getTextHeight() would not take line spacing into account. Functions like
resizeToCurrentText() and others that use the getTextHeight() function would not resize correctly.
SlideMenu::setState() did not handle EXPANDED state correctly.

Update Procedure

Due to the addition of TouchGFX Designer, installation is now done via an .msi installer.
Compatible with existing 4.x applications and HAL ports.

Version 4.7.0
Release date: December 14th, 2016

New Features:

Source code for all the standard widgets and containers is now included. See the
touchgfx/framework/source/touchgfx directory. Note that these classes are still present in the
core library, and the source code files are not added to the IAR/Keil/gcc projects per default.
Optimized the handling of single frame buffer configuration on TFT controller based platforms,
which in many cases eliminate the need for external RAM.
Substantial performance optimizations of the canvas widget system and all the standard
painters. Expect a very significant increase in performance if many pixels are being drawn, and a
smaller increase in performance for minor shapes (e.g. graph lines). The "PainterVerticalAlpha"
used in our demos have also been updated.
The text converter tool will now combine identical translations across all languages, resulting in
reduced footprint. The result of this process will be printed during asset generation. NOTE: This

behavior is enabled by default. If you have an existing project where you manipulate the text
data structures (e.g. load a single language into RAM), this optimization might break your code.
The optimization can be disabled by adding the following remap_identical_texts := no (for
"make"-based generation) <RemapIdenticalTexts>no</RemapIdenticalTexts> (for MSVS)
Updated SDL version used by simulator from 1.2 to 2.0.4. SDL1.2 is still present in the
distribution, but all examples and projects now use SDL2.
Support for skinning the simulator with .png files. If the .png files contain non-opaque areas, the
simulator window will be shaped accordingly. See display_orientation_example for a code
example.
On ST targets with Chrom-ART, the Box widget will now be drawn by DMA even when alpha <
255 (BLIT_OP_FILL_WITH_ALPHA support).
TextArea and TextArea with wildcard(s) now support setWideTextAction() to automatically wrap
long lines.
Added the ability to display a "fallback" character in case a non-existing glyph is encountered at
runtime. This is configured in the typography sheet of the text database.
Added options for forcing the inclusion of additional glyphs in a font. This makes it much easier
to handle dynamic texts where the glyphs are not known at compile time. This is configured in
the typography sheet of the text database.
Output from the TextConvert utility is now post-processed to give significant saving by mapping
identical strings to the same memory areas.
Added built-in BitmapId called BITMAP_ANIMATION_STORAGE which can be used to refer to the
animation storage when assigning a Bitmap to a widget.
Added dither algorithm selection from config/gcc/app.mk and config/msvs/Application.props.
It is possible to save a simulator screenshot programatically, by using: #ifdef SIMULATOR
(static_cast<HALSDL2*>(HAL::getInstance()))->saveScreenshot(); #endif
ScrollableContainer now properly ignores invisible elements.
DigitalClock now supports a zero to be displayed in front of the hour indicator (if hour < 10).
The simulator can now highlight the areas being invalidated. Press F2 to toggle this feature.
Added Unicode::vsnprintf functions that take va_list arguments instead of ellipsis.

Bugfixes

Unicode::sprintfFloat did not print <space> instead of '+' if the format string was "% f". Also, the
sign of floating point numbers in range]-1..0[would not be printed with sign so for example -0.5
would print as 0.5.
Fixed a bug that could cause TextureMapper to read outside source bitmap memory area.
GPIO.cpp for STM32F769-Discovery and Eval boards had some incorrect GPIO pin manipulations
(used for performance measurement).
Some methods in Slider.hpp were missing a virtual declaration.

Fixed a bug in BoardConfiguration for STM32F769-Discovery board causing 24bpp color mode
to be displayed incorrectly.
AnimatedImage - setBitmap(..) should not be used and is now private For AnimatedImage use
setBitmaps(..) instead.
Project files and Makefile have been updated to allow the TouchGFX framework to be placed on
another disk drive than the project being developed.

TouchGFX Environment (version 2.8)

"make.exe" is now version 4.1 which allows for parallel compilation, by adding e.g. "-j8" to your
make command. This substantially speeds up compilation. If your makefile is from TouchGFX
4.2.0 or earlier, you will need to either update it, or to use make-3.81.exe
g++ could in some cases report "There is no disk in the drive. Please insert a disk into drive E:.".
This has been fixed by upgrading gcc from version 4.8.1 to version 4.9.3.

Version 4.6.1
Release date: September 12th, 2016

Performance

Optimization improvements of core library for GCC on Cortex-M4 and Cortex-M7, providing
significant speeedup of especially TextureMapper and Canvas widgets compared to TouchGFX
4.6.0.

New Features

New function in HALSDL to set title of simulator window see HALSDL::setWindowTitle().
BW_RLE format (1bpp displays) now compresses better. Remember to remove old generated
files and re-generate assets.
STM32F756G-EVAL using IAR now supports flashing of external memory.

Bugfixes

Added IAR linker redirect commands to fix linker errors when compiling a Cortex-M4 based
target with IAR 7.x.
Assigning different memory buffers to CanvasWidgetRenderer using setupBuffer() could in rare
cases result in memory corruption.
TextureMapper could in rare cases draw outside the framebuffer.
Setting the offset of a TiledImage did not work properly.

Fixed two issues that would in some cases cause memory corruption when deleting dynamic
bitmaps.
Missing virtual method declarations in AnalogClock added.
Fixed a problem in GCC linker script for LPC4088DisplayModule which caused texts and fonts to
be placed in external flash.
For those using fontconvert.out on its own, the output directory is now automatically created if it
does not exist.
ScrollableContainers could in rare cases send a wrong drag event to a child.
Monochrome (1bpp) displays with width not divisible by 8 would not display text correctly.
Slightly increased default touch sample rate on STM32F746G Discovery board.

Version 4.6.0
Release date: June 14th, 2016

New features

Added support for 2bpp grayscale displays.
Added support for 4bpp grayscale displays.
New widget TiledImage. Will display one or more repetions of an image. The number of
repetitions depends on the size of the widget and the size of the image.
New widget RepeatButton. A button that will repeatedly fire click events when pressed.
New widget AnimationTextureMapper. TextureMapper with build in animation features. See
animation_texture_mapper_example.
New containers AnalogClock and DigitalClock, see clock_example.
New containers ProgressIndicators, see progress_indicator_example.
New container ModalWindow. Creates a window on top of the main screen and a shade on the
rest of the main screen. No clicks are passed on to the main screen as long as the modal window
is visible. See example modal_window_example.
New container SlideMenu. Animating side/top/bottom-menu that has an activate button for
sliding it in/out of the screen. A timeout can be set for automitical hiding when idle for a period
of time.
Canvas Widget Line supports ROUND_CAP_ENDING and setCapPrecision() to control the round
cap.
Simulator can now generate ticks very close to the frequency of the hardware.
Mouse X and Y coordinates are put in the title of the window in the simulator. (press F1 to
(de)active this when running the simulator).
ST Cube drivers updated to version 1.4.0 for STM32F7 MCU and STM32F7 based boards.

Added support for the STM32769I-EVAL board.
Added support for the STM32F769I-Discovery board.
Screenshots made from the simulator (F3) are now saved under a name with timestamp to
prevent old screenshots to be overwritten by accident.
Simulator now outputs canvas widget memory usage to easily find optimal canvas memory
buffer size.

Bugfixes

DMA drivers for ST boards: express DMA2D instance initialization for STM32F7. Fixed incorrect
used of CLUT_CM for F4-Discovery.
DMA drivers for LPC17xx, LPC18xx, LPC43xx did not behave correctly if other DMA channels are
in use simulatenously. They now properly look at flags for channel 0 only.
Touch controller drivers for ST boards now properly checks that initialization was OK before
querying.
Mouse clicks in the simulator would not always be detected.
ImageConvert.exe has RGB565 as default (and sensible defaults for other opque formats)
ImageConvert would not work for a BW image scheduled for compression (BW_RLE) and rotation
(.90. in filename) if the image would become too large if compressed (falling back to BW format).
All Makefiles now use abspath instead of realpath.
AnimatedImage now allows the animation to be restarted from the AnimationEnded callback
function.
QSPI flash size corrected to 64MBytes for STM32756G-EVAL board.
Added D-cache invalidation to STM32F7HAL::flushFrameBuffer. This fixes occasional graphics
errors on STM32F7 when in single frame buffer mode and fb was located in SRAM.
The otm8009a displays (STM32769-DISCO, STM32769-EVAL, STM32469-DISCO, STM32469-EVAL)
are now using maximum display brightness.
Added a workaround for a bug in IAR 7.50.x regarding va_list name mangling.

Update Procedure

Compatible with existing 4.x applications and HAL ports.

Version 4.5.1
Release date: March 14th, 2016

Bugfixes

Fixed two IAR linker issues related to resolving the va_list symbol, which would cause some
versions of IAR being unable to link the example projects.
STM32F4-Discovery board would draw solid rectangles with the wrong color in 16bpp mode.
The Canvas Widget Renderer no longer performs unaligned memory accesses.
vApplicationIdleHook (FreeRTOS specific) no longer blocks, which previously prevented FreeRTOS
from freeing memory if tasks were deleted.
Arabic words with accent in the middle would not render properly.
Added PixelDataWidget::getAlpha().
Unicode::strncpy() with a char* as source would not copy characters with ascii codes above 127
properly.

Version 4.5.0
Release date: February 2nd, 2016

New features

Support for two new languages, Arabic and Hebrew, with right-to-left text rendering. RTL strings
can be mixed with LTR texts and numbers.
Support for 24 bits per pixel framebuffers. Images look more detailed, but also consume more
memory.
Bitmaps can now be created at runtime using method Bitmap::dynamicBitmapCreate. Useful for
e.g. displaying .bmp files loaded from an SD card. See dynamic_bitmap_example.
Frame rate compensation feature which provides smoother animations if frame rate occasionally
drops. Not enabled by default.
Bitmap caching is enhanced to allow removal of bitmaps from the cache to make room for
caching of other bitmaps.
A new widget, PixelDataWidget, is introduced. This widget makes it possible to display raw pixel
data obtained at runtime (e.g. video samples).
The simulator executable on windows now features an icon for easier identification in the task
bar.
ST boards supported by TouchGFX can now have just their internal flash programmed from the
command using 'make intflash' provided that ST-Link Utility Release 3.7+ is installed.
Unicode::snprintf() has been improved and updated substantially to support more of the
standard format specifiers like %02d.
Unicode::snprintfFloat() added to support floats (in separate function because the "%f" va_args
approach would force inclusion of doubles).

Quality of image converter dithering has been improved (floating point arithmetics). Also added
support for new types of dither algorithms, and can take into account hardware with various
wiring of the low (unused) bits in 16/18 bit displays.
touchgfx::ButtonWithLabel now contains a method, updateTextPosition(), that can be used to
ensure horizontal text centering when changing label content (e.g. when changing language).
touchgfx::TextArea has a new method, setBaselineY(), that allows placing texts according to a text
baseline instead of upper left corner.
The internal format of glyph encoding now stores the first pixel in the least significant bit instead
of the most significant bit.
Specification of color values has been switched from uint16_t to colortype to support seamless
switching between 16 and 24 bit colors.
The touchgfx::TextArea class now has a method, setIndentation(), that can prevent the glyph of
characters from being cut off in the rare case where it extends under the previous character
(similarly for touchgfx::Keyboard class which has a new setTextIndentation() method).
STM32F7xx and STM32F4x9 ports now support DMA transfers of touchgfx::Box.
The GPIO::VSYNC_FREQ signal was previously "toggled" exclusively on "VSYNC" interrupt (NXP
LPC18xx, NXP LPC43xx, Freescale MK70F12, ST stm32f4x9). The signal is now high on "VSYNC"
interrupt and low on "Front-Porch-Entered" interrupt.
GCC support for Cortex-M3.

Bugfixes

Fixed rare crash on STM32F7 caused by speculative caching of invalid QSPI memory region.
Update your BoardConfiguration if yours is based on 4.4.x.
Fixed occasional display flickering on STM32F746G-DISCO board caused by cache access on FMC
bank 1.
Handling of the character "%"" in touchgfx::TextAreaWithWildcards has been improved to
prevent inserting %% in some special cases.
touchgfx::DragEvent and touchgfx::GestureEvent now use and report signed coordinates instead
of unsigned. This makes more sense as drags/gestures are expressed in coordinates relative to
the drawable receiving them.
snprintf("%x") would generate uppper case hex. Now "%X" generates uppercase hex and "%x"
generates lower case hex, just like the standard snprintf().
Fixed randomness for demos when running on Linux.
Fixed redrawing when using heavily italicized fonts.
Pointer to ModelListener in Model class for all TouchGFX applications was not properly initialized
(NULL).
Fixed support for heavily italicized fonts in touchgfx::TextArea.

Subtle error in the Image Converter where column 0 could get slightly incorrect pixel colors. As a
result the entire image could be slightly wrong, probably not noticeable.
Minor error in Slider where values were not distributed evenly.

Deprecated

LCD::drawGlyph() has been deprecated. Use LCD::drawString instead.

Update Procedure

Compatible with existing 4.x applications and HAL ports.

Version 4.4.2
Release date: November 26th, 2015

Bugfixes:

Corrected rare GUI task hangup on STM32F7 targets when compiling with IAR 7.x

Version 4.4.1
Release date: October 27th, 2015

Bugfixes:

Corrected occasional GUI task hangup on STM32F7 targets when compiling with Keil 5.x
Fixed occasional tearing on STM32 F469 EVAL/Discovery boards when using DSI in landscape
orientation and single framebuffer mode.
Modified IAR flash loader settings for STM32 F469 boards to enable programming of internal
flash (Note: QuadSPI flash must still be programmed from ST-Link Utility as there are no IAR
loaders for this)
GPIO class for perf. measurement for STM32F746G-EVAL boards now properly uses the BSP_LED
functions. Note that only two signals are active on this board per default because LED2 and LED4
use IO Expander, making them unsuited for measuring performance.
Removed annoying "Get Alternative File" dialog popups in IAR Workbench when debugging
Cortex-M7 applications.

Version 4.4.0

Release date: October 6th, 2015

New features

Added support for the Cortex-M7 core.
Introduced concept of "finger size" for touch input. When used, TouchGFX will attempt to find
touchable widgets in the area surrounding the reported x,y coordinates, so users no longer have
to click precisely on a widget. This feature makes it substantially easier to hit small buttons. See
HAL::setFingerSize().
Supports Visual Studio 2015
Visual Studio projects for Demos and Examples now include Application.props under Resources
for quick access. As always a rebuild might be required when altering the contents of
Application.props.
Support for Bitmap Fonts in BDF format. If the requested font size is not available in the font file,
the font converter will write the supported font size(s) in the error message. See the example
monochrome_example for usage.
Generating assets now issues better error messages when spaces are detected in paths and file
names.
All ST boards can now be flashed from the command line provided that ST-Link Utility Release
3.7 has been installed. Simply use 'make -f target/ST/<board>/Makefile flash' to build and flash
your application to the connected board. If timeouts occur during flashing, go to Device
Manager in Windows and disable "MBED microcontroller USB Device" under "Disk drives".
New touchgfx-env version 2.5 available with new gcc cross compiler version 4.9.3. The older
version 4.8.4 could generate invalid code for Cortex-M7 cores in rare cases.

Board support

Added support for the STM32F7xx processors
Added support for the STM32F746G-DISCO and STM32756G-EVAL boards
Added support for the STM32F469 processor with DSI displays
Added support for the STM32469I-EVAL and STM32469I-Discovery boards

Bugfixes

TextureMapper and ScaleableImage now draws images correctly when using "rotate90".
Fixed potential initialization order bug in STM32F4DMA.cpp
Fixed bug that limited number of glyphs in a single font to 32768. Now supports 65536 glyphs
per font as intended.
Fixed bug that caused hal.lockDMAToFrontPorch(false) to not have any effect in single
framebuffer mode.

ButtonWithLabel correctly center texts vertically if text contains newlines

Version 4.3.0
Release date: June 8th, 2015

New features

TextureMapper widget added. The TextureMapper is a highly optimized image renderer that can
be used for displaying an image that is scaled and/or rotated in two or three dimensions during
run time. This can be used for doing advanced rotation animations of images. See manual or
texture_mapper_example for more information. LCD has new methods for drawing triangles and
corresponding scan lines, drawTextureMapTriangle and drawTextureMapScanLine
Alpha Channel Dithering Images with alpha channel can now get the alpha channel dithered for
smoother alpha gradients, see examples or Application Development section in manual for
details
Compression of 1BPP (monochrome) bitmaps Added image format option of BW_RLE, which will
cause bitmaps to be automatically run-length encoded if that takes up less space than the
regular per-pixel format. Yields substantially smaller bitmap footprint in many cases. See
advanced chapter in manual for details.
Slider widget added. See manual or slider_example for more information.
Makefiles has been updated to work with make-4.1.
Added support for the LPC4088 processor and the Embedded Artists LPC4088 Display Module
board.
Individual bitmaps can now be placed in internal flash instead of external by having the bitmap
file name include the string ".int."
MoveAnimator, FadeAnimator and ZoomAnimationImage now have a
cancelMoveAnimation/cancelFadeAnimation/cancelZoomAnimation method.

Update procedure

Compatible with existing 4.X applications. Just replace the touchgfx folder.
Check Known Issues in the documentation.

Info

The evaluation version of TouchGFX is now distributed with source code for the hardware
abstraction layer instead of a precompiled library. This makes it possible to port the evaluation
version to custom hardware instead of it being limited to the supported eval boards only.
Instead, the evaluation version now has a TouchGFX watermark which will appear occasionally.

Memory consumption reduced due to improved rendering algorithm. Will typically allow GUI
task stack to be reduced by around 1400 bytes compared to version 4.2.0 (depending on actual
application). Additionally the statically allocated memory is also reduced by around 1KB.
Maximum number of visible widgets limit of 150 removed.
Added two new demos for 640x480 and 480x272 resolutions showcasing new features, graphs,
internationalization and custom widgets.
Drawable.setPosition() now calls setXY(), setWidth() and setHeight() for easier subclassing.
AbstractPainterRGB565 and AbstractPainterBW are recommended as base classes when
implementing your own painters.
CanvasWidgets now have setAlpha() and getAlpha() methods. Your custom Painter classes must
implement this, or inherit from the AbstractPainterRGB565 class
Maximum number of registered timer widgets increased from 16 to 24.
touchgfx-env updated to 2.4. The environment does not beep anymore.
Board Support Package for STM324x9I-EVAL is now based on the STMCubeF4 drivers.

Bugfixes

Screen::handleGestureEvent now converts x/y to relative coordinates
Fixed bug when drawing several objects on the same canvas using moveTo() more than once.
ZoomAnimationImage movement relative to scaling did not use correct easing equation.
PainterRGB565 did not blend green alpha correctly.
RadioButtonGroup now initializes callbacks to zero.
ScalableImage now works with bitmaps with transparancy.
AnimatedImage would display the start and end of an animation twice.
Default implementation of CanvasWidget::getMinimalRect() returned coordinates relative to its
parent, not itself.
ScrollableContainer erroneously unregistered itself as a timer widget at every tick, which made it
difficult to use with other timer-based operations.

Performance

ScalableImage and ZoomAnimationImage has been optimized for better performance.

Version 4.2.0
Release date: January 14th, 2015

Performance

Substantially improved rendering performance, which in most cases will result in a 25% reduction
of time it takes to render a frame.

NOTE: This optimization does not necessarily work on all targets so it must be manually enabled.
See the "Optimization" chapter in the porting guide for how to enable this optimization for
existing portings. It is STRONGLY recommended that the optimization is enabled. This
optimization is enabled for all appropriate evaluation boards in the 4.2.0 board packages.

Major new features

Added CanvasWidgets for smooth, anti-aliased drawing of geometric shapes. Currently Line,
Circle and a more generic Shape have been implemented. CanvasWidgets can be painted with a
solid color (+ alpha), a bitmap (including alpha) or a custom painter. Read more on Canvas
Widgets and Painters in the documentation.
Added support for the Keil compiler and uVision4 IDE. Please refer to the "Supported Hardware"
section of the TouchGFX Distribution chapter in the documentation for a list of Keil-supported
targets.

New features

It is now possible to specify an animation start delay on ZoomAnimationImage, MoveAnimator
and FadeAnimator.
Added Board support for 4.3" TouchGFX Demo board w. LPC4350 (No internal flash)
RadioButton and RadioButtonGroup widgets added. See app/examples/radio_button_example
and documentation.
LPC43XX and LPC1788 can now fill rectangles using DMA.
Visual Studio 2013 is now supported.
Preliminary support for Visual Studio 2015 Preview version.
Improved performance when generating assets.
New canvas_widget_example added to the example directory.
The "using namespace touchgfx" present in various header files can now be avoided by defining
the symbol NO_USING_NAMESPACE_TOUCHGFX in your project.

TouchGFX env

The message displayed when starting a shell has been fixed with correct path to examples.

Bugfixes

Fixed bug in simulator for 1bpp displays when width and/or height was not not a multiple of 8.
Fixed bug in ScrollableContainer where CANCEL events where not always delegated to correct
child, causing e.g. buttons to remain pressed when dragging outside SC area.

Fixed bug when rendering chromArt fonts with a rotated display.
Fixed bug - Keyboard widget setTouchable(false) had no effect.
Freescale K70 DMA now checks the appropriate DONE bit in TCD0_CSR.
On ST processors fixed bug with rotated texts rendered by ChromArt when in non-native display
orientation.

Board support

Embedded Artists LPC4357DevKit board package: CPU clocked to 204Mhz (previously 96Mhz).
Now uses SPIFI flash instead of NOR.

Update procedure

Compatible with existing 4.X applications. Just replace the touchgfx folder.

Info

Documentation has been updated.

Version 4.1.1
Release date: October 29th, 2014

New features

Mixin: MoveAnimator added. The MoveAnimator mixin makes the template class T able to
animate a movement from its current position to a specified end position. See
app/example/move_fade_example.
Mixin: FadeAnimator added. The FadeAnimator mixin makes the template class T able to animate
an alpha fade from its current alpha value to a specified end alpha value. See
app/example/move_fade_example.
ScalableImage and ZoomAnimationImage now support alpha per pixel bitmaps and alpha per
bitmap
ScalableImage and ZoomAnimationImage now support ARGB8888 format bitmaps

Bugfixes

Fixed a bug causing the Keyboard widget to render incorrectly in rare cases.
Fixed a bug causing drag event coordinates to be incorrect for widgets when placed in a
Container with coords != {0,0} which itself was placed in a ScrollableContainer.
The Application class now properly keeps track of number of times registerTimerWidget vs.
unregisterTimerWidget is called for a given widget, meaning that if registered several times it

now requires same number of unregisters before widget no longer receives tick events.
Some ZoomAnimationImage functions were not virtual as they should be.
Some widgets were missing certain getter functions.

Update procedure

Compatible with existing 4.X applications. Just replace the touchgfx folder.

Version 4.1.0
Release date: October 17th, 2014

New features

Now supports monochrome 1BPP displays. See manual for details.
Support for dynamic screen orientation change (landscape/portrait)
Support for scaling images (See ScalableImage and ZoomAnimationImage drawables)

Demo

Home Control Demo now support 640x480 mode.
Home Control Demo now supports STM324xI-EVAL 5.7" board.

Board support changes

Added support for STM324xI-EVAL 5.7" board (IAR+gcc).
Added gcc support for the EmbeddedArtists LPC4357DevKit board.
Optimized SPIFI initialization for TouchGFX eval board.

Bugfixes

Adding a persistent Drawable to a ScrollableContainer could cause assertion
Support for much larger fonts

Update procedure

Compatible with existing 4.X applications. Just replace the touchgfx folder.

Version 4.0.0
Release date: September 26th, 2014

New features

TouchEvent refactoring (API breaking):
Drawable::setActive is renamed to Drawable::setTouchable
Drawable::isActive is renamed to Drawable::isTouchable
Drawable::hijackTouchEvent is deprecated
Drawables are now per default not touchables
TouchEvents are now always propagated to all containers children

Language specific typography and alignment columns support added to text converter. Read
more about this feature in the documentation.
Font rendering has been vastly improved with regards to font shapes and kerning.
Simulator - assert check on new view/presenter/transition size when doing screen transition.
Failed assert checks probably due to missing definition of view/presenter/transition in
FrontEndHeap.
TextArea and ButtonWithLabel now support text rotated 0, 90, 180 or 270 degrees.
Text centering on ButtonWithLabel has been improved in special cases.
Hardware Accelerated text rendering (4 and 8bpp) on supported ST platforms.
Ability to cache all items in the bitmap database in external RAM.
Support for Freescales K70 MCU.
Translation Sheet: Instances of "\<" and ">" are converted into "<" and ">" respectively. This
enables literal translated strings such as "<Not a wildcard>" using "\<Not a wildcard\>".
Support for NXP LPC18XX series of MCU's.

Bugfixes

Rendering error of images with odd width and alpha value less than 255
Correct handling of TextArea::getTextHeight in case of non initialized textArea
TextAreaWithWildcard::getTextWidth now includes the width of the wildcard text
gcc Makefiles now includes .BMP and .PNG from image assets.
Do not trim leading and trailing white space from any translations in the texts sheet.
Font converter did not generate font data properly for 8bpp.
ButtonWithIcon::setBitmaps - Suppress IAR warning for intentional virtual function override.
ButtonWithIcon optimized draw functionality
In extremely rare cases text could be written slightly outside the text area

Update procedure

Due to the TouchEvent refactoring you have to rename functions accordingly. You also need to
state in any custom widget or containers if they need to receive touch events. If you were using

hijackTouchEvent to prevent children of getting touch events, you now need to make sure that
all children is not touchable instead.
Main.cpp for simulators need to be updated by replacing the line:
TypedText::registerTypedTextDatabase(TypedTextDatabase::getInstance(),
TypedTextDatabase::getInstanceSize()) with: Texts::setLanguage(0) You can also specify a specific
language from your text database e.g. Texts::setLanguage(GB) In that case you also need to:
#include <texts/TextKeysAndLanguages.hpp>
Rebuild entire project.

Info

The TouchGFX Manual has been updated considerably.

Version 3.1.0
New features

Added support for FDI uEZGUI-1788-70WVT eval board (NXP LPC-1788 Cortex M3).
Added support for Mjolner TouchGFX Demo Board Rev. 1.1 eval board (NXP LPC-4353 Cortex
M4/M0 4.3").

Bugfixes

Visual Studio build now rebuild BitmapDatabase.h when new images are added to the
assets/images folder.

Update procedure

Only if using Visual Studio: Update TouchGFXReleasePath in your Visual Studio .props file. Simply
edit the file in a text editor. The path should be extended with "touchgfx\". See the
template_application for inspiration.
Only if using Visual Studio: Update your Visual Studio project file (.vcxproj file). Simply edit the
file in a text editor. Replace all paths on the form
"$(TouchGFXReleasePath)\framework\config\msvs\touchgfx_prebuild.targets" with
"$(TouchGFXReleasePath)\config\msvs\touchgfx_prebuild.targets".

Info

Hardware Abstraction Layer architecture has been reworked so that all common code for various
hardware components (MCUs and drivers) is now shared across different target boards. This greatly
simplifies the porting effort for new/custom boards as long as they contain one or more hardware
components already supported by TouchGFX.

Version 3.0.0
New features

Visual Studio 2010/2012 support.
Added support for png images with alpha channel.
Added support for subfolders in assets/bitmaps folder
Added support for ST STM32F4X9I-EVAL eval board.
Added support for Robert Penners Easing Equations (see touchgfx/EasingEquations.hpp).
Image converter: Added sanity check of input image file names, must not start with digit and
must be alphanumeric.
Image converter: Added checking against case insensitively file name duplicates in input list.
Text converter: Added build stopping sanity checks for bpp and font_size values.
ScrollableContainer: Now supports setScrollbarPadding, setScrollbarWidth, setScrollbarColor, and
setScrollbarAlpha.
ScrollableContainer: Set default value of ScrollThreshold to 5 pixels, instead of 1.
Added support for alpha blending of fonts (TextArea::setAlpha(uint8_t alpha))
ImageConvert support two different output formats: RGB565 and ARGB8888
ImageConvert - two options added to control output format for images with/without an alpha
channel
Touchgfx environment under MinGW is updated due to linker errors for large projects. g++
version is updated from 4.6.2 -> 4.8.1
Internal RAM footprint improvements
Structural changes of target library and hardware abstraction layers

Bugfixes

Fill operation (Box widget) resulted in a crash on the lpc4357_emb_artist board
Textconvert & fontconvert: Different typographies may now have identical properties.
Imageconvert & fontconvert: Better error handling for POSIX compliant platforms
HALSDL: Do not overflow key data type.
LanguageXX.cpp files now end with a newline (removing warnings).
TextArea::draw now handles non initialized TypedText correctly.

Update procedure

The folders assets/bitmaps and generated/bitmaps must be renamed to assets/images and
generated/images.
Upgrade TouchGFX environment to version 2.0

Update any application Makefile to adhere with the Makefile specified in the updated
template_application
Rebuild entire project
Convert bmp images that contains the former transparent color to png images that uses alpha
channels. This can be done automatically using a free tool called imagemagick. More info and
hints can be acquired by writing touchgfx-support@mjolner.com
Custom HAL implementations must be updated to conform with the new structure

Info

The "magic" transparent color that was previously used for transparent color in the bmp format
is no longer supported. Instead use png images with alpha channel.

Version 2.2.0
New features

Added support for portrait mode with landscape displays at zero performance/resource cost.
Added kerning support.
Added Keyboard example (with IAR project for the Energy Micro DK3750 eval board)
Changed interface for blitCopy method in LCD.
Removed SyncBackBuffer method from HAL.
Removed clearLCD method from LCD.
Removed fillGradientRect method from LCD.
ScrollableContainer supports setScrollbarsVisible(bool visible).

Version 2.1.0
First release of TouchGFX as a commercially available framework.

Version: 4.16

3rd Party Components in
TouchGFX
TouchGFX uses different 3rd party libraries in its implementation.

To get an overview of what 3rd party components are used and their licenses, you can download a
PDF file here:

3rd Party Components in TouchGFX PDF file

Version: 4.16

Cookie Policy
The TouchGFX documentation website does not install any cookies on your system.

Version: 4.16

Tutorial 1: Trying Out the
Examples
Follow this tutorial to learn the very basics of TouchGFX. You will see how to install TouchGFX and how
to run the provided examples on TouchGFX Simulator and on an STM32 Evaluation Kit.

Getting Started
First of all make sure you have TouchGFX Designer installed. Read more on how to download and
install TouchGFX here.

Running an Example Using TouchGFX
Simulator
TouchGFX has a lot of UI examples available through TouchGFX Designer. These examples can help
you learn more about specific TouchGFX topics, as they all focus on one particular TouchGFX topic or
widget.

Selecting a UI Template
You can use the examples as starting points for your own projects or use them as reference examples.
The examples can run either on your PC using TouchGFX Simulator, on a STM32 Evaluation Kit or even
on your custom STM32 based hardware.

To create a new example project simply select "File -> New" in the top bar menu in TouchGFX
Designer or CTRL + N on your keyboard.
Click the "Change" button in the "UI Template" section to select between all the available examples.

Selecting a UI Template

For this step in the tutorial, we will try out the examples in the Simulator, so leave the "Application
Template" unchanged (with the "Simulator" Application Template selected).

TouchGFX Designer will now show you a window with the available UI examples.

Select the "AnimatedImage Example".
Click the blue "Select" button in the bottom.

Selecting AnimatedImage Example

Creating a Project
After you have clicked "Select", TouchGFX Designer is ready to create a project for you. Here we have
given the project the name "MyAnimatedImageExample".

Click "Create" to create the project. TouchGFX Designer will now combine the UI Template you
selected with the "Simulator" Application Template to create a complete project. This process takes
various amounts of time, depending on your download speed.

Creating the project

Running TouchGFX Simulator
TouchGFX Designer is now showing the combined project. To run the Windows simulator, click the
"Run Simulator" button in the upper right part or F5 on your keyboard.

The project is ready

TouchGFX Simulator is now showing as a regular Windows application. The titlebar shows the
application name. Click the "Start" button to interact with the example.

The TouchGFX Simulator

Before moving on with the tutorial you can try out some more examples if you want. Just create a new
project and select a new UI Template as before.

Running an Example on an STM32 Evaluation
Kit

In this step you will learn how to start a project for a STM32F746-Disco board and how to run one of
the TouchGFX examples on that board. If you have no STM32 Evaluation Kit you can simply skip this
step. If you have a different SMT32 Evaluation Kit have a look at the list of supported boards and see if
you can find it there.

TouchGFX Designer comes with a list of premade Application Templates that matches a wide range of
STM32 Evaluation Kit. To base your project on such a template, start out by creating a new project in
TouchGFX Designer, by clicking "File -> New" in the top bar menu or CTRL + N on your keyboard.

Select the "AnimatedImage Example" as UI Template (if it is not already selected). Click the
"Application Template" section to select another Application Template. The default Application
Template "Simulator" will only allow you to run on Windows.

Selecting an Application Template

For this step we will use the STM32F746-Disco board, so click on the "STM32F746G Discovery Kit" and
click "Select".

Select Discovery kit

You are now ready to create the project. You can change the application name if you like. Here we
have changed it to "MyAnimatedImageExample746". Click the "Create" button to continue.

Create the project

The look of the project is similar to what we saw in the previous step. The only difference is that we
now also have a "Run Target" button next to the "Run Simulator" button. When you press this button
(or F6 on your keyboard), TouchGFX Designer compiles your project using the GNU ARM C-compiler
and flashes the application to your target. This process can take minutes, depending on your
computer speed and the complexity of the application. The progress will be output in the status bar in

the bottom of TouchGFX Designer. You can press the "Detailed Log" (or ALT + L on your keyboard)
button if you want more details on the build and flashing step.

The project is ready

TouchGFX Designer will write "Flashing Done" in the status bar when flashing is completed. You should
now see the application running on your board.

NOTE

You will need to have Cube Programmer / ST-Link Utility installed to flash a target:
STM32CubeProgrammer
STM32 ST-LINK Utility

If you click the "Browse Code" button in the bottom right, TouchGFX Designer will open a file browser
showing the directory where the new project is located. Navigating to build\bin you can see the
following files:

The binary files of the project

The target.hex file is the STM32 application for your board. This is the file TouchGFX Designer just
programmed to your board.

You can also manually flash your board using Cube Programmer or ST-Link Utility. See the Compiling
& Flashing page for more details.

Version: 4.16

Tutorial 2: Creating Your Own
Application
Follow this tutorial to learn more about the basics of TouchGFX. You will learn how to add images to
your application and use buttons. You will also see how to use texts and calculated numbers. In the
last steps you will write code to enhance the look of the UI you have created with TouchGFX Designer.
This tutorial assumes no knowledge of TouchGFX, but we assume a little experience with
programming.

Step 1: Setting a Background Image
In this first step you will see how to insert a PNG image as a background. But first we will create a new
project.

Starting a New Project
Start a new project in TouchGFX Designer. We will call the project "MyApplication1". The project is
based on the "STM32F746G Discovery Kit" Application Template and the "Blank UI" UI template.

If you have a different STM32 Evaluation Kit, go ahead and look in the list presented in TouchGFX
Designer when you are changing the Application Template to see if it is supported. If you do not have
a supported board you can select the "Simulator" Application Template and just run the application on
your computer.

Please be aware that this tutorial runs on a display with a resolution of 480x272. If you select an
Application Template with a different resolution, the graphics will not fit the screen, but you should be
able to complete the tutorial anyway.

Creating the new project using the STM32F746 Application Template and Blank UI

Now that you have a newly created blank project let us start modifying it.

A TouchGFX application consists of a number of screens. The screens contain a number of widgets that
make up the user interface. A Screen covers the whole display, so only one Screen is shown to the user
at a time.

The first thing to do is to change the name of the initial Screen to "Main" as illustrated below:

Changing the name of the Screen

Inserting a Background
It is normally a good thing to cover the complete background of a Screen with one or more widgets.
For example, this can be a Box or an Image. In this application we will use an Image.

Before we can use an image in TouchGFX Designer, we need to import the file. TouchGFX supports
BMP and PNG images (though TouchGFX Designer only supports importing PNG images). PNG files
are preferred over BMP files as they are smaller and supports transparent pixels.

The images we will use in this tutorial can be downloaded from this link. Unzip the file to a directory
on your disk.

We want to use the file named "background.png" as our background. To import that file:

Select the Images tab and click the blue plus icon.
Navigate to the unzipped folder and select the "background.png" file.
Press open to import it.

You can also "drag & drop" images from File Explorer onto the image tab, or even directly on the
canvas, to import them to your project.

Be aware that images imported to your project will be converted and compiled into your project and
thus take up flash space. So only import the images that you need.

The image background.png is imported

We are now ready to use the image in our application. To do that we need an Image widget.

Select the Widgets tab in the Canvas tab

Find the Image widget in the list of widgets
Click it to insert an Image Widget on the Screen.

It is a good principle to change the name of widgets to something meaningful. In our case, something
like "backgroundImage".

Inserting an Image widget

After inserting a widget we normally need to configure some of its properties like Position or Color.
The properties of the selected Widget are shown to the right in the TouchGFX Designer. In this case we
are satisfied with the position in the point 0,0, but we want to change the Image property to select the
"background.png" file previously imported. Select the "background.png" in the Image drop-down list.

Selecting the imported image file as background

We have now created a simple application with one Screen consisting of only a background image
covering the whole user interface.

Before moving on try to press the "Run Simulator" button to check that the project compiles and runs.
You can still not interact with the application since we have not yet added any active widgets.

Step 2: Adding Buttons
In this step owe will add two buttons to the application and use different PNG files to give them a
customized look.

Adding the Buttons
Add a button to the Screen by clicking the Button widget in the Widgets tab.
Move the new widget by dragging it with the mouse.
Position the button at x=40, y=60.
Name the new Widget "buttonUp".
Add another Button at position x=40, y=150. Name this widget "buttonDown".

The project now looks like this:

Adding two buttons

You can use the small up/down button on the X and Y properties to fine-tune the position of the
widgets. You can also select the button widget (by clicking it on the canvas) and adjust the position
using the arrow keys on your keyboard.

Changing the Look
We will now change the look of the buttons. A Button is made up of two images. One image is shown
when the button is pressed, and another image is shown when the button is not pressed (released).
Most widgets come with a set of predefined styles, which is basically a set of values for certain
properties of the widget describing a particular look. These styles are good for fast prototyping, but
most often you will replace them when creating a real application.

Go to the Images tab as in previous step and click the "plus" icon to import some images. This time
import the images: "button_down_pressed.png", "button_down_released.png",
"button_up_pressed.png", and "button_up_released.png".

Now select the "buttonUp" button. For that button, select "button_up_released.png" for the Release
Image property. Select "button_up_pressed.png" for Pressed Image.

You can immediately see the look of the button on the canvas in TouchGFX Designer.

Setting bitmaps for buttons

Setting bitmaps for buttons

For "buttonDown", select "button_down_released.png" for Released Image,
"button_down_pressed.png" for Pressed Image.

You have now finished setting up the buttons. Click "Run Simulator" to try your application.

Try both buttons to verify that the buttons are configured correct.

Running the Simulator

TIP

Most widgets in TouchGFX uses images to define their size, meaning that they cannot directly be resized.
This is done for performance reasons (see General UI Component Performance). If you want to change the
size of such widgets, like for example the buttons in this tutorial, you will do this by creating a new set of
images for the buttons and use them as Released and Pressed images instead.

Step 3: Adding Text
In this step we will add a large TextArea widget to the application.

All text is shown using a TextArea widget, but before we add a TextArea to the application, we will add
another Image to give the text a better background.

Text Background
Import another image file, "counter_box.png".
Insert a new Image widget
Name it "textBackground"
Position it at x=250, y=59.
Set Image property to "counter_box".

Added background for text

Adding the Text
We are now ready to add a TextArea widget. Click the TextArea icon in the Widgets tab. Rename the
widget to "textCounter" and move the widget to position x=250, y=90. We want the widget to show a
large text, so un-check the Auto-size property, and set the size to a fixed width=152, and height=90.

Added a TextArea

The default color of a TextArea widget is black, which is rather dark on our background. Select the
Color property of "textCounter", and change the color to white.

Changing text color

Changing the Text Typography
We want the text to be bigger. The way to do that is to change the Typography used for the text. A
typography defines the Font (e.g. Verdana), the Size, and the Alignment (left, right, or center) for a text.

Select the Texts tab in the top of TouchGFX Designer, click Typographies, and update the size of the
"Default" typography to 80.

Changing text size

Going back to the Screen (by clicking the "Canvas" tab in the top), we see that the text is much bigger
now. In fact we cannot read the complete text "New Text". Click the centered icon under the Alignment
property to get the text centered.

Changing text alignment

Using a Wildcard Text

We want the TextArea to show a number that we can change with the buttons. To do that, we must
change the text to include a "wildcard". A wildcard is a marker ("<d>") in the text that can be
substituted with something else at runtime. We just want to show a number, so we will change the text
to just "<d>". In other projects you can combine the dynamic parts with a fixed text, e.g.
"Temperature: <temp> °C".

NOTE

The text inside the <...> wildcard brackets are optional. You can use them to communicate to implementers
or translators what kind of information will be inserted in the wildcard or you can leave it empty.

Configure the wildcard text

Click "Run Simulator" to try your application.

Running the Simulator

FURTHER READING

To learn more about using texts and fonts, read the Texts and Fonts page.

Step 4: Adding Code
With TouchGFX Designer it is easy to link actions to a Button through an Interaction. An Interaction
links a Trigger (e.g. a button press) to an Action (e.g. running code or moving an element).

Select the Interactions tab in the upper right corner and click the "Add Interaction" button to create a
new Interaction

Adding interactions

We will create two interactions, one for each of the buttons. We will setup both interactions to call a
C++ method on the current Screen.

Change the Trigger property to "Button is clicked".
Set the Choose clicked source property to "buttonUp".
Change the Action property to "Call new virtual function".
For Function Name, type "buttonUpClicked".
You should also give the Interaction an informative name, so that you can recognize it later on.

Configure the Button interaction

Create a similar Interaction with "buttonDown" as "clicked source":

Change the Trigger property to "Button is clicked".
Set the Choose clicked source property to "buttonDown".
Change the Action property to "Call new virtual function".
For Function Name, type "buttonDownClicked".
You should also give the Interaction an informative name, so that you can recognize it later on.

If you either click the "Generate Code" button or "Run Simulator" button, TouchGFX Designer will
update the generated code with the information you entered in the interactions just created. This
means that it will create two new virtual functions in the view base class for this screen.

Let us investigate this more and see how we can have our own code executed. Click the "Browse
Code" button in the bottom bar. This will give you a File Explorer placed in your application folder.
Navigate to the folder:

MyApplication1/generated/gui_generated/include/gui_generated/main_screen/

and open the file MainViewBase.hpp . If you like you can also open one of the project files and find
the file here:

IDE Path to project file

Visual Studio simulator/msvs/Application.sln

CubeIDE ProjectName.ioc

IDE Path to project file

IAR Embedded Workbench 8 target/IAR8.x/application.eww

KEIL uVision v5 target/Keil/application.uvprojx

NOTE

Not all project files are present as default. To change toolchain you need to use the CubeMX tool. Read more
on this on the Using IDEs with TouchGFX page.

The new virtual methods are found in the public part of the MainViewBase class. The generated
methods have empty implementations. The intention is that the programmer implements these
methods in the subclass MainView .

MainViewBase.hpp

//***/
/********** THIS FILE IS GENERATED BY TOUCHGFX DESIGNER, DO NOT MODIFY ***********/
/***/
#ifndef MAINVIEWBASE_HPP
#define MAINVIEWBASE_HPP

#include <gui/common/FrontendApplication.hpp>
#include <mvp/View.hpp>
#include <gui/main_screen/MainPresenter.hpp>
#include <touchgfx/widgets/Image.hpp>
#include <touchgfx/widgets/Button.hpp>
#include <touchgfx/widgets/TextAreaWithWildcard.hpp>

class MainViewBase : public touchgfx::View<MainPresenter>
{
public:
 MainViewBase();
 virtual ~MainViewBase() {}
 virtual void setupScreen();

 /*
 * Custom Action Handlers
 */
 virtual void buttonUpClicked()
 {
 // Override and implement this function in MainView
 }

 virtual void buttonDownClicked()
 {
 // Override and implement this function in MainView
 }

Implementing the Virtual Methods
The remaining task is now to implement these two methods to change the counter value when the
user presses the buttons. To do that, declare the methods again in the MainView class. This class can
be found in:

MyApplication1/gui/include/gui/main_screen/MainView.hpp

Open this file and insert the two function declarations in the class:

MainView.hpp

The next task is to implement the two methods by adding the implementation in the .cpp file. This file
is located in:

MyApplication1/gui/src/main_screen/MainView.cpp

In the implementation below we have added calls to touchgfx_printf . This function is useful to print
out lines of text when running the simulator. When running on target, the line will have no effect.

MainView.cpp

...

#ifndef MAIN_VIEW_HPP
#define MAIN_VIEW_HPP

#include <gui_generated/main_screen/MainViewBase.hpp>
#include <gui/main_screen/MainPresenter.hpp>

class MainView : public MainViewBase
{
public:
 MainView();
 virtual ~MainView() {}
 virtual void setupScreen();
 virtual void tearDownScreen();
 virtual void buttonUpClicked();
 virtual void buttonDownClicked();
}

#include <gui/main_screen/MainView.hpp>

MainView::MainView()
{

Click "Run Simulator" in TouchGFX Designer again to run the new code. Click the buttons a couple of
times to see that the interactions and methods are working as expected:

Running the Simulator

Updating the Counter Value

}

void MainView::setupScreen()
{
 MainViewBase::setupScreen();
}

void MainView::tearDownScreen()
{
 MainViewBase::tearDownScreen();
}

void MainView::buttonUpClicked()
{
 touchgfx_printf("buttonUpClicked\n")
}

void MainView::buttonDownClicked()
{
 touchgfx_printf("buttonDownClicked\n")
}

The last task is to write C++ code in the new methods to update the counter value when the user
presses the button. To do that we first add a new integer variable, counter , in the MainView class:

MainView.hpp

In the buttonUpClicked method we increment the counter value. The new value is then converted to
a string and copied to the 10 characters buffer we configured for the text in the previous step:

MainView.cpp

#ifndef MAIN_VIEW_HPP
#define MAIN_VIEW_HPP

#include <gui_generated/main_screen/MainViewBase.hpp>
#include <gui/main_screen/MainPresenter.hpp>

class MainView : public MainViewBase
{
public:
 MainView();
 virtual ~MainView() {}
 virtual void setupScreen();
 virtual void tearDownScreen();
 virtual void buttonUpClicked();
 virtual void buttonDownClicked();
protected:
 int counter;
}

#include <gui/main_screen/MainView.hpp>

MainView::MainView()
{

}

void MainView::setupScreen()
{
 MainViewBase::setupScreen();
}

void MainView::tearDownScreen()
{
 MainViewBase::tearDownScreen();
}

void MainView::buttonUpClicked()
{
 touchgfx_printf("buttonUpClicked\n")

Note that we call invalidate() on the textCounter widget after updating it. This ensures that the
TextArea is redrawn after the counter value has been updated.

We need one more thing before the application is finished. TouchGFX only included the characters
needed from the used fonts, so we need to tell TouchGFX Designer to include the characters 0-9 in the
"Default" typography. To do that, go back to TouchGFX Designer and click the "Texts" tab, then the
"Typographies" tab. In the "Wildcard Ranges" column for the Default typography, add the range "0-9".

Setting the Wildcard Range for the Default typography

Now click "Run Simulator" again and click the up button a few times:

 counter++;
 Unicode::snprintf(textCounterBuffer, TEXTCOUNTER_SIZE, "%d", counter);
 // Invalidate text area, which will result in it being redrawn in next tick.
 textCounter.invalidate();
}

void MainView::buttonDownClicked()
{
 touchgfx_printf("buttonDownClicked\n")

 counter--;
 Unicode::snprintf(textCounterBuffer, TEXTCOUNTER_SIZE, "%d", counter);
 // Invalidate text area, which will result in it being redrawn in next tick.
 textCounter.invalidate();
}

Running the Simulator

As the program is now, it will not handle negative numbers correctly. This can be fixed, either by
inserting a guard in the buttonDownClicked() function to ensure the counter does not go below 0 or
by adding the character "-" to the used typography. This can be accomplished simply by adding a
minus ("-") in the Wildcard Characters cell for the Default typography.

This step concludes tutorial 2.

FURTHER READING

Read more about texts on the Texts and Fonts page.

Version: 4.16

Tutorial 3: Applications with
Multiple Screens
In this tutorial, you will learn how to create multiple screens in an application and share data between
the two screens. We will create an application that simulates a clock, which will use one screen to set
hour and minute and pass the time to another screen which has a running clock.

You will also learn how to use the TouchGFX Designer to create animations based on interaction such
as screen changes.

The images we will use in this tutorial can be downloaded from this link. Unzip the file to a directory
on your disk.

Step 1: Setting up the Two Screens
Create a new project just as was done in tutorial 2. Again the graphics is designed for a resoultion of
480x272. If you base the project on the Application Template for the "STM32F746G Discovery Kit",
your project will have this resolution. If you have a demo board with a different resolution you should"
be able to modify the graphics to match it yourself. If you have no demo board simply base it on the
"Simulator" Application Template and make sure to enter 480x272 as the resolution.

Setting up Screen1
The first screen to create is Screen1, which is the screen where the hour and minute values can be set
and sent to the screen with the running clock. Screen1 is shown below and contains two text boxes
which contain the desired time for the clock. To adjust the value in the boxes the up and down arrows
is used. For saving the selected values and thereby pass them on to the clock the save button below
the respective boxes is used. Lastly switching to the Screen2 with the clock is done by pressing the
Clock button.

Let us start out by inserting the background and the text areas for our application. Insert the widgets
and update the properties as listed in the picture and table below.

Screenshot of screen1 with the location of the background and the text areas highlighted

Location Widget Properties

1 Image

Name: background
Location:

X: 0, Y: 0
Image:background_Screen1.png

2 TextArea

Name: textAreaHourCaption
Location:

X: 86, Y: 46
W: 85, H: 24

Text:
Text: Hour
Typography: 20px
Alignment: Center

Appearance:
Color: #FFABABAB

Location Widget Properties

3 TextArea

Name: textAreaHour
Location:

X: 87, Y: 70
W: 83, H: 50

Text:
Text: <value>
Wildcard 1:

Initial Value: 00
Buffer size: 3

Typography: 40px
Alignment: Center

Appearance:
Color: #FFABABAB

4 TextArea

Name: textAreaMinuteCaption
Location:

X: 309, Y: 46
W: 85, H: 24

Text:
Text: Minute
Typography: 20px
Alignment: Center

Appearance:
Color: #FFABABAB

5 TextArea

Name: textAreaMinute
Location:

X: 311, Y: 70
W: 83, H: 50

Text:
Text: <value>
Wildcard 1:

Initial Value: 00
Buffer size: 3

Typography: 40px
Alignment: Center

Appearance:
Color: #FFABABAB

Then insert the buttons to the application as shown in the picture and table below.

Screenshot of screen 1 with the location of the buttons highlighted

Location Widget Properties

1 Button

Name: buttonHourUp
Location:

X: 184, Y: 51
Image:

Released Image: Up_arrow.png
Pressed Image: Up_arrow_pressed.png

2 Button

Name: buttonHourDown
Location:

X: 184, Y: 93
Image:

Released Image: Down_arrow.png
Pressed Image: Down_arrow_pressed.png

3 Button

Name: buttonMinuteUp
Location:

X: 266, Y: 51
Image:

Released Image: Up_arrow.png
Pressed Image: Up_arrow_pressed.png

Location Widget Properties

4 Button

Name: buttonMinuteDown
Location:

X: 266, Y: 93
Image:

Released Image: Down_arrow.png
Pressed Image: Down_arrow_pressed.png

5 Button With Label

Name: buttonSaveHour
Location:

X: 80, Y: 137
Text:

Text: Save
Typography: 25px
Alignment: Center

Text Appearance:
Released Color: #FF424242
Pressed Color: #FFA6A6A6

Image:
Released Image: btn_round.png
Pressed Image: btn_round_pressed.png

6 Button With Label

Name: buttonSaveMinute
Location:

X: 303, Y: 137
Text:

Text: Save
Typography: 25px
Alignment: Center

Text Appearance:
Released Color: #FF424242
Pressed Color: #FFA6A6A6

Image:
Released Image: btn_round.png
Pressed Image: btn_round_pressed.png

Location Widget Properties

7 Button With Label

Name: buttonClock
Location:

X: 192, Y: 204
Text:

Text: Clock
Typography: 25px
Alignment: Center

Text Appearance:
Released Color: #FF424242
Pressed Color: #FFA6A6A6

Image:
Released Image: btn_round.png
Pressed Image: btn_round_pressed.png

With the graphical elements set up next step is to add the triggers for the buttons, which adjust the
selected values and saves them:

Interaction Properties

Hour up button is clicked

Trigger: Button is clicked
Clicked Source: buttonHourUp
Action: Call new virtual function
Function Name: buttonHourUpClicked

Hour down button is clicked

Trigger: Button is clicked
Clicked Source: buttonHourDown
Action: Call new virtual function
Function Name: buttonHourDownClicked

Minute up button is clicked

Trigger: Button is clicked
Clicked Source: buttonMinuteUp
Action: Call new virtual function
Function Name: buttonMinuteUpClicked

Minute down button is clicked

Trigger: Button is clicked
Clicked Source: buttonMinuteDown
Action: Call new virtual function
Function Name: buttonMinuteDownClicked

Interaction Properties

Save Hour button is clicked

Trigger: Button is clicked
Clicked Source: buttonSaveHour
Action: Call new virtual function
Function Name: buttonSaveHourClicked

Save Minute button is clicked

Trigger: Button is clicked
Clicked Source: buttonSaveMinute
Action: Call new virtual function
Function Name: buttonSaveMinuteClicked

If you press "Generate Code" or "Run Simulator" the specified virtual functions will be generated by
the Designer. Let us start by integrating the four functions for the arrow buttons. To keep track of the
values for hour and minute, two counters are also added.

Now add the following code:

Screen1View.hpp

When pressing the arrows the corresponding value changes to fit within the values for a clock.

The logic for the four functions should be added in the following way:

Screen1View.cpp

...
public:
...
 virtual void buttonHourUpClicked();
 virtual void buttonHourDownClicked();
 virtual void buttonMinuteUpClicked();
 virtual void buttonMinuteDownClicked();

protected:
 int16_t hour;
 int16_t minute;
...

...
void Screen1View::buttonHourUpClicked()
{
 hour = (hour + 1) % 24; // Keep new value in range 0..23
 Unicode::snprintf(textAreaHourBuffer, TEXTAREAHOUR_SIZE, "%02d", hour);
 textAreaHour.invalidate();

Setting up Screen2
The second screen, Screen2, is where the running clock is placed, starting from the values saved in
Screen1. Other than the clock Screen2 also consist off a circle animating around the clock, indicating
that the clock is running. Finally to return to Screen1 a button is implemented which changes the
screen to Screen1.

Screenshot of screen2 when running the application with the simulator

Before adding elements to Screen2, a new screen has to be created. This is done with the add screen
button in the TouchGFX Designer illustrated in the picture below.

}

void Screen1View::buttonHourDownClicked()
{
 hour = (hour + 24 - 1) % 24; // Keep new value in range 0..23
 Unicode::snprintf(textAreaHourBuffer, TEXTAREAHOUR_SIZE, "%02d", hour);
 textAreaHour.invalidate();
}

void Screen1View::buttonMinuteUpClicked()
{
 minute = (minute + 1) % 60; // Keep new value in range 0..59
 Unicode::snprintf(textAreaMinuteBuffer, TEXTAREAMINUTE_SIZE, "%02d", minute);
 textAreaMinute.invalidate();
}

void Screen1View::buttonMinuteDownClicked()
{
 minute = (minute + 60 - 1) % 60; // Keep new value in range 0..59
 Unicode::snprintf(textAreaMinuteBuffer, TEXTAREAMINUTE_SIZE, "%02d", minute);
 textAreaMinute.invalidate();
}

The location of the add screen button in the TouchGFX Designer

When entering "screen2", both the clock and the circle animates into their position, by moving into
view, with the clock moving in from the left and the circle from the right. The two widgets are
therefore initially placed outside the canvas in the TouchGFX Designer.

The placement of the widgets should be done as in the picture and table below.

The loaction of the Wigets in screen2

Location Widget Properties

1 Image

Name: background
Location:

X: 0, Y: 0
Image:background_Screen2.png

Location Widget Properties

1 Button

Name: buttonSettings
Location:

X: 422, Y: 10
Image:

Released Image: configuration.png
Pressed Image: configuration.png

3 TextArea

Name: textClock
Location:

X: -156, Y: 109
W: 156, H: 54

Text:
Text: <hour>:<min>
Wildcard 1:

Initial Value: 00
Buffer size: 3

Wildcard 2:
Initial Value: 00
Buffer size: 3

Typography: 40px
Alignment: Center

Appearance:
Color: #FFABABAB

4 Circle

Name: circle
Location:

X: 479, Y: 36
W: 200, H: 200

Image & Color:
Color: #FFBABABA

Appearance:
Center Position:

X: 100, Y: 100
Start & End Angle:

Start: 0, End: 180
Radius: 72
Line Width: 6
Cap Style: Triangle

Switching between Screens

Now we need to add functionality to switch between the two screens. For this we assign interactinos
to the Clock button on Screen1 and the Configuration button on Screen2. Also, we want the two
elements that are placed outside the screen area on Screen2 to move into place when Screen2 is
entered.

To do this add the following interaction to Screen1:

Interaction Properties

Change to "Screen2"

Trigger: Button is clicked
Clicked Source: buttonClock
Action: Change screen
Screen: Screen2
Transition: Cover
Transition Direction: North

Also add the following interaction to Screen2:

Interaction Properties

Change to "Screen1"

Trigger: Button is clicked
Clicked Source: buttonSettings
Action: Change screen
Screen: Screen1
Transition: Slide
Transition Direction: South

Move circle into place

Trigger: Screen is entered
Action: Move widget
Widget to move: circle
Position: 140, 36
Easing: Cubic, Out
Duration: 750ms

Move text clock into place

Trigger: Screen is entered
Action: Move widget
Widget to move: textClock
Position: 162, 109
Easing: Cubic, Out
Duration: 750ms

To update the clock and animate the circle at runtime the virtual function handleTickEvent is used.

handleTickEvent is called periodically by the TouchGFX framework enabling it to update elements in
the active screen dynamically, which in this case will be the clock and circle.

Similar to Screen1 an hour and a minute counter is used to keep track of the clock. Since
handleTickEvent is called more frequently than the clock should be updated, a tickCounter is added

to determine the number of ticks between the clock updates. For updating the angle of the arc in the
circle the functions addStart and addEnd are used. The handleTickEvent function and the variables
are added as shown to Screen2View.hpp as shown below.

Screen2View.hpp

The implementation of handleTickEvent in Screen2View.cpp , thereby, the code which updates the
clock and the circle is shown below

Screen2View.cpp

public:
...
 virtual void handleTickEvent();

protected:
 int16_t hour;
 int16_t minute;
 int16_t tickCount;
 int16_t addStart;
 int16_t addEnd;
...

...
void Screen2View::handleTickEvent()
{
 if (tickCount == 60)
 {
 minute++;
 hour = (hour + (minute / 60)) % 24;
 minute %= 60;

 Unicode::snprintf(textClockBuffer1, TEXTCLOCKBUFFER1_SIZE, "%02d", hour);
 Unicode::snprintf(textClockBuffer2, TEXTCLOCKBUFFER2_SIZE, "%02d", minute);

 textClock.invalidate();

 tickCount = 0;
 }

 if (!textClock.isMoveAnimationRunning())

As learned in tutorial 2 we need to add the characters used in the wildcards. In this case you need to
add "0-9" in the column Wildcard Ranges for the typography used for the TextAreas.

FURTHER READING

In this step the widget Circle has been used. Read more about the Circle widget on the Circle page.

Step 2: Saving Data
In this step, we will show how to save data when switching between screens and how to retrieve the
saved data.

TouchGFX applications follows the Model-View-Presenter design pattern, so in order to persist data
manipulated in a view (i.e. a Screen), the data should be sent to the model (through a presenter). More
information on the Model-View-Presenter design pattern can be found on the Model-View-Presenter
Design Pattern page.

Adding Hour and Minute to the Model
The model is responsible for holding data for the application. Temporary data, such as button states,
currently visible widget etc. should not be in the model.

To save and retrieve data via the model, add protected hour and minute values to the model, as well
as public functions to access these values:

 {
 tickCount++;
 if (circle.getArcStart() + 340 == circle.getArcEnd())
 {
 addStart = 2;
 addEnd = 1;
 }
 else if (circle.getArcStart() + 20 == circle.getArcEnd())
 {
 addStart = 1;
 addEnd = 2;
 }
 circle.invalidate();
 circle.setArc(circle.getArcStart() + addStart, circle.getArcEnd() + addEnd);
 circle.invalidate();
 }
}
...

Model.hpp

NOTE

The model.hpp file should also include #include <touchgfx/hal/types.hpp> in order to enable the usage
of the type int16_t

Make sure to initialize hour and minute in the constructor:

Model.cpp

With this code, the hour and minute have a place in the model. Since the model is available to all
presenters, this the recommended way to share information between presenters (and views). The
model is also where the UI is able to connect to the rest of the system, such as hardware peripherals
and other software modules.

...
public:
 void saveHour(int16_t saveHour)
 {
 hour = saveHour;
 }

 void saveMinute(int16_t saveMinute)
 {
 minute = saveMinute;
 }

 int16_t getHour()
 {
 return hour;
 }

 int16_t getMinute()
 {
 return minute;
 }

protected:
 int16_t hour;
 int16_t minute;
...

...
Model::Model() : modelListener(0), hour(0), minute(0)
{
}
...

Accessing the Model from the View
Now, in order to access the data in the model from the view, the presenter should provide functions to
allow Screen1View to load and save the data from the model as follows:

Screen1Presenter.hpp

Since Screen2 should also be able to access the data in the model, add the same lines to
Screen2Presenter.hpp .

Data from the Model
The code to access hour and minute in the Model is now in place, and Screen1 and Screen2 should
be updated to get these values from the Model instead of using local variables only.

Updating Screen1

Now we can initialize the hour and minute in Screen1View with the values from the model and
initialize the buffers for the Text Areas:

Screen1View.cpp

...
public:
 void saveHour(int16_t hour)
 {
 model->saveHour(hour);
 }

 void saveMinute(int16_t minute)
 {
 model->saveMinute(minute);
 }

 int16_t getHour()
 {
 return model->getHour();
 }

 int16_t getMinute()
 {
 return model->getMinute();
 }
...

...
void Screen1View::setupScreen()

For saving the hour and minute values, the virtual functions, that were created under interactions, for
the two save buttons, is implemented in Screen1View.hpp and stores the values in the model (via the
presenter):

Screen1View.hpp

Screen1 now gets the initial values for hour and minute from the model.

Updating Screen2

Screen2 also needs to synchronize its values with the model.

Similar to Screen1, the initial value shown in the text clock must match the data from the Model.

Screen2View.cpp

{
 Screen1ViewBase::setupScreen();

 hour = presenter->getHour();
 minute = presenter->getMinute();

 Unicode::snprintf(textAreaHourBuffer, TEXTAREAHOUR_SIZE, "%02d", hour);
 Unicode::snprintf(textAreaMinuteBuffer, TEXTAREAMINUTE_SIZE, "%02d", minute);
}
...

...
public:
 virtual void buttonSaveHourClicked()
 {
 presenter->saveHour(hour);
 }

 virtual void buttonSaveMinuteClicked()
 {
 presenter->saveMinute(minute);
 }
...

...
void Screen2View::setupScreen()
{
 Screen2ViewBase::setupScreen();

 hour = presenter->getHour();
 minute = presenter->getMinute();

This fetches the hour and minute from the Model. The updated values must be sent back to the Model
when we leave the screen (to go to the configuration screen on Screen1):

Screen2View.cpp

This will send the updated values of hour and minute to the model just before going to the
configuration screen.

This concludes the small application and thereby tutorial 3.

 Unicode::snprintf(textClockBuffer1, TEXTCLOCKBUFFER1_SIZE, "%02d", hour);
 Unicode::snprintf(textClockBuffer2, TEXTCLOCKBUFFER2_SIZE, "%02d", minute);
}
...

...
void Screen2View::tearDownScreen()
{
 presenter->saveHour(hour);
 presenter->saveMinute(minute);

 Screen2ViewBase::tearDownScreen();
}
...

Version: 4.16

Tutorial 4: Creating a Scroll
Wheel with Custom Behavior
In this tutorial, you will learn how to create and configure the two widgets - Custom Container and
Scroll Wheel. A Custom Container is a widget that enables you to create a custom widget by
combining multiple other widgets and add specific behavior for the widgets in the Custom Container.
The Scroll Wheel is a widget used for creating a scrollable menu, consisting of multiple selectable
items. The tutorial will also teach how user code can be created to change the behavior of a widget.

More information about the Custom Container and Scroll Wheel can be found on the two pages,
Custom Containers and ScrollWheel.

The graphics for the tutorial can be downloaded from this link. Unzip the file in the images folder
under assets, which for the project used in this tutorial is MyApplication2\assets\images.

Step 1: Creating a Custom Container
Similar to step 1 in tutorial 2, start by creating a new project with the TouchGFX Designer. When the
new project is ready, change from the screens tab in the TouchGFX Designer to the Custom Container.

Selecting the Custom Container menu

The tab for creating a Custom Container is similar to the Screens tab and creating a new Custom
Container is done in the same way as creating a new screen. After a Custom Container is created

widgets, except Custom Container, can be added, along with edit the size and name of the Custom
Container.

In the Custom Container tab, use the blue plus icon to create a new Custom Container and rename it
"MenuElement", change the width (W) to 390 and height (H) to 70.

Creating a Custom Container and setting it properties

Adding Widgets to the Custom Container
With Custom Container created and its properties set, widgets can be added to the Custom Container.
The Custom Container is going to consist of an image and a text area with a wildcard.

FURTHER READING

To read more about how to use text with wildcards, read the wildcards section on the Texts and Fonts page.

The two widgets are inserted in the following way:

Widget Properties

Image

Name: icon
Image: icon00.png
Location:

X: 34
Y: 17

Widget Properties

TextArea

Name: text
Location:

X: 93, Y: 23
Text:

Text: Menu Element <value>
Wildcard 1:

Initial Value: 00
Buffer size: 3

Typography: 20px
Alignment: Left

Appearance:
Color: #FFFFFFFF

Adding content to the Custom Container

Adding the Custom Container to a Screen
Going back to the Screens tab, it is now possible to select the "MenuElement" in the widget menu
under Custom Container. Place a black box as background and add a couple of the created Custom
Container on the canvas.

Inserting the Custom Container as a widget on a screen

Step 2: Creating a Scroll Wheel
In this step of tutorial 4, we will create a Scroll Wheel by using the Custom Container, "MenuElement",
created in step 1. As described in step 1, the Scroll Wheel is used to create a scrollable menu
containing multiple selectable items. The items in the wheel are dynamically updated when scrolling
and when selecting an item, it is moved into focus.

Adding items to the Scroll Wheel is done by selecting a Custom Container to use as the "Item
Template". The concept of "Item Template" works by using the widgets in the Custom Container as the
foundation for the items in the Scroll Wheel and use user code to update the widgets in the items at
runtime.

Creating the Scroll Wheel
Before creating the Scroll Wheel, remove the Custom Containers on the screen, leaving only the black
box as the background. Select the Scroll Wheel located in the widgets tab under section Containers.
Create a Scroll Wheel and set the location properties to X = 208, Y = 45 and H = 390 and change the
name to "scrollWheel".

Inserting the Scroll Wheel and setting the name and location properties

Adding Items to the Scroll Wheel
Select "MenuElement" created in step 1 as the "Item Template", which is done with the drop-down list
under the Scroll Wheel property "Item Template". The number of items in the Scroll Wheel is also set
under "Item Template". Set this to 20 items. Since the Scroll Wheel works by having a selected item in
focus, setting where the selected item is positioned, is done by setting "Selected Item Offset" under
the property "List Apperance". We want the selected item to be in the middle of the Scroll Wheel and
are therefore setting "Selected Item Offset" to 160.

Adding the Custom Container to the Scroll Wheel and adjusting its properties

To highlight the area of the "scrollWheel", the two pictures background.png, and overlay.png from the
.zip file downloaded in step 1 are used and is added to the application as Image widgets. The two

images is a background that highlights the area of "scrollWheel" and an overlay which hides the items
in "scrollWheel" when the are moved to the edge of "scrollWheel".

The image background.png are placed in X = 205 and Y = 45 and is placed behind "scrollWheel" so
the items in "scrollWheel" is drawn op top of the background. The overlay.png is placed in X = 0 and Y
= 0 on top of "scrollWheel" meaning that the items are drawn beneath overlay.png thereby hiding the
items where overlay.png is not transparent.

Graphics added to the screen with the Scroll Wheel

Since we only have adjusted the static properties for "scrollWheel", logic has not been added to it.
Running the application will, therefore, result in a scrollable menu consisting of 20 items that all show
the same. In the next step, we will add the logic to the "scrollWheel" with user code which updates the
items in the wheel at runtime.

Step 3: Adding User Code to Scroll Wheel
With the Scroll Wheel, "scrollWheel", created and configured in the TouchGFX Designer, this step will
create the logic, via user code, that updates the items in "scrollWheel", so they display different
graphics based on the position of the item in the wheel. This step will, therefore, work with integrating
designer generated code with user code. A more detailed description of integrating designer code
with user code can be found on the Code Structure page.

Change Image and Text in MenuElement
Since the items in the Scroll Wheel are based on the Custom Container "MenuElement", created in
step 1, user code for changing the icon and updating the wildcard needs to be added to
"MenuElement". When a Custom Container is created in the TouchGFX Designer it generates a .hpp

and .cpp file with the same name as the Custom Container which is where the user code should be
integrated. The location of the files generated for "MenuElement" in the example application are:

MyApplication2\gui\include\gui\containers\MenuElement.hpp

MyApplication2\gui\src\containers\MenuElement.cpp

Enabling the items in "scrollWheel" to change their text and icon is done by adding the function
setNumber(int no) to "MenuElement". The function uses the variable no to decide which icon the

Image widget should show and change the Wildcard in the Text Area widget to the value of no .

The declaration and implementation of setNumber(int no) is done in the MenuElement.hpp which is
shown below.

MenuElement.hpp

#ifndef MENUELEMENT_HPP
#define MENUELEMENT_HPP

#include <gui_generated/containers/MenuElementBase.hpp>
#include <BitmapDatabase.hpp>

class MenuElement : public MenuElementBase
{
public:
 MenuElement();
 virtual ~MenuElement() {}

 virtual void initialize();

 void setNumber(int no)
 {
 Unicode::itoa(no, textBuffer, TEXT_SIZE, 10);
 switch (no % 7)
 {
 case 0:
 icon.setBitmap(Bitmap(BITMAP_ICON00_ID));
 break;
 case 1:
 icon.setBitmap(Bitmap(BITMAP_ICON01_ID));
 break;
 case 2:
 icon.setBitmap(Bitmap(BITMAP_ICON02_ID));
 break;
 case 3:
 icon.setBitmap(Bitmap(BITMAP_ICON03_ID));
 break;
 case 4:
 icon.setBitmap(Bitmap(BITMAP_ICON04_ID));
 break;

With the code added to update the content of the MenuElement, the next thing to do is to add code
which updates the items in the Scroll Wheel.

Update the Items in the Scroll Wheel
When creating a Scroll Wheel, the TouchGFX Designer generates a virtual function which is called each
time a new item in the Scroll Wheel becomes visible. Overriding this function in the user code enables
the code to interact with the items in the Scroll Wheel.

The name of the function is the name of the Scroll Wheel appended with UpdatedItem. For the
tutorial, the function is called scrollWheelUpdateItem(MenuElement& item, int16_t itemIndex) .

The parameter itemIndex is an index value informing which item is currently being updated and
item is a reference to an instance of MenuElement which is currently visible in the Scroll Wheel. With
itemIndex informing which item is being updated, setNumber() is called for item which will change

the content of the item being updated based on the value of itemIndex . The code used for updating
the Scroll Wheel items is shown below.

Screen1View.hpp

 case 5:
 icon.setBitmap(Bitmap(BITMAP_ICON05_ID));
 break;
 case 6:
 icon.setBitmap(Bitmap(BITMAP_ICON06_ID));
 break;
 }
 }
protected:
};

#endif // MENUELEMENT_HPP

#ifndef SCREEN1VIEW_HPP
#define SCREEN1VIEW_HPP

#include <gui_generated/screen1_screen/Screen1ViewBase.hpp>
#include <gui/screen1_screen/Screen1Presenter.hpp>

class Screen1View : public Screen1ViewBase
{
public:
 Screen1View();
 virtual ~Screen1View() {}
 virtual void setupScreen();
 virtual void tearDownScreen();

Running the simulator for the application now shows that the text for the items contains the value of
their index and the icons change based on which item is showing. The images below shows an
example of the simulator running with the code implemented.

Running the simulator

Step 4: Adding Custom Behavior to Scroll
Wheel
In the last step of tutorial 4, we will add custom behavior for the Scroll Wheel, by making it move in a
circular pattern when scrolling through the items, thereby moving in a pattern similar to a dial.

Add Custom Behavior to MenuElement

 virtual void scrollWheelUpdateItem(MenuElement& item, int16_t itemIndex)
 {
 item.setNumber(itemIndex);
 }
protected:
};

#endif // SCREEN1VIEW_HPP

Getting the Scroll Wheel to move in a dial pattern, is done by shifting the horizontal position of the
Image and Text widget for each item that is visible in the Scroll Wheel. To do this the function setY()
for "MenuElement" is overridden in MenuElement.hpp . The setY() function is called for a Custom
Container each time it is moved in the vertical direction and is used for redrawing the Custom
Container in its new position. By overriding setY() , we are able to rearrange the Image and Text
widget each time the Scroll Wheel is moved. The image below describes how to implement the new
setY() function and shift the the two widgets in MenuElement.hpp . Note that math.h needs to be

included.

MenuElement.hpp

#ifndef MENUELEMENT_HPP
#define MENUELEMENT_HPP

#include <gui_generated/containers/MenuElementBase.hpp>
#include <BitmapDatabase.hpp>
#include <math.h>

class MenuElement : public MenuElementBase
{
public:
 MenuElement();
 virtual ~MenuElement() {}

 virtual void initialize();

 //Adjusts the position of the text and the icon, based in the calculated offset(x)
 void offset(int16_t x)
 {
 icon.moveTo(30 + x, icon.getY());
 text.moveTo(80 + x, text.getY());
 }

 //The new declaration and implementation of the setY() function
 virtual void setY(int16_t y)
 {
 //set Y as normal
 MenuElementBase::setY(y);

 const int circleRadius = 250;

 //center around middle of background
 y = y + getHeight() / 2 - 390 /2;

 //calculate x
 float x_f = circleRadius - sqrtf((float)((circleRadius * circleRadius) - (y * y)))
 int16_t x = (int16_t)(x_f + 0.5f);

 offset(x);
 }

With the new setY() function implemented, running the simulator shows that the Scroll Wheel is
now moving in a dial pattern aligning with the curve from the overlay.

Running the simulator

This concludes tutorial 4.

FURTHER READING

To learn more about the concepts that have been used throughout the tutorial the chapters below discuss
some concepts that you have worked with:

The ScrollWheel page describes how to create and configure the Scroll Wheel in TouchGFX Designer and
how to create the logic in user code.
The Custom Containers page discusses the Custom Container concept and usage.

 ...

Version: 4.16

Tutorial 5: Creating Custom
Triggers and Actions
With TouchGFX Designer it is possible to define your own interaction components with custom
triggers and actions. Each Screen in your application can contain a collection of actions (these are
simply void methods in C++) that you can call from within TouchGFX Designer as well as in code, while
custom containers can also have a collection of triggers (which is equal to a callback in C++) which
your application can react to.

In this tutorial, we will go through this functionality to learn the possibilities this gives us to create
more clean and dynamic TouchGFX applications.

Adding a Custom Action to a Screen
In this section we will:

Create a new application with a background box and a button
Add a custom action to the application
Change the background color using the custom action when the button is pressed

Let's start out by creating a new blank application with dimensions 480x272 and inserting a Box for the
background (let's name this "background") and a Button (name this one "button"). You should have
something similar to the image below:

Adding a white background Box and a Button

Next, let's add a custom action to our Screen. You can do this from the properties tab of the Screen by
selecting the Screen and pressing the + button in the "ACTIONS" group. Name the action
"setBackgroundColor" and give it a description like "Sets the background color". This generates a
virtual method in Screen1ViewBase.hpp called setBackgroundColor() with an empty
implementation in Screen1ViewBase.cpp .

Adding a new custom action to a Screen

You can add functionality to this method by overriding it in user code in the Screen1View.cpp file or
by creating interactions through TouchGFX Designer. Let's try out the latter by going to the
interactions tab for the screen and adding an interaction that calls our new method when our button is
clicked.

Call setBackgroundColor when button is clicked

Now we specify what actually happens when setBackgroundColor is called. This is done by using our
new custom action as a trigger in another interaction. Let's start out by simply setting the background
Box color to black by using the action "Change box color" when the trigger "setBackgroundColor is
called" happens.

Implementing functionality for custom action setBackgroundColor

Now run the simulator and press the button; the background should turn black. You have successfully
created your first custom action.

Pressing button turns background black

Passing a Value to a Custom Action
Building upon the application we have just created, this section will expand upon the custom action
concept by:

Adding a parameter to the setBackgroundColor custom action
Passing a random color to setBackgroundColor
Using this to change the background to random colors when pressing the button

Let's make this application a little more interesting by passing a value to our setBackgroundColor
custom action to make it more dynamic.

Goto the interactions tab fot the Screen and delete the two current interactions by pressing the x
button for each of them, as we will be setting up new ones.

Go to the properties tab for the Screen to the custom action called setBackgroundColor and check
off the checkbox for type and input "colortype" which will be the type of the parameter we are going
to pass to the action (colortype is the built-in TouchGFX type for describing colors). It is not possible to
name the parameter and it will be named "value".

Setting up a parameter for a custom action

Next let's setup an interaction which uses our newly added parameter value. We do this by using the
trigger "setBackgroundColor is called" and the action "Execute C++ code". We want to use our new
parameter to set the color of our background Box, so the code to execute should be:

background.setColor(value);
background.invalidate();

Using the passed value to change color of background

Notice that the trigger displays the name and type of the parameter "value : colortype".

Next, let's set up the interaction that actually calls setBackgroundColor when our button is clicked.
Add another interaction with trigger "Button is clicked" and action "Call Screen1 setBackgroundColor"
and notice that the value property also displays which type it expects. Let's pass a random color to
setBackgroundColor by utilizing the randomization method rand() in stdlib.h to get three
random numbers between 0 and 255 and using those to specify the color. To gain access to rand()
we need to include it into our application. Luckily for us, it is also possible to supply your own includes
from within TouchGFX Designer for both screens and custom containers. Go to the properties tab for
the screen and under the "INCLUDES" group, input:

Including stdlib to gain access to rand()

#include <stdlib.h>

Next, for the value property we are going to input:

Passing a random color when button is clicked

Now run the simulator and try pressing the button a couple of times. You should see the background
changing to random colors.

Resulting random color when clicking the button

touchgfx::Color::getColorFrom24BitRGB(rand()%256, rand()%256, rand()%256)

Using Custom Triggers in Custom Containers
Finally, Custom Containers can also define a collection of custom triggers so in this section we will
expand upon the application by doing the following:

Create a new custom container called ColorEmitter
Add a custom trigger to ColorEmitter called "colorChanged"
Use the colorChanged trigger to signal out random colors to the application when the button is
pressed
Set up interactions in the screen to listen for the colorChanged trigger
Use whatever color the ColorEmitter sends out to set the color of the background box

Let's try using a custom trigger to signal some event in our application. Instead of our button
interaction passing the random color to setBackgroundColor , let's try and make a custom container
send out the random color to our Screen, and then let the Screen use whatever value the custom
container communicated. This should end up being a simple example of different UI components
communicating with each other in an application to make smaller, more reusable components.

First, let's create a new custom container and call it "ColorEmitter". Insert a button and call it "button".
You should have something similar to the image below:

ColorEmitter custom container

Now, let's make it so that whenever the button is clicked, the ColorEmitter will emit a random color to
the world. Anyone can then decide to listen for this emit and use the color for something. In our case,
we just want to mimic the behavior we had before by using the color to set the background color.

To make the custom container emit a color, first we need to create a custom trigger. Go to the
properties tab for the custom container and press the + button in the "TRIGGERS" group. Name the

trigger "colorChanged", give it description "The color has changed" and give it the type "colortype".

Adding a custom trigger to a custom container

Next, go to the interactions tab for the custom container and create a new interaction. Use trigger
"Button is clicked" and action "Emit colorChanged". Now we want to communicate a random color, so
use the same code from earlier for the value property:

Emitting a custom trigger

However, this won't work initially since the touchgfx::Color namespace is not automatically
included within our custom container. So like earlier, we are going to supply our own include for the

touchgfx::Color::getColorFrom24BitRGB(rand()%256, rand()%256, rand()%256)

custom container. Go to the properties tab for the custom container and under the "INCLUDES" group,
input:

Supplying extra includes

Now we want to replace our old button with the new ColorEmitter custom container we have created.
Select Screen1 and delete the button here. This should give a domain error in the interaction that was
using this button, so delete that interaction also as we will create a new one for the ColorEmitter. Now
insert an instance of our ColorEmitter on Screen1, then create a new interaction on Screen1. For the
trigger, you should see an option called "ColorEmitter colorChanged happens". Select that one and for
the action use "Call Screen1 setBackgroundColor". Now we need to use the value from the
colorChanged emit, which will always be named "value" (like discussed earlier in this article). Therefore,
input "value" into the value property.

#include <touchgfx/Color.hpp>

Setting up an interaction to listen for colorChanged custom trigger

Now run simulator and try pressing the button again. The same behavior should be present, with the
background changing to random colors. But now, instead of just having all the functionality
implemented in the Screen, we've successfully created our own communication between the Screen
and some of its smaller, reusable components, namely our simple ColorEmitter.

Resulting random color when button is clicked

Version: 4.16

AbstractButton
This class defines an abstract interface for button-like elements. A button is a clickable element that
has two states: pressed and released. A button also has an action that is executed when the button
goes from state pressed to state released.

Inherits from: Widget, Drawable

Inherited by: Button, RadioButton, TouchArea

Public Functions
AbstractButton()
Sets this Widget touchable so the user can interact with buttons.

virtual void executeAction()
Executes the previously set action.

virtual bool getPressedState() const
Function to determine if the AbstractButton is currently pressed.

virtual void handleClickEvent(const ClickEvent & event)
Updates the current state of the button.

void setAction(GenericCallback< const AbstractButton & > & callback)
Associates an action with the button.

Protected Attributes
GenericCallback< const AbstractButton & > * action

The callback to be executed when this
AbstractButton is clicked.

bool pressed
Is the button pressed or released? True if pressed.

Additional inherited members
Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const

Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const

Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
AbstractButton

AbstractButton ()

Sets this Widget touchable so the user can interact with buttons.

executeAction
virtual void executeAction ()

Executes the previously set action.

See also:

setAction

getPressedState
virtual bool getPressedState () const

Function to determine if the AbstractButton is currently pressed.

Returns:

true if button is pressed, false otherwise.

handleClickEvent
virtual void handleClickEvent (const ClickEvent & event)

Updates the current state of the button.

The state can be either pressed or released, and if the new state is different from the current state,
the button is also invalidated to force a redraw.

If the button state is changed from ClickEvent::PRESSED to ClickEvent::RELEASED, the associated
action (if any) is also executed.

Parameters:
event Information about the click.

Reimplements: touchgfx::Drawable::handleClickEvent

Reimplemented by: touchgfx::RadioButton::handleClickEvent,
touchgfx::RepeatButton::handleClickEvent, touchgfx::ToggleButton::handleClickEvent,
touchgfx::TouchArea::handleClickEvent

setAction

void setAction (GenericCallback< const AbstractButton & > & callback)

Associates an action with the button.

The action is performed when the AbstractButton is in the pressed state, goes to the released.

Parameters:
callback The callback to be executed. The callback will be executed with a reference to the

AbstractButton.

See also:

GenericCallback, handleClickEvent, ClickEvent

Protected Attributes Documentation
action

GenericCallback< const AbstractButton & > * action

The callback to be executed when this AbstractButton is clicked.

pressed
bool pressed

Is the button pressed or released? True if pressed.

Version: 4.16

AbstractButtonContainer
An abstract button container. The AbstractButtonContainer defines pressed/not pressed state, the
alpha value, and the action Callback of a button. AbstractButtonContainer is used as superclass for
classes defining a specific button behavior.

See: ClickButtonTrigger, RepeatButtonTrigger, ToggleButtonTrigger, TouchButtonTrigger

Inherits from: Container, Drawable

Inherited by: ClickButtonTrigger, RepeatButtonTrigger, ToggleButtonTrigger, TouchButtonTrigger

Public Functions
AbstractButtonContainer()

virtual void executeAction()
Executes the previously set action.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

bool getPressed()
Gets the pressed state.

void setAction(GenericCallback< const AbstractButtonContainer & > & callback)
Sets an action callback to be executed by the subclass of AbstractContainerButton.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setPressed(bool isPressed)
Sets the pressed state to the given state.

Protected Functions
virtual void handleAlphaUpdated()

Handles what should happen when the alpha is updated.

virtual void handlePressedUpdated()
Handles what should happen when the pressed state is updated.

Protected Attributes
GenericCallback< const AbstractButtonContainer & > * action

The action to be executed.

uint8_t alpha
The current alpha value. 255 denotes
solid, 0 denotes completely invisible.

bool pressed
True if pressed.

Additional inherited members
Public Functions inherited from Container

virtual void add(Drawable & d)
Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0

Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)

Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()

Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
AbstractButtonContainer

AbstractButtonContainer ()

executeAction
virtual void executeAction ()

Executes the previously set action.

See also:

setAction

getAlpha
uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getPressed
bool getPressed ()

Gets the pressed state.

Returns:

True if it succeeds, false if it fails.

See also:

setPressed

setAction
void setAction (GenericCallback< const AbstractButtonContainer & > & callback)

Sets an action callback to be executed by the subclass of AbstractContainerButton.

Parameters:
callback The callback.

See also:

executeAction

setAlpha
void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setPressed
void setPressed (bool isPressed)

Sets the pressed state to the given state.

A subclass of AbstractButtonContainer should implement handlePressedUpdate() to handle the
new pressed state.

Parameters:
isPressed True if is pressed, false if not.

See also:

getPressed, handlePressedUpdated

Protected Functions Documentation
handleAlphaUpdated

virtual void handleAlphaUpdated ()

Handles what should happen when the alpha is updated.

handlePressedUpdated
virtual void handlePressedUpdated ()

Handles what should happen when the pressed state is updated.

Protected Attributes Documentation
action

GenericCallback< const AbstractButtonContainer & > * action

The action to be executed.

alpha
uint8_t alpha

The current alpha value. 255 denotes solid, 0 denotes completely invisible.

pressed
bool pressed

True if pressed.

Version: 4.16

AbstractClock
Superclass of clock widgets. Allows the hour, minute and second of the clock to be set and read.

See: AnalogClock, DigitalClock

Inherits from: Container, Drawable

Inherited by: AnalogClock, DigitalClock

Public Functions
AbstractClock()

bool getCurrentAM() const
Is the current time a.m.

uint8_t getCurrentHour() const
Gets the current hour.

uint8_t getCurrentHour12() const
Gets current hour 12, i.e.

uint8_t getCurrentHour24() const
Gets current hour 24, i.e.

uint8_t getCurrentMinute() const
Gets the current minute.

uint8_t getCurrentSecond() const
Gets the current second.

virtual void setTime12Hour(uint8_t hour, uint8_t minute, uint8_t second, bool am)
Sets the time with input format as 12H.

virtual void setTime24Hour(uint8_t hour, uint8_t minute, uint8_t second)
Sets the time with input format as 24H.

Protected Functions
virtual void updateClock() =0

Update the visual representation of the clock on the display.

Protected Attributes
uint8_t currentHour

Local copy of the current hour.

uint8_t currentMinute
Local copy of the current minute.

uint8_t currentSecond
Local copy of the current second.

Additional inherited members
Public Functions inherited from Container

virtual void add(Drawable & d)
Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0

Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)

Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()

Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
AbstractClock

AbstractClock ()

getCurrentAM
bool getCurrentAM () const

Is the current time a.m.

or p.m.? True for a.m. and false for p.m.

Returns:

True if a.m., false if p.m.

getCurrentHour

uint8_t getCurrentHour () const

Gets the current hour.

Returns:

The current hour in range 0-23.

See also:

getCurrentHour24, getCurrentHour12

getCurrentHour12
uint8_t getCurrentHour12 () const

Gets current hour 12, i.e.

between 1 and 12.

Returns:

The current hour in range 1-12.

See also:

getCurrentHour24, getCurrentAM

getCurrentHour24
uint8_t getCurrentHour24 () const

Gets current hour 24, i.e.

between 0 and 23.

Returns:

The current hour in range 0-23.

getCurrentMinute
uint8_t getCurrentMinute () const

Gets the current minute.

Returns:

The current minute in range 0-59.

getCurrentSecond
uint8_t getCurrentSecond () const

Gets the current second.

Returns:

The current second in range 0-59.

setTime12Hour
virtual void setTime12Hour (uint8_t hour ,

uint8_t minute ,
uint8_t second ,
bool am
)

Sets the time with input format as 12H.

Note that this does not affect any selected presentation formats.

Parameters:
hour The hours, value should be between 1 and 12.
minute The minutes, value should be between 0 and 59.
second The seconds, value should be between 0 and 59.
am AM/PM setting. True = AM, false = PM.

NOTE

all values passed are saved modulo the values limit. For example minutes=62 is treated as minutes=2.

setTime24Hour
virtual void setTime24Hour (uint8_t hour ,

uint8_t minute ,
uint8_t second
)

Sets the time with input format as 24H.

Note that this does not affect any selected presentation formats.

Parameters:
hour The hours, value should be between 0 and 23.
minute The minutes, value should be between 0 and 59.
second The seconds, value should be between 0 and 59.

NOTE

all values passed are saved modulo the values limit. For example minutes=62 is treated as minutes=2.

Protected Functions Documentation
updateClock

virtual void updateClock () =0

Update the visual representation of the clock on the display.

Reimplemented by: touchgfx::AnalogClock::updateClock,
touchgfx::DigitalClock::updateClock

Protected Attributes Documentation
currentHour

uint8_t currentHour

Local copy of the current hour.

currentMinute
uint8_t currentMinute

Local copy of the current minute.

currentSecond

uint8_t currentSecond

Local copy of the current second.

Version: 4.16

AbstractDataGraph
An abstract data graph.

Inherits from: Container, Drawable

Inherited by: AbstractDataGraphWithY

Public Classes
class GraphClickEvent

An object of this type is passed with each callback that is sent when the graph is clicked.

class GraphDragEvent
An object of this type is passed with each callback that is sent when the graph is dragged.

Public Functions
AbstractDataGraph(int16_t capacity)
Initializes a new instance of the AbstractDataGraph class.

void addBottomElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area below the graph.

void addGraphElement(AbstractGraphElement & d)
Adds a graph element which will display the graph.

void addLeftElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the left of the graph.

void addRightElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the right of the graph.

void addTopElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area above the graph.

virtual void clear()
Clears the graph to its blank/initial state.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

int16_t getGapBeforeIndex() const
Gets gap before index as set using setGapBeforeIndex().

int16_t getGraphAreaHeight() const
Gets graph area height.

int16_t getGraphAreaHeightIncludingPadding() const
Gets graph area height including padding (but not margin).

int16_t getGraphAreaMarginBottom() const
Gets graph margin bottom.

int16_t getGraphAreaMarginLeft() const
Gets graph margin left.

int16_t getGraphAreaMarginRight() const
Gets graph margin right.

int16_t getGraphAreaMarginTop() const
Gets graph margin top.

int16_t getGraphAreaPaddingBottom() const
Gets graph area padding bottom.

int16_t getGraphAreaPaddingLeft() const
Gets graph area padding left.

int16_t getGraphAreaPaddingRight() const
Gets graph area padding right.

int16_t getGraphAreaPaddingTop() const
Gets graph area padding top.

int16_t getGraphAreaWidth() const
Gets graph area width.

int16_t getGraphAreaWidthIncludingPadding() const
Gets graph area width including padding (but not margin).

virtual int getGraphRangeXMax() const =0

Gets the maximum x coordinate for the graph.

virtual int getGraphRangeXMin() const =0
Gets the minimum x coordinate for the graph.

virtual float getGraphRangeYMaxAsFloat() const =0
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMaxAsInt() const =0
Gets maximum y coordinate for the graph.

virtual float getGraphRangeYMinAsFloat() const =0
Gets minimum y coordinate for the graph.

virtual int getGraphRangeYMinAsInt() const =0
Gets minimum y coordinate for the graph.

int16_t getMaxCapacity() const
Gets the capacity (max number of points) of the graph.

virtual bool getNearestIndexForScreenX(int16_t x, int16_t & index) const
Gets graph index nearest to the given screen x coordinate.

virtual bool getNearestIndexForScreenXY(int16_t x, int16_t y, int16_t & index)
Gets graph index nearest to the given screen position.

int getScale() const
Gets the scaling factor previously set using setScale().

int16_t getUsedCapacity() const
Gets the number of point used by the graph.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

float indexToDataPointXAsFloat(int16_t index) const
Get the data point x value for the given graph point index.

int indexToDataPointXAsInt(int16_t index) const
Get the data point x value for the given graph point index.

float indexToDataPointYAsFloat(int16_t index) const
Get the data point y value for the given graph point index.

int indexToDataPointYAsInt(int16_t index) const
Get the data point y value for the given graph point index.

virtual int32_t indexToGlobalIndex(int16_t index) const
Convert an index to global index.

int16_t indexToScreenX(int16_t index) const
Get the screen x coordinate for the given graph point index.

int16_t indexToScreenY(int16_t index) const
Get the screen y coordinate for the given graph point index.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setClickAction(GenericCallback< const AbstractDataGraph &, const
GraphClickEvent & > & callback)
Sets an action to be executed when the graph is clicked.

void setDragAction(GenericCallback< const AbstractDataGraph &, const
GraphDragEvent & > & callback)
Sets an action to be executed when the graph is dragged.

void setGapBeforeIndex(int16_t index)
Makes gap before the specified index.

void setGraphAreaMargin(int16_t top, int16_t left, int16_t right, int16_t bottom)
Sets graph position inside the widget by reserving a margin around the graph.

void setGraphAreaPadding(int16_t top, int16_t left, int16_t right, int16_t bottom)
Adds some padding around the graph that will not be drawn in (apart from dots,
boxes etc.

void setGraphRange(int xMin, int xMax, float yMin, float yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

void setGraphRange(int xMin, int xMax, int yMin, int yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

virtual void setGraphRangeX(int min, int max) =0

Sets minimum and maximum x coordinates for the graph.

virtual void setGraphRangeY(float min, float max) =0
Sets minimum and maximum y coordinates for the graph.

virtual void setGraphRangeY(int min, int max) =0
Sets minimum and maximum y coordinates for the graph.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

int float2scaled(float f, int scale)
Multiply a floating point value with a constant and round the result.

int int2scaled(int i, int scale)
Multiply an integer value with a constant.

float scaled2float(int i, int scale)
Divide a floating point number with a constant.

int scaled2int(int i, int scale)
Divide an integer with a constant and round the result.

Protected Functions
int convertToGraphScale(int value, int scale) const

Converts a number with one scale to a number that has the same scale as the
graph.

int float2scaled(float f) const
Same as float2scaled(float,int) using the graph's scale.

virtual int getGraphRangeYMaxScaled() const =0
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMinScaled() const =0

Gets minimum y coordinate for the graph.

virtual int getXAxisOffsetScaled() const
Get x axis offset as a scaled value.

virtual int getXAxisScaleScaled() const
Get x axis scale as a scaled value.

virtual int indexToDataPointXScaled(int16_t index) const =0
Same as indexToDataPointXAsInt(int16_t) except the returned value is left
scaled.

virtual int indexToDataPointYScaled(int16_t index) const =0
Same as indexToDataPointYAsInt(int16_t) except the returned value is left
scaled.

virtual CWRUtil::Q5 indexToScreenXQ5(int16_t index) const =0
Gets screen x coordinate for a specific data point added to the graph.

virtual CWRUtil::Q5 indexToScreenYQ5(int16_t index) const =0
Gets screen y coordinate for a specific data point added to the graph.

int int2scaled(int i) const
Same as int2scaled(int,int) using the graph's scale.

void invalidateAllXAxisPoints()
Invalidate all x axis points.

void invalidateGraphArea()
Invalidate entire graph area (the center of the graph).

void invalidateGraphPointAt(int16_t index)
Invalidate point at a given index.

void invalidateXAxisPointAt(int16_t index)
Invalidate x axis point at the given index.

float scaled2float(int i) const
Same as scaled2float(int,int) using the graph's scale.

int scaled2int(int i) const
Same as scaled2int(int,int) using the graph's scale.

void setGraphRangeScaled(int xMin, int xMax, int yMin, int yMax)

Same as setGraphRange(int,int,int,int) except the passed arguments are
assumed scaled.

virtual void setGraphRangeYScaled(int min, int max) =0
Same as setGraphRangeY(int,int) except the passed arguments are assumed
scaled.

void updateAreasPosition()
Updates the position of all elements in all area after a change in size of the
graph area and/or label padding.

virtual CWRUtil::Q5 valueToScreenXQ5(int x) const =0
Gets screen x coordinate for an absolute value.

virtual CWRUtil::Q5 valueToScreenYQ5(int y) const =0
Gets screen y coordinate for an absolute value.

virtual bool xScreenRangeToIndexRange(int16_t xLo, int16_t xHi, int16_t & indexLow,
int16_t & indexHigh) const =0
Gets index range for screen x coordinate range taking the current graph range
into account.

Protected Attributes
uint8_t alpha

The alpha of the
entire graph.

Container bottomArea
The area below the
graph.

int16_t bottomPadding
The graph area
bottom padding.

GenericCallback< const AbstractDataGraph &, const GraphClickEvent & > * clickAction
The callback to be
executed when this
Graph is clicked.

int dataScale

The data scale
applied to all values.

GenericCallback< const AbstractDataGraph &, const GraphDragEvent & > * dragAction
The callback to be
executed when this
Graph is dragged.

int16_t gapBeforeIndex
The graph is
disconnected (there
is a gap) before this
element index.

Container graphArea
The graph area (the
center area)

Container leftArea
The area to the left
of the graph.

int16_t leftPadding
The graph area left
padding.

int16_t maxCapacity
Maximum number
of points in the
graph.

Container rightArea
The area to the right
of the graph.

int16_t rightPadding
The graph area right
padding.

Container topArea
The area above the
graph.

int16_t topPadding

The graph area top
padding.

int16_t usedCapacity
The number of used
points in the graph.

Additional inherited members
Public Functions inherited from Container

virtual void add(Drawable & d)
Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()

Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
AbstractDataGraph

AbstractDataGraph (int16_t capacity)

Initializes a new instance of the AbstractDataGraph class.

Parameters:
capacity The capacity.

addBottomElement
void addBottomElement (AbstractGraphDecoration & d)

Adds an element to be shown in the area below the graph.

Labels and titles can be added here.

Parameters:
d an AbstractGraphElement to add.

See also:

GraphLabelsX, GraphTitle

addGraphElement
void addGraphElement (AbstractGraphElement & d)

Adds a graph element which will display the graph.

Several graph elements can be added. Examples of graph elements are lines, dots, histograms as
well as horizontal and vertical grid lines.

Parameters:
d an AbstractGraphElement to add.

See also:

GraphElementGridX, GraphElementGridY, GraphElementArea, GraphElementBoxes,
GraphElementDiamonds, GraphElementDots, GraphElementHistogram, GraphElementLine,

addLeftElement
void addLeftElement (AbstractGraphDecoration & d)

Adds an element to be shown in the area to the left of the graph.

Labels and titles can be added here.

Parameters:
d an AbstractGraphElement to add.

See also:

GraphLabelsY, GraphTitle

addRightElement
void addRightElement (AbstractGraphDecoration & d)

Adds an element to be shown in the area to the right of the graph.

Labels and titles can be added here.

Parameters:
d an AbstractGraphElement to add.

See also:

GraphLabelsY, GraphTitle

addTopElement
void addTopElement (AbstractGraphDecoration & d)

Adds an element to be shown in the area above the graph.

Labels and titles can be added here.

Parameters:
d an AbstractGraphElement to add.

See also:

GraphLabelsX, GraphTitle

clear
virtual void clear ()

Clears the graph to its blank/initial state.

Reimplemented by: touchgfx::DataGraphScroll::clear,
touchgfx::DataGraphWrapAndOverwrite::clear

getAlpha
uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getGapBeforeIndex
int16_t getGapBeforeIndex () const

Gets gap before index as set using setGapBeforeIndex().

Returns:

The gap before index.

See also:

setGapBeforeIndex

getGraphAreaHeight
int16_t getGraphAreaHeight () const

Gets graph area height.

This is the height of the actual graph area and is the same as the height of the graph widget where
graph area margin and graph area padding has been removed.

Returns:

The graph area height.

getGraphAreaHeightIncludingPadding
int16_t getGraphAreaHeightIncludingPadding () const

Gets graph area height including padding (but not margin).

This is the height of the actual graph area and is the same as the height of the graph widget where
graph area margin has been removed.

Returns:

The graph area height including graph padding.

getGraphAreaMarginBottom
int16_t getGraphAreaMarginBottom () const

Gets graph margin bottom.

Returns:

The graph margin bottom.

See also:

setGraphAreaMargin

getGraphAreaMarginLeft
int16_t getGraphAreaMarginLeft () const

Gets graph margin left.

Returns:

The graph margin left.

See also:

setGraphAreaMargin

getGraphAreaMarginRight

int16_t getGraphAreaMarginRight () const

Gets graph margin right.

Returns:

The graph margin right.

See also:

setGraphAreaMargin

getGraphAreaMarginTop
int16_t getGraphAreaMarginTop () const

Gets graph margin top.

Returns:

The graph margin top.

See also:

setGraphAreaMargin

getGraphAreaPaddingBottom
int16_t getGraphAreaPaddingBottom () const

Gets graph area padding bottom.

Returns:

The graph area padding bottom.

See also:

setGraphAreaPadding

getGraphAreaPaddingLeft
int16_t getGraphAreaPaddingLeft () const

Gets graph area padding left.

Returns:

The graph area padding left.

See also:

setGraphAreaPadding

getGraphAreaPaddingRight
int16_t getGraphAreaPaddingRight () const

Gets graph area padding right.

Returns:

The graph area padding right.

See also:

setGraphAreaPadding

getGraphAreaPaddingTop
int16_t getGraphAreaPaddingTop () const

Gets graph area padding top.

Returns:

The graph areapadding top.

See also:

setGraphAreaPadding

getGraphAreaWidth
int16_t getGraphAreaWidth () const

Gets graph area width.

This is the width of the actual graph area and is the same as the width of the graph widget where
graph area margin and graph area padding has been removed.

Returns:

The graph area width.

getGraphAreaWidthIncludingPadding

int16_t getGraphAreaWidthIncludingPadding () const

Gets graph area width including padding (but not margin).

This is the width of the actual graph area and is the same as the width of the graph widget where
graph area margin has been removed.

Returns:

The graph width including graph padding.

getGraphRangeXMax
virtual int getGraphRangeXMax () const =0

Gets the maximum x coordinate for the graph.

Returns:

The maximum x coordinate .

Reimplemented by: touchgfx::AbstractDataGraphWithY::getGraphRangeXMax

getGraphRangeXMin
virtual int getGraphRangeXMin () const =0

Gets the minimum x coordinate for the graph.

Returns:

The minimum x coordinate .

Reimplemented by: touchgfx::AbstractDataGraphWithY::getGraphRangeXMin

getGraphRangeYMaxAsFloat
virtual float getGraphRangeYMaxAsFloat () const =0

Gets maximum y coordinate for the graph.

Returns:

The maximum y coordinate.

Reimplemented by: touchgfx::AbstractDataGraphWithY::getGraphRangeYMaxAsFloat

getGraphRangeYMaxAsInt
virtual int getGraphRangeYMaxAsInt () const =0

Gets maximum y coordinate for the graph.

Returns:

The maximum y coordinate.

Reimplemented by: touchgfx::AbstractDataGraphWithY::getGraphRangeYMaxAsInt

getGraphRangeYMinAsFloat
virtual float getGraphRangeYMinAsFloat () const =0

Gets minimum y coordinate for the graph.

Returns:

The minimum y coordinate.

Reimplemented by: touchgfx::AbstractDataGraphWithY::getGraphRangeYMinAsFloat

getGraphRangeYMinAsInt
virtual int getGraphRangeYMinAsInt () const =0

Gets minimum y coordinate for the graph.

Returns:

The minimum y coordinate.

Reimplemented by: touchgfx::AbstractDataGraphWithY::getGraphRangeYMinAsInt

getMaxCapacity
int16_t getMaxCapacity () const

Gets the capacity (max number of points) of the graph.

Returns:

The capacity.

getNearestIndexForScreenX
virtual bool getNearestIndexForScreenX (int16_t x , const

int16_t & index const
) const

Gets graph index nearest to the given screen x coordinate.

The index of the graph point closest to the given x coordinate is handed back.

Parameters:
x The x coordinate.
index Zero-based index of the.

Returns:

True if it succeeds, false if it fails.

See also:

getNearestIndexForScreenXY

getNearestIndexForScreenXY
virtual bool getNearestIndexForScreenXY (int16_t x ,

int16_t y ,
int16_t & index
)

Gets graph index nearest to the given screen position.

The distance to each point on the graph is measured and the index of the point closest to the given
position handed back.

Parameters:
x The x coordinate.
y The y coordinate.
index Zero-based index of the point closest to the given position.

Returns:

True if it succeeds, false if it fails.

See also:

getNearestIndexForScreenX

getScale
int getScale () const

Gets the scaling factor previously set using setScale().

Returns:

The scaling factor.

See also:

setScale

getUsedCapacity
int16_t getUsedCapacity () const

Gets the number of point used by the graph.

Returns:

The number of point used by the graph.

handleClickEvent
virtual void handleClickEvent (const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

The default implementation ignores the event. The event is only received if the Drawable is
touchable and visible.

Parameters:
evt The ClickEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleClickEvent

handleDragEvent
virtual void handleDragEvent (const DragEvent & evt)

Defines the event handler interface for DragEvents.

The default implementation ignores the event. The event is only received if the drawable is
touchable and visible.

Parameters:
evt The DragEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleDragEvent

indexToDataPointXAsFloat
float indexToDataPointXAsFloat (int16_t index)

Get the data point x value for the given graph point index.

Parameters:
index Zero-based index of the point.

Returns:

The data point x value.

indexToDataPointXAsInt
int indexToDataPointXAsInt (int16_t index)

Get the data point x value for the given graph point index.

Parameters:
index Zero-based index of the point.

Returns:

The data point x value.

indexToDataPointYAsFloat
float indexToDataPointYAsFloat (int16_t index)

Get the data point y value for the given graph point index.

Parameters:
index Zero-based index of the point.

Returns:

The data point y value.

indexToDataPointYAsInt
int indexToDataPointYAsInt (int16_t index)

Get the data point y value for the given graph point index.

Parameters:
index Zero-based index of the point.

Returns:

The data point y value.

indexToGlobalIndex
virtual int32_t indexToGlobalIndex (int16_t index)

Convert an index to global index.

The index is the index of any data point, The global index is a value that keeps growing whenever a
new data point is added the the graph.

Parameters:
index Zero-based index of the point.

Returns:

The global index.

Reimplemented by: touchgfx::DataGraphScroll::indexToGlobalIndex,
touchgfx::DataGraphWrapAndClear::indexToGlobalIndex,
touchgfx::DataGraphWrapAndOverwrite::indexToGlobalIndex

indexToScreenX
int16_t indexToScreenX (int16_t index)

Get the screen x coordinate for the given graph point index.

Parameters:
index Zero-based index of the point.

Returns:

The screen x coordinate.

indexToScreenY
int16_t indexToScreenY (int16_t index)

Get the screen y coordinate for the given graph point index.

Parameters:
index Zero-based index of the point.

Returns:

The screen x coordinate.

setAlpha
void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.All graph elements have to take this
alpha into consideration.

See also:

getAlpha

setClickAction

void setClickAction (GenericCallback< const AbstractDataGraph &, const
GraphClickEvent & > & callback)

Sets an action to be executed when the graph is clicked.

Parameters:
callback The callback.

See also:

GraphClickEvent

setDragAction

void setDragAction (GenericCallback< const AbstractDataGraph &, const
GraphDragEvent & > & callback)

Sets an action to be executed when the graph is dragged.

Parameters:
callback The callback.

See also:

GraphDragEvent

setGapBeforeIndex
void setGapBeforeIndex (int16_t index)

Makes gap before the specified index.

This can be used to split a graph in two, but for some graph types, e.g. histograms, this has no
effect. Only one gap can be specified at a time. Specifying a new gap automatically removes the
previous gap.

Parameters:
index Zero-based index where the gap should be placed.

setGraphAreaMargin
void setGraphAreaMargin (int16_t top ,

int16_t left ,
int16_t right ,
int16_t bottom
)

Sets graph position inside the widget by reserving a margin around the graph.

These areas to the left, the right, above and below are used for optional axis and titles.

Parameters:
top The top margin in pixels.
left The left margin in pixels.
right The right margin in pixels.
bottom The bottom margin in pixels.

NOTE

The graph is automatically invalidated when the graph margins are changed.

See also:

GraphLabelsX, GraphLabelsY, GraphTitle

setGraphAreaPadding
void setGraphAreaPadding (int16_t top ,

int16_t left ,
int16_t right ,
int16_t bottom
)

Adds some padding around the graph that will not be drawn in (apart from dots, boxes etc.

that extend around the actual data point). The set padding will also work to make a gap between
the graph and any labels that might have been added to the graph. To reserve an area that the
graph will not be drawn in, use setGraphAreaMargin.

Parameters:
top The top padding in pixels.
left The left padding in pixels.
right The right padding in pixels.
bottom The bottom padding in pixels.

NOTE

The graph is automatically invalidated when the margins are set.

See also:

setGraphAreaMargin

setGraphRange
void setGraphRange (int xMin ,

int xMax ,
float yMin ,
float yMax
)

Sets minimum and maximum x and y coordinate ranges for the graph.

This can be used to zoom in or out and only show parts of the graph.

Parameters:
xMin The minimum x coordinate.
xMax The maximum x coordinate.
yMin The minimum y coordinate.
yMax The maximum y coordinate.

See also:

setGraphRangeX, setGraphRangeY

setGraphRange
void setGraphRange (int xMin ,

int xMax ,
int yMin ,
int yMax
)

Sets minimum and maximum x and y coordinate ranges for the graph.

This can be used to zoom in or out and only show parts of the graph.

Parameters:
xMin The minimum x coordinate.
xMax The maximum x coordinate.
yMin The minimum y coordinate.
yMax The maximum y coordinate.

See also:

setGraphRangeX, setGraphRangeY

setGraphRangeX

virtual void setGraphRangeX (int min , =0
int max =0
) =0

Sets minimum and maximum x coordinates for the graph.

This can be used to zoom in or out and only show parts of the graph.

Parameters:
min The minimum x coordinate.
max The maximum x coordinate.

NOTE

The graph as well as the area above and below are automatically redrawn (invalidated).

Reimplemented by: touchgfx::AbstractDataGraphWithY::setGraphRangeX

setGraphRangeY
virtual void setGraphRangeY (float min , =0

float max =0
) =0

Sets minimum and maximum y coordinates for the graph.

This can be used to zoom in or out and only show parts of the graph.

Parameters:
min The minimum y coordinate.
max The maximum y coordinate.

NOTE

The graph as well as the area to the left and to the right of the graph are automatically redrawn
(invalidated)

Reimplemented by: touchgfx::AbstractDataGraphWithY::setGraphRangeY

setGraphRangeY
virtual void setGraphRangeY (int min , =0

int max =0
) =0

Sets minimum and maximum y coordinates for the graph.

This can be used to zoom in or out and only show parts of the graph.

Parameters:
min The minimum y coordinate.
max The maximum y coordinate.

NOTE

The graph as well as the area to the left and to the right of the graph are automatically redrawn
(invalidated)

Reimplemented by: touchgfx::AbstractDataGraphWithY::setGraphRangeY

setHeight
virtual void setHeight (int16_t height)

Sets the height of this drawable.

Parameters:
height The new height.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.

Reimplements: touchgfx::Drawable::setHeight

setScale
virtual void setScale (int scale)

Sets a scaling factor to be multiplied on each added element.

Since the graph only stores integer values internally, it is possible to set a scale to e.g. 1000 and
make the graph work as if there are three digits of precision. The addDataPoint() will multiply the
argument with the scaling factor and store this value.

By setting the scale to 1 it is possible to simply use integer values for the graph.

Parameters:

scale The scaling factor.

NOTE

Calling setScale after adding points to the graph has undefined behaviour. The scale should be set as the
first thing before other settings of the graph is being set.

See also:

getScale

Reimplemented by: touchgfx::AbstractDataGraphWithY::setScale

setWidth
virtual void setWidth (int16_t width)

Sets the width of this drawable.

Parameters:
width The new width.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.

Reimplements: touchgfx::Drawable::setWidth

float2scaled
static int float2scaled (float f ,

int scale
)

Multiply a floating point value with a constant and round the result.

Parameters:
f the value to scale.
scale The scale.

Returns:

The product of the two numbers, rounded to nearest integer value.

int2scaled
static int int2scaled (int i ,

int scale
)

Multiply an integer value with a constant.

Parameters:
i the value to scale.
scale The scale.

Returns:

The product of the two numbers.

scaled2float
static float scaled2float (int i ,

int scale
)

Divide a floating point number with a constant.

Parameters:
i The number to divide.
scale The divisor (scale).

Returns:

The number divided by the scale.

scaled2int
static int scaled2int (int i ,

int scale
)

Divide an integer with a constant and round the result.

Parameters:
i The number to divide.
scale The divisor (scale).

Returns:

The number divided by the scale, rounded to nearest integer.

Protected Functions Documentation
convertToGraphScale

int convertToGraphScale (int value , const
int scale const
) const

Converts a number with one scale to a number that has the same scale as the graph.

Parameters:
value The value to convert.
scale The scale.

Returns:

The given data converted to the graph scale.

NOTE

For internal use.

float2scaled
int float2scaled (float f)

Same as float2scaled(float,int) using the graph's scale.

Parameters:
f The floating point value to scale.

Returns:

The scaled value.

NOTE

For internal use.

getGraphRangeYMaxScaled
virtual int getGraphRangeYMaxScaled () const =0

Gets maximum y coordinate for the graph.

Returns:

The maximum y coordinate.

NOTE

The returned value is left scaled.For internal use.

See also:

AbstractDataGraph::getGraphRangeYMaxAsInt,
AbstractDataGraph::getGraphRangeYMaxAsFloat

Reimplemented by: touchgfx::AbstractDataGraphWithY::getGraphRangeYMaxScaled

getGraphRangeYMinScaled
virtual int getGraphRangeYMinScaled () const =0

Gets minimum y coordinate for the graph.

Returns:

The minimum y coordinate.

NOTE

The returned value is left scaled.For internal use.

See also:

AbstractDataGraph::getGraphRangeYMinAsInt,
AbstractDataGraph::getGraphRangeYMinAsFloat

Reimplemented by: touchgfx::AbstractDataGraphWithY::getGraphRangeYMinScaled

getXAxisOffsetScaled
virtual int getXAxisOffsetScaled () const

Get x axis offset as a scaled value.

Returns:

The x axis offset (left scaled).

NOTE

For internal use.

Reimplemented by: touchgfx::AbstractDataGraphWithY::getXAxisOffsetScaled

getXAxisScaleScaled
virtual int getXAxisScaleScaled () const

Get x axis scale as a scaled value.

Returns:

The x axis scale (left scaled).

NOTE

For internal use.

Reimplemented by: touchgfx::AbstractDataGraphWithY::getXAxisScaleScaled

indexToDataPointXScaled
virtual int indexToDataPointXScaled (int16_t index)

Same as indexToDataPointXAsInt(int16_t) except the returned value is left scaled.

Parameters:
index Zero-based index of the data point.

Returns:

The data point x value scaled.

NOTE

For internal use.

See also:

indexToDataPointXAsInt, indexToDataPointXAsFloat

Reimplemented by: touchgfx::AbstractDataGraphWithY::indexToDataPointXScaled

indexToDataPointYScaled
virtual int indexToDataPointYScaled (int16_t index)

Same as indexToDataPointYAsInt(int16_t) except the returned value is left scaled.

Parameters:
index Zero-based index of the data point.

Returns:

The data point y value scaled.

NOTE

For internal use.

See also:

indexToDataPointYAsInt, indexToDataPointYAsFloat

Reimplemented by: touchgfx::AbstractDataGraphWithY::indexToDataPointYScaled

indexToScreenXQ5
virtual CWRUtil::Q5 indexToScreenXQ5 (int16_t index)

Gets screen x coordinate for a specific data point added to the graph.

Parameters:
index The index of the element to get the x coordinate for.

Returns:

The screen x coordinate for the specific data point.

Reimplemented by: touchgfx::AbstractDataGraphWithY::indexToScreenXQ5

indexToScreenYQ5
virtual CWRUtil::Q5 indexToScreenYQ5 (int16_t index)

Gets screen y coordinate for a specific data point added to the graph.

Parameters:
index The index of the element to get the y coordinate for.

Returns:

The screen x coordinate for the specific data point.

Reimplemented by: touchgfx::AbstractDataGraphWithY::indexToScreenYQ5

int2scaled
int int2scaled (int i)

Same as int2scaled(int,int) using the graph's scale.

Parameters:
i The integer value to scale.

Returns:

The scaled integer.

NOTE

For internal use.

invalidateAllXAxisPoints
void invalidateAllXAxisPoints ()

Invalidate all x axis points.

Similar to invalidateXAxisPointAt, this function will iterate all visible x values and invalidate them in
turn.

See also:

invalidateXAxisPointAt

invalidateGraphArea
void invalidateGraphArea ()

Invalidate entire graph area (the center of the graph).

This is often useful when a graph is cleared or the X or Y range is changed.

invalidateGraphPointAt
void invalidateGraphPointAt (int16_t index)

Invalidate point at a given index.

This will call the function invalidateGraphPointAt() on every element added to the graphArea
which in turn is responsible for invalidating the part of the screen occupied by its element.

Parameters:
index Zero-based index of the element to invalidate.

invalidateXAxisPointAt
void invalidateXAxisPointAt (int16_t index)

Invalidate x axis point at the given index.

Since the y axis is often static, the x axis can change, and all labels need to be updated wihtout
redrawing the entire graph.

Parameters:
index The x index to invalidate.

See also:

invalidateAllXAxisPoints

scaled2float
float scaled2float (int i)

Same as scaled2float(int,int) using the graph's scale.

Parameters:
i The scaled value to convert to a floating point value.

Returns:

The unscaled value.

NOTE

For internal use.

scaled2int
int scaled2int (int i)

Same as scaled2int(int,int) using the graph's scale.

Parameters:
i The scaled value to convert to an integer.

Returns:

The unscaled value.

NOTE

For internal use.

setGraphRangeScaled
void setGraphRangeScaled (int xMin ,

int xMax ,
int yMin ,
int yMax
)

Same as setGraphRange(int,int,int,int) except the passed arguments are assumed scaled.

Parameters:
xMin The minimum x coordinate.
xMax The maximum x coordinate.
yMin The minimum y coordinate.
yMax The maximum y coordinate.

NOTE

For internal use.

See also:

setGraphRange

setGraphRangeYScaled
virtual void setGraphRangeYScaled (int min , =0

int max =0
) =0

Same as setGraphRangeY(int,int) except the passed arguments are assumed scaled.

Parameters:
min The minimum y coordinate.
max The maximum y coordinate.

NOTE

For internal use.

See also:

setGraphRangeY

Reimplemented by: touchgfx::AbstractDataGraphWithY::setGraphRangeYScaled

updateAreasPosition
void updateAreasPosition ()

Updates the position of all elements in all area after a change in size of the graph area and/or label
padding.

NOTE

The entire graph area is invalidated.

valueToScreenXQ5
virtual CWRUtil::Q5 valueToScreenXQ5 (int x)

Gets screen x coordinate for an absolute value.

Parameters:
x The x value.

Returns:

The screen x coordinate for the given value.

Reimplemented by: touchgfx::AbstractDataGraphWithY::valueToScreenXQ5

valueToScreenYQ5
virtual CWRUtil::Q5 valueToScreenYQ5 (int y)

Gets screen y coordinate for an absolute value.

Parameters:
y The y value.

Returns:

The screen y coordinate for the given value.

Reimplemented by: touchgfx::AbstractDataGraphWithY::valueToScreenYQ5

xScreenRangeToIndexRange
virtual bool xScreenRangeToIndexRange (int16_t xLo , const =0

int16_t xHi , const =0
int16_t & indexLow , const =0
int16_t & indexHigh const =0
) const =0

Gets index range for screen x coordinate range taking the current graph range into account.

Parameters:
xLo The low screen x coordinate.
xHi The high screen x coordinate.
indexLow The low element index.
indexHigh The high element index.

Returns:

True if the range from low index to high index is legal.

NOTE

For internal use.

Reimplemented by: touchgfx::AbstractDataGraphWithY::xScreenRangeToIndexRange

Protected Attributes Documentation
alpha

uint8_t alpha

The alpha of the entire graph.

bottomArea
Container bottomArea

The area below the graph.

bottomPadding
int16_t bottomPadding

The graph area bottom padding.

clickAction
GenericCallback< const AbstractDataGraph &, const GraphClickEvent & > * clickAction

The callback to be executed when this Graph is clicked.

dataScale
int dataScale

The data scale applied to all values.

dragAction
GenericCallback< const AbstractDataGraph &, const GraphDragEvent & > * dragAction

The callback to be executed when this Graph is dragged.

gapBeforeIndex
int16_t gapBeforeIndex

The graph is disconnected (there is a gap) before this element index.

graphArea
Container graphArea

The graph area (the center area)

leftArea
Container leftArea

The area to the left of the graph.

leftPadding
int16_t leftPadding

The graph area left padding.

maxCapacity
int16_t maxCapacity

Maximum number of points in the graph.

rightArea
Container rightArea

The area to the right of the graph.

rightPadding
int16_t rightPadding

The graph area right padding.

topArea
Container topArea

The area above the graph.

topPadding
int16_t topPadding

The graph area top padding.

usedCapacity
int16_t usedCapacity

The number of used points in the graph.

Version: 4.16

AbstractDataGraphWithY
Abstract helper class used to implement graphs with the same distance between the x values (i.e. x is
ignored).

Inherits from: AbstractDataGraph, Container, Drawable

Inherited by: DataGraphScroll, DataGraphWrapAndClear, DataGraphWrapAndOverwrite

Public Functions
AbstractDataGraphWithY(int16_t capacity, int * values)
Initializes a new instance of the AbstractDataGraphWithY class.

int16_t addDataPoint(float y)
Adds a new data point to the end of the graph.

int16_t addDataPoint(int y)
Adds a new data point to the end of the graph.

virtual int getGraphRangeXMax() const
Gets the maximum x coordinate for the graph.

virtual int getGraphRangeXMin() const
Gets the minimum x coordinate for the graph.

virtual float getGraphRangeYMaxAsFloat() const
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMaxAsInt() const
Gets maximum y coordinate for the graph.

virtual float getGraphRangeYMinAsFloat() const
Gets minimum y coordinate for the graph.

virtual int getGraphRangeYMinAsInt() const
Gets minimum y coordinate for the graph.

virtual float getXAxisOffsetAsFloat() const
Get x coordinate axis offset value.

virtual int getXAxisOffsetAsInt() const
Get x coordinate axis offset value.

virtual float getXAxisScaleAsFloat() const
Get x coordinate axis scale value.

virtual int getXAxisScaleAsInt() const
Get x coordinate axis scale value.

virtual void setGraphRangeX(int min, int max)
Sets minimum and maximum x coordinates for the graph.

virtual void setGraphRangeY(float min, float max)
Sets minimum and maximum y coordinates for the graph.

virtual void setGraphRangeY(int min, int max)
Sets minimum and maximum y coordinates for the graph.

void setGraphRangeYAuto(bool showXaxis =true, int margin =0)
Automatic adjust min and max y coordinate to show entire graph.

virtual void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

virtual void setXAxisOffset(float offset)
Set x coordinate axis offset value.

virtual void setXAxisOffset(int offset)
Set x coordinate axis offset value.

virtual void setXAxisScale(float scale)
Set x coordinate axis scale value.

virtual void setXAxisScale(int scale)
Set x coordinate axis scale value.

Protected Functions
int16_t addDataPointScaled(int y)

Same as addDataPoint(int) except the passed argument is assumed scaled.

virtual int16_t addValue(int value) =0
Adds a value to the internal data array and keeps track of when graph points,
graph axis and the entire graph needs to be redrawn (invalidated).

virtual void beforeAddValue()
This function is called before a new value (data point) is added.

virtual int getGraphRangeYMaxScaled() const
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMinScaled() const
Gets minimum y coordinate for the graph.

virtual int getXAxisOffsetScaled() const
Get x axis offset as a scaled value.

virtual int getXAxisScaleScaled() const
Get x axis scale as a scaled value.

virtual int indexToDataPointXScaled(int16_t index) const
Same as indexToDataPointXAsInt(int16_t) except the returned value is left
scaled.

virtual int indexToDataPointYScaled(int16_t index) const
Same as indexToDataPointYAsInt(int16_t) except the returned value is left
scaled.

virtual CWRUtil::Q5 indexToScreenXQ5(int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

virtual CWRUtil::Q5 indexToScreenYQ5(int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

virtual int16_t realIndex(int16_t index) const
Get the real index in the yValues array of the given index.

virtual void setGraphRangeYScaled(int min, int max)
Same as setGraphRangeY(int,int) except the passed arguments are assumed
scaled.

virtual void setXAxisOffsetScaled(int offset)
Set x coordinate axis offset value with a pre-scaled offset value.

virtual void setXAxisScaleScaled(int scale)

Set x coordinate axis scale value using a pre-scaled value.

virtual CWRUtil::Q5 valueToScreenXQ5(int x) const
Gets screen x coordinate for an absolute value.

virtual CWRUtil::Q5 valueToScreenYQ5(int y) const
Gets screen y coordinate for an absolute value.

virtual bool xScreenRangeToIndexRange(int16_t xLo, int16_t xHi, int16_t & indexLow,
int16_t & indexHigh) const
Gets index range for screen x coordinate range taking the current graph range
into account.

Protected Attributes
uint32_t dataCounter

The data counter of how many times addDataPoint() has been called.

int xOffset
The x axis offset (real value of data point at index 0)

int xScale
The x axis scale (increment between two data points)

int * yValues
The values of the graph.

Additional inherited members
Public Classes inherited from AbstractDataGraph
class GraphClickEvent

An object of this type is passed with each callback that is sent when the graph is clicked.

class GraphDragEvent
An object of this type is passed with each callback that is sent when the graph is dragged.

Public Functions inherited from AbstractDataGraph

AbstractDataGraph(int16_t capacity)
Initializes a new instance of the AbstractDataGraph class.

void addBottomElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area below the graph.

void addGraphElement(AbstractGraphElement & d)
Adds a graph element which will display the graph.

void addLeftElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the left of the graph.

void addRightElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the right of the graph.

void addTopElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area above the graph.

virtual void clear()
Clears the graph to its blank/initial state.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

int16_t getGapBeforeIndex() const
Gets gap before index as set using setGapBeforeIndex().

int16_t getGraphAreaHeight() const
Gets graph area height.

int16_t getGraphAreaHeightIncludingPadding() const
Gets graph area height including padding (but not margin).

int16_t getGraphAreaMarginBottom() const
Gets graph margin bottom.

int16_t getGraphAreaMarginLeft() const
Gets graph margin left.

int16_t getGraphAreaMarginRight() const
Gets graph margin right.

int16_t getGraphAreaMarginTop() const

Gets graph margin top.

int16_t getGraphAreaPaddingBottom() const
Gets graph area padding bottom.

int16_t getGraphAreaPaddingLeft() const
Gets graph area padding left.

int16_t getGraphAreaPaddingRight() const
Gets graph area padding right.

int16_t getGraphAreaPaddingTop() const
Gets graph area padding top.

int16_t getGraphAreaWidth() const
Gets graph area width.

int16_t getGraphAreaWidthIncludingPadding() const
Gets graph area width including padding (but not margin).

int16_t getMaxCapacity() const
Gets the capacity (max number of points) of the graph.

virtual bool getNearestIndexForScreenX(int16_t x, int16_t & index) const
Gets graph index nearest to the given screen x coordinate.

virtual bool getNearestIndexForScreenXY(int16_t x, int16_t y, int16_t & index)
Gets graph index nearest to the given screen position.

int getScale() const
Gets the scaling factor previously set using setScale().

int16_t getUsedCapacity() const
Gets the number of point used by the graph.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

float indexToDataPointXAsFloat(int16_t index) const
Get the data point x value for the given graph point index.

int indexToDataPointXAsInt(int16_t index) const
Get the data point x value for the given graph point index.

float indexToDataPointYAsFloat(int16_t index) const
Get the data point y value for the given graph point index.

int indexToDataPointYAsInt(int16_t index) const
Get the data point y value for the given graph point index.

virtual int32_t indexToGlobalIndex(int16_t index) const
Convert an index to global index.

int16_t indexToScreenX(int16_t index) const
Get the screen x coordinate for the given graph point index.

int16_t indexToScreenY(int16_t index) const
Get the screen y coordinate for the given graph point index.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setClickAction(GenericCallback< const AbstractDataGraph &, const
GraphClickEvent & > & callback)
Sets an action to be executed when the graph is clicked.

void setDragAction(GenericCallback< const AbstractDataGraph &, const
GraphDragEvent & > & callback)
Sets an action to be executed when the graph is dragged.

void setGapBeforeIndex(int16_t index)
Makes gap before the specified index.

void setGraphAreaMargin(int16_t top, int16_t left, int16_t right, int16_t bottom)
Sets graph position inside the widget by reserving a margin around the graph.

void setGraphAreaPadding(int16_t top, int16_t left, int16_t right, int16_t bottom)
Adds some padding around the graph that will not be drawn in (apart from dots,
boxes etc.

void setGraphRange(int xMin, int xMax, float yMin, float yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

void setGraphRange(int xMin, int xMax, int yMin, int yMax)

Sets minimum and maximum x and y coordinate ranges for the graph.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

int float2scaled(float f, int scale)
Multiply a floating point value with a constant and round the result.

int int2scaled(int i, int scale)
Multiply an integer value with a constant.

float scaled2float(int i, int scale)
Divide a floating point number with a constant.

int scaled2int(int i, int scale)
Divide an integer with a constant and round the result.

Protected Functions inherited from AbstractDataGraph
int convertToGraphScale(int value, int scale) const

Converts a number with one scale to a number that has the same scale as the graph.

int float2scaled(float f) const
Same as float2scaled(float,int) using the graph's scale.

int int2scaled(int i) const
Same as int2scaled(int,int) using the graph's scale.

void invalidateAllXAxisPoints()
Invalidate all x axis points.

void invalidateGraphArea()
Invalidate entire graph area (the center of the graph).

void invalidateGraphPointAt(int16_t index)
Invalidate point at a given index.

void invalidateXAxisPointAt(int16_t index)
Invalidate x axis point at the given index.

float scaled2float(int i) const
Same as scaled2float(int,int) using the graph's scale.

int scaled2int(int i) const
Same as scaled2int(int,int) using the graph's scale.

void setGraphRangeScaled(int xMin, int xMax, int yMin, int yMax)
Same as setGraphRange(int,int,int,int) except the passed arguments are assumed scaled.

void updateAreasPosition()
Updates the position of all elements in all area after a change in size of the graph area and/or
label padding.

Protected Attributes inherited from AbstractDataGraph
uint8_t alpha

The alpha of the
entire graph.

Container bottomArea
The area below the
graph.

int16_t bottomPadding
The graph area
bottom padding.

GenericCallback< const AbstractDataGraph &, const GraphClickEvent & > * clickAction
The callback to be
executed when this
Graph is clicked.

int dataScale
The data scale
applied to all values.

GenericCallback< const AbstractDataGraph &, const GraphDragEvent & > * dragAction
The callback to be
executed when this
Graph is dragged.

int16_t gapBeforeIndex

The graph is
disconnected (there
is a gap) before this
element index.

Container graphArea
The graph area (the
center area)

Container leftArea
The area to the left
of the graph.

int16_t leftPadding
The graph area left
padding.

int16_t maxCapacity
Maximum number
of points in the
graph.

Container rightArea
The area to the right
of the graph.

int16_t rightPadding
The graph area right
padding.

Container topArea
The area above the
graph.

int16_t topPadding
The graph area top
padding.

int16_t usedCapacity
The number of used
points in the graph.

Public Functions inherited from Container

virtual void add(Drawable & d)
Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation

AbstractDataGraphWithY
AbstractDataGraphWithY (int16_t capacity ,

int * values
)

Initializes a new instance of the AbstractDataGraphWithY class.

Parameters:
capacity The capacity.
values Address where to store the y values of the graph.

addDataPoint
int16_t addDataPoint (float y)

Adds a new data point to the end of the graph.

The part of the graph that is changed, is automatically redrawn (invalidated).

Parameters:
y The new data point.

Returns:

The index of the just added value.

addDataPoint
int16_t addDataPoint (int y)

Adds a new data point to the end of the graph.

The part of the graph that is changed, is automatically redrawn (invalidated).

Parameters:
y The new data point.

Returns:

The index of the just added value.

getGraphRangeXMax

virtual int getGraphRangeXMax () const

Gets the maximum x coordinate for the graph.

Returns:

The maximum x coordinate .

Reimplements: touchgfx::AbstractDataGraph::getGraphRangeXMax

getGraphRangeXMin
virtual int getGraphRangeXMin () const

Gets the minimum x coordinate for the graph.

Returns:

The minimum x coordinate .

Reimplements: touchgfx::AbstractDataGraph::getGraphRangeXMin

getGraphRangeYMaxAsFloat
virtual float getGraphRangeYMaxAsFloat () const

Gets maximum y coordinate for the graph.

Returns:

The maximum y coordinate.

Reimplements: touchgfx::AbstractDataGraph::getGraphRangeYMaxAsFloat

getGraphRangeYMaxAsInt
virtual int getGraphRangeYMaxAsInt () const

Gets maximum y coordinate for the graph.

Returns:

The maximum y coordinate.

Reimplements: touchgfx::AbstractDataGraph::getGraphRangeYMaxAsInt

getGraphRangeYMinAsFloat
virtual float getGraphRangeYMinAsFloat () const

Gets minimum y coordinate for the graph.

Returns:

The minimum y coordinate.

Reimplements: touchgfx::AbstractDataGraph::getGraphRangeYMinAsFloat

getGraphRangeYMinAsInt
virtual int getGraphRangeYMinAsInt () const

Gets minimum y coordinate for the graph.

Returns:

The minimum y coordinate.

Reimplements: touchgfx::AbstractDataGraph::getGraphRangeYMinAsInt

getXAxisOffsetAsFloat
virtual float getXAxisOffsetAsFloat () const

Get x coordinate axis offset value.

This is the real x value of the first data point added to the graph (i.e. the data point at index 0).

Returns:

The x axis offset.

getXAxisOffsetAsInt
virtual int getXAxisOffsetAsInt () const

Get x coordinate axis offset value.

This is the real x value of the first data point added to the graph (i.e. the data point at index 0).

Returns:

The x axis offset.

getXAxisScaleAsFloat
virtual float getXAxisScaleAsFloat () const

Get x coordinate axis scale value.

This is the real x value increment between two data points added to the graph.

Returns:

The x axis scale.

getXAxisScaleAsInt
virtual int getXAxisScaleAsInt () const

Get x coordinate axis scale value.

This is the real x value increment between two data points added to the graph.

Returns:

The x axis scale.

setGraphRangeX
virtual void setGraphRangeX (int min ,

int max
)

Sets minimum and maximum x coordinates for the graph.

This can be used to zoom in or out and only show parts of the graph.

Parameters:
min The minimum x coordinate.
max The maximum x coordinate.

NOTE

The graph as well as the area above and below are automatically redrawn (invalidated).

Reimplements: touchgfx::AbstractDataGraph::setGraphRangeX

setGraphRangeY
virtual void setGraphRangeY (float min ,

float max
)

Sets minimum and maximum y coordinates for the graph.

This can be used to zoom in or out and only show parts of the graph.

Parameters:
min The minimum y coordinate.
max The maximum y coordinate.

NOTE

The graph as well as the area to the left and to the right of the graph are automatically redrawn
(invalidated)

Reimplements: touchgfx::AbstractDataGraph::setGraphRangeY

setGraphRangeY
virtual void setGraphRangeY (int min ,

int max
)

Sets minimum and maximum y coordinates for the graph.

This can be used to zoom in or out and only show parts of the graph.

Parameters:
min The minimum y coordinate.
max The maximum y coordinate.

NOTE

The graph as well as the area to the left and to the right of the graph are automatically redrawn
(invalidated)

Reimplements: touchgfx::AbstractDataGraph::setGraphRangeY

setGraphRangeYAuto

void setGraphRangeYAuto (bool showXaxis =true,
int margin =0
)

Automatic adjust min and max y coordinate to show entire graph.

It is possible to ensure that the x axis (i.e. y=0) is included in the new range. If the graph range is
changed, the graph is automatically redrawn (invalidated).

Parameters:
showXaxis (Optional) True to ensure that the x axis is visible (default is true).
margin (Optional) The margin to add above/below the max/min y value (default is no

margin).

NOTE

This takes the current visible x coordinate range into account.

setScale
virtual void setScale (int scale)

Sets a scaling factor to be multiplied on each added element.

Since the graph only stores integer values internally, it is possible to set a scale to e.g. 1000 and
make the graph work as if there are three digits of precision. The addDataPoint() will multiply the
argument with the scaling factor and store this value.

By setting the scale to 1 it is possible to simply use integer values for the graph.

Parameters:
scale The scaling factor.

NOTE

Calling setScale after adding points to the graph has undefined behaviour. The scale should be set as the
first thing before other settings of the graph is being set.

See also:

getScale

Reimplements: touchgfx::AbstractDataGraph::setScale

setXAxisOffset
virtual void setXAxisOffset (float offset)

Set x coordinate axis offset value.

This is the real x value of the first data point added to the graph (i.e. the data point at index 0).

Parameters:
offset The x axis offset.

setXAxisOffset
virtual void setXAxisOffset (int offset)

Set x coordinate axis offset value.

This is the real x value of the first data point added to the graph (i.e. the data point at index 0).

Parameters:
offset The x axis offset.

setXAxisScale
virtual void setXAxisScale (float scale)

Set x coordinate axis scale value.

This is the real x value increment between two data points added to the graph.

Parameters:
scale The x axis scale.

setXAxisScale
virtual void setXAxisScale (int scale)

Set x coordinate axis scale value.

This is the real x value increment between two data points added to the graph.

Parameters:
scale The x axis scale.

Protected Functions Documentation
addDataPointScaled

int16_t addDataPointScaled (int y)

Same as addDataPoint(int) except the passed argument is assumed scaled.

Adds a data point scaled.

Parameters:
y The y coordinate.

Returns:

The index of the added data point.

addValue
virtual int16_t addValue (int value)

Adds a value to the internal data array and keeps track of when graph points, graph axis and the
entire graph needs to be redrawn (invalidated).

Parameters:
value The value to add to the array.

Returns:

The index of the newly added value.

Reimplemented by: touchgfx::DataGraphScroll::addValue,
touchgfx::DataGraphWrapAndClear::addValue,
touchgfx::DataGraphWrapAndOverwrite::addValue

beforeAddValue
virtual void beforeAddValue ()

This function is called before a new value (data point) is added.

This allows for invalidation to be calculated based on the global data counter before it is increased
as a result of adding the new point.

Reimplemented by: touchgfx::DataGraphScroll::beforeAddValue,
touchgfx::DataGraphWrapAndClear::beforeAddValue,
touchgfx::DataGraphWrapAndOverwrite::beforeAddValue

getGraphRangeYMaxScaled
virtual int getGraphRangeYMaxScaled () const

Gets maximum y coordinate for the graph.

Returns:

The maximum y coordinate.

NOTE

The returned value is left scaled.For internal use.

See also:

AbstractDataGraph::getGraphRangeYMaxAsInt,
AbstractDataGraph::getGraphRangeYMaxAsFloat

Reimplements: touchgfx::AbstractDataGraph::getGraphRangeYMaxScaled

getGraphRangeYMinScaled
virtual int getGraphRangeYMinScaled () const

Gets minimum y coordinate for the graph.

Returns:

The minimum y coordinate.

NOTE

The returned value is left scaled.For internal use.

See also:

AbstractDataGraph::getGraphRangeYMinAsInt,
AbstractDataGraph::getGraphRangeYMinAsFloat

Reimplements: touchgfx::AbstractDataGraph::getGraphRangeYMinScaled

getXAxisOffsetScaled
virtual int getXAxisOffsetScaled () const

Get x axis offset as a scaled value.

Returns:

The x axis offset (left scaled).

NOTE

For internal use.

Reimplements: touchgfx::AbstractDataGraph::getXAxisOffsetScaled

getXAxisScaleScaled
virtual int getXAxisScaleScaled () const

Get x axis scale as a scaled value.

Returns:

The x axis scale (left scaled).

NOTE

For internal use.

Reimplements: touchgfx::AbstractDataGraph::getXAxisScaleScaled

indexToDataPointXScaled
virtual int indexToDataPointXScaled (int16_t index)

Same as indexToDataPointXAsInt(int16_t) except the returned value is left scaled.

Parameters:
index Zero-based index of the data point.

Returns:

The data point x value scaled.

NOTE

For internal use.

See also:

indexToDataPointXAsInt, indexToDataPointXAsFloat

Reimplements: touchgfx::AbstractDataGraph::indexToDataPointXScaled

indexToDataPointYScaled
virtual int indexToDataPointYScaled (int16_t index)

Same as indexToDataPointYAsInt(int16_t) except the returned value is left scaled.

Parameters:
index Zero-based index of the data point.

Returns:

The data point y value scaled.

NOTE

For internal use.

See also:

indexToDataPointYAsInt, indexToDataPointYAsFloat

Reimplements: touchgfx::AbstractDataGraph::indexToDataPointYScaled

indexToScreenXQ5
virtual CWRUtil::Q5 indexToScreenXQ5 (int16_t index)

Gets screen x coordinate for a specific data point added to the graph.

Parameters:
index The index of the element to get the x coordinate for.

Returns:

The screen x coordinate for the specific data point.

Reimplements: touchgfx::AbstractDataGraph::indexToScreenXQ5

indexToScreenYQ5
virtual CWRUtil::Q5 indexToScreenYQ5 (int16_t index)

Gets screen y coordinate for a specific data point added to the graph.

Parameters:
index The index of the element to get the y coordinate for.

Returns:

The screen x coordinate for the specific data point.

Reimplements: touchgfx::AbstractDataGraph::indexToScreenYQ5

realIndex
virtual int16_t realIndex (int16_t index)

Get the real index in the yValues array of the given index.

Normally this is just the 'i' but e.g. DataGraphScroll does not, for performance reasons.

Parameters:
index Zero-based index.

Returns:

The index in the yValues array.

Reimplemented by: touchgfx::DataGraphScroll::realIndex

setGraphRangeYScaled
virtual void setGraphRangeYScaled (int min ,

int max
)

Same as setGraphRangeY(int,int) except the passed arguments are assumed scaled.

Parameters:
min The minimum y coordinate.

max The maximum y coordinate.

NOTE

For internal use.

See also:

setGraphRangeY

Reimplements: touchgfx::AbstractDataGraph::setGraphRangeYScaled

setXAxisOffsetScaled
virtual void setXAxisOffsetScaled (int offset)

Set x coordinate axis offset value with a pre-scaled offset value.

This is the real x value of the first data point added to the graph (i.e. the data point at index 0).

Parameters:
offset The x axis offset.

NOTE

For internal use.

See also:

setXAxisOffset

setXAxisScaleScaled
virtual void setXAxisScaleScaled (int scale)

Set x coordinate axis scale value using a pre-scaled value.

This is the real x value increment between two data points added to the graph.

Parameters:
scale The x axis scale.

NOTE

For internal use.

See also:

setXAxisScale

valueToScreenXQ5
virtual CWRUtil::Q5 valueToScreenXQ5 (int x)

Gets screen x coordinate for an absolute value.

Parameters:
x The x value.

Returns:

The screen x coordinate for the given value.

Reimplements: touchgfx::AbstractDataGraph::valueToScreenXQ5

valueToScreenYQ5
virtual CWRUtil::Q5 valueToScreenYQ5 (int y)

Gets screen y coordinate for an absolute value.

Parameters:
y The y value.

Returns:

The screen y coordinate for the given value.

Reimplements: touchgfx::AbstractDataGraph::valueToScreenYQ5

xScreenRangeToIndexRange
virtual bool xScreenRangeToIndexRange (int16_t xLo , const

int16_t xHi , const
int16_t & indexLow , const
int16_t & indexHigh const
) const

Gets index range for screen x coordinate range taking the current graph range into account.

Parameters:

xLo The low screen x coordinate.
xHi The high screen x coordinate.
indexLow The low element index.
indexHigh The high element index.

Returns:

True if the range from low index to high index is legal.

NOTE

For internal use.

Reimplements: touchgfx::AbstractDataGraph::xScreenRangeToIndexRange

Protected Attributes Documentation
dataCounter

uint32_t dataCounter

The data counter of how many times addDataPoint() has been called.

xOffset
int xOffset

The x axis offset (real value of data point at index 0)

xScale
int xScale

The x axis scale (increment between two data points)

yValues
int * yValues

The values of the graph.

Version: 4.16

AbstractDirectionProgress
An abstract class for progress indicators that need a horizontal or vertical direction to be specified.

Inherits from: AbstractProgressIndicator, Container, Drawable

Inherited by: BoxProgress, ImageProgress

Public Types
enum DirectionType { RIGHT, LEFT, DOWN, UP }

Values that represent directions.

Public Functions
AbstractDirectionProgress()

virtual DirectionType getDirection() const
Gets the current direction for the progress indicator.

virtual void setDirection(DirectionType direction)
Sets a direction for the progress indicator.

Protected Attributes
DirectionType progressDirection

The progress direction.

Additional inherited members
Public Functions inherited from AbstractProgressIndicator

AbstractProgressIndicator()

Initializes a new instance of the AbstractProgressIndicator class with a default
range 0-100.

virtual uint16_t getProgress(uint16_t range =100) const
Gets the current progress based on the range set by setRange() and the value set by
setValue().

virtual int16_t getProgressIndicatorHeight() const
Gets progress indicator height.

virtual int16_t getProgressIndicatorWidth() const
Gets progress indicator width.

virtual int16_t getProgressIndicatorX() const
Gets progress indicator x coordinate.

virtual int16_t getProgressIndicatorY() const
Gets progress indicator y coordinate.

virtual void getRange(int & min, int & max) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps, uint16_t & minStep) const
Gets the range set by setRange().

virtual int getValue() const
Gets the current value set by setValue().

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void setBackground(const Bitmap & bitmapBackground)
Sets the background image.

virtual void setEasingEquation(EasingEquation easingEquation)
Sets easing equation to be used in updateValue.

virtual void setProgressIndicatorPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the position and dimensions of the actual progress indicator relative to the
background image.

virtual void setRange(int min, int max, uint16_t steps =0, uint16_t minStep =0)
Sets the range for the progress indicator.

virtual void setValue(int value)
Sets the current value in the range (min..max) set by setRange().

void setValueSetAction(GenericCallback< const AbstractProgressIndicator & > &
callback)
Sets callback that will be triggered every time a new value is assigned to the
progress indicator.

void setValueUpdatedAction(GenericCallback< const AbstractProgressIndicator & >
& callback)
Sets callback that will be triggered when updateValue has finished animating to the
final value.

virtual void updateValue(int value, uint16_t duration)
Update the current value in the range (min..max) set by setRange().

Protected Attributes inherited from AbstractProgressIndicator
int animationDuration

Duration of the animation.

int animationEndValue
The animation end value.

int animationStartValue
The animation start value.

int animationStep
The current animation step.

Image background
The background image.

int currentValue
The current value.

EasingEquation equation
The equation used in updateValue()

Container progressIndicatorContainer
The container that holds the actual
progress indicator.

int rangeMax
The range maximum.

int rangeMin
The range minimum.

uint16_t rangeSteps
The range steps.

uint16_t rangeStepsMin
The range steps minimum.

GenericCallback< const AbstractProgressIndicator & > * valueSetCallback
New value assigned Callback.

GenericCallback< const AbstractProgressIndicator & > * valueUpdatedCallback
Animation ended Callback.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0

Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)

Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()

Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Types Documentation
DirectionType

enum DirectionType

Values that represent directions.

RIGHT Progress should be from left to right.
LEFT Progress should be from right to left.
DOWN Progress should be down (top to bottom)
UP Progress should be up (bottom to top)

Public Functions Documentation
AbstractDirectionProgress

AbstractDirectionProgress ()

getDirection
virtual DirectionType getDirection () const

Gets the current direction for the progress indicator.

Returns:

The direction.

See also:

setDirection

setDirection
virtual void setDirection (DirectionType direction)

Sets a direction for the progress indicator.

This will re-calculate the current value according to the new direction.

Parameters:
direction The direction.

See also:

getDirection

Protected Attributes Documentation
progressDirection

DirectionType progressDirection

The progress direction.

Version: 4.16

AbstractGraphDecoration
Helper class used for adding labels around the graph. Currently empty.

Inherits from: AbstractGraphElementNoCWR, AbstractGraphElement, CanvasWidget, Widget,
Drawable

Inherited by: GraphLabelsBase, GraphTitle

Additional inherited members
Public Functions inherited from
AbstractGraphElementNoCWR

AbstractGraphElementNoCWR()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

virtual colortype getColor() const
Gets the color of the graph element.

virtual void setColor(colortype newColor)
Sets the color of the graph element.

Protected Functions inherited from
AbstractGraphElementNoCWR

void normalizeRect(Rect & rect) const
Normalize rectangle by changing a rectangle with negative width or height to a
rectangle with positive width or height at the correct position.

virtual void setPainter(AbstractPainter & painter)
Protected function to prevent users from setting a painter.

Protected Attributes inherited from
AbstractGraphElementNoCWR

colortype color
The currently assigned color.

Public Functions inherited from AbstractGraphElement
AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

virtual void invalidateGraphPointAt(int16_t index) =0
Invalidate the point at the given index.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual void draw(const Rect & invalidatedArea) const
Draws the given invalidated area.

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const =0
Draw canvas widget for the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const

Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)

Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const

Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Version: 4.16

AbstractGraphElement
An abstract graph element. Declares a couple of useful functions to help subclasses which use CWR
(CanvasWidget Renderer).

Inherits from: CanvasWidget, Widget, Drawable

Inherited by: AbstractGraphElementNoCWR, GraphElementArea, GraphElementDiamonds,
GraphElementDots, GraphElementLine

Public Functions
AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

virtual void invalidateGraphPointAt(int16_t index) =0
Invalidate the point at the given index.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions
int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)

const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes
int dataScale

The scaling factor.

Additional inherited members
Public Functions inherited from CanvasWidget

CanvasWidget()

virtual void draw(const Rect & invalidatedArea) const
Draws the given invalidated area.

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const =0
Draw canvas widget for the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)

Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
AbstractGraphElement

AbstractGraphElement ()

getScale

int getScale () const

Gets the scaling factor set using setScale.

Returns:

The scaling factor.

See also:

setScale

invalidateGraphPointAt
virtual void invalidateGraphPointAt (int16_t index)

Invalidate the point at the given index.

This allows a graph element to only invalidate the minimum rectangle required for the given index.
The Graph will call this function before and after changing a point to ensure that both the old and
the new area are redrawn (invalidated).

Parameters:
index Zero-based index of the point.

Reimplemented by: touchgfx::GraphElementGridBase::invalidateGraphPointAt,
touchgfx::GraphElementArea::invalidateGraphPointAt,
touchgfx::GraphElementLine::invalidateGraphPointAt,
touchgfx::GraphElementVerticalGapLine::invalidateGraphPointAt,
touchgfx::GraphElementHistogram::invalidateGraphPointAt,
touchgfx::GraphElementBoxes::invalidateGraphPointAt,
touchgfx::GraphElementDots::invalidateGraphPointAt,
touchgfx::GraphElementDiamonds::invalidateGraphPointAt,
touchgfx::GraphLabelsBase::invalidateGraphPointAt,
touchgfx::GraphLabelsX::invalidateGraphPointAt,
touchgfx::GraphTitle::invalidateGraphPointAt

setScale
void setScale (int scale)

Sets a scaling factor to be multiplied on each added element.

Since only integer values are stored internally, it is possible to set a scale to e.g. 1000 and make
elements work as if there are three digits of precision.

By setting the scale to 1 it is possible to simply use integer values for the graph.

Parameters:
scale The scaling factor.

NOTE

Calling setScale should be done as the first thing as any new scaling factor will not be applied to already
set scaled values.

See also:

getScale

Protected Functions Documentation
convertToGraphScale

int convertToGraphScale (const AbstractDataGraph * graph , const
int value , const
int scale const
) const

Converts a number with one scale to a number that has the same scale as the graph.

Parameters:
value The value to convert.
scale The scale.
graph The graph.

Returns:

The given data converted to the graph scale.

NOTE

For internal use.

getGraph

AbstractDataGraph * getGraph () const

Gets a pointer to the the graph containing the GraphElement.

Returns:

A pointer to the graph.

getGraphRangeYMaxScaled
int getGraphRangeYMaxScaled (const AbstractDataGraph * graph)

Gets maximum y coordinate for the graph.

Parameters:
graph The graph.

Returns:

The maximum y coordinate.

NOTE

The returned value is left scaled.For internal use.

See also:

AbstractDataGraph::getGraphRangeYMaxAsInt,
AbstractDataGraph::getGraphRangeYMaxAsFloat

getGraphRangeYMinScaled
int getGraphRangeYMinScaled (const AbstractDataGraph * graph)

Gets minimum y coordinate for the graph.

Parameters:
graph The graph.

Returns:

The minimum y coordinate.

NOTE

The returned value is left scaled.For internal use.

See also:

AbstractDataGraph::getGraphRangeYMinAsInt,
AbstractDataGraph::getGraphRangeYMinAsFloat

getGraphXAxisOffsetScaled
int getGraphXAxisOffsetScaled (const AbstractDataGraph * graph)

Get x axis offset as a scaled value.

Parameters:
graph The graph.

Returns:

The x axis offset (left scaled).

NOTE

For internal use.

getGraphXAxisScaleScaled
int getGraphXAxisScaleScaled (const AbstractDataGraph * graph)

Get x axis scale as a scaled value.

Parameters:
graph The graph.

Returns:

The x axis scale (left scaled).

NOTE

For internal use.

indexToScreenXQ5
CWRUtil::Q5 indexToScreenXQ5 (const AbstractDataGraph * graph , const

int16_t index const

) const

Gets screen x coordinate for a specific data point added to the graph.

Parameters:
graph The graph.
index The index of the element to get the x coordinate for.

Returns:

The screen x coordinate for the specific data point.

indexToScreenYQ5
CWRUtil::Q5 indexToScreenYQ5 (const AbstractDataGraph * graph , const

int16_t index const
) const

Gets screen y coordinate for a specific data point added to the graph.

Parameters:
graph The graph.
index The index of the element to get the y coordinate for.

Returns:

The screen x coordinate for the specific data point.

isCenterInvisible
bool isCenterInvisible (const AbstractDataGraph * graph , const

int16_t index const
) const

Query if the center of a given data point index is visible inside the graph area.

Parameters:
graph The graph.
index The data point index.

Returns:

True if center invisible, false if not.

rectAround

Rect rectAround (CWRUtil::Q5 xQ5 , const
CWRUtil::Q5 yQ5 , const
CWRUtil::Q5 diameterQ5 const
) const

Find the screen rectangle around a given point with the specified diameter.

Parameters:
xQ5 The screen x coordinate (in Q5).
yQ5 The screen y coordinate (in Q5).
diameterQ5 The diameter (in Q5).

Returns:

A Rect containing the point (and diameter).

rectFromQ5Coordinates
Rect rectFromQ5Coordinates (CWRUtil::Q5 screenXminQ5 , const

CWRUtil::Q5 screenYminQ5 , const
CWRUtil::Q5 screenXmaxQ5 , const
CWRUtil::Q5 screenYmaxQ5 const
) const

Find the screen rectangle containing the Q5 screen rectangle by rounding the coordinates
up/down.

Parameters:
screenXminQ5 The minimum screen x coordinate (in Q5).
screenYminQ5 The maximum screen y coordinate (in Q5).
screenXmaxQ5 The minimum screen x coordinate (in Q5).
screenYmaxQ5 The maximum screen y coordinate (in Q5).

Returns:

A Rect containing the Q5 rectangle.

roundQ5
CWRUtil::Q5 roundQ5 (CWRUtil::Q5 q5)

Round the given CWRUtil::Q5 to the nearest integer and return it as a CWRUtil::Q5 instead of an
integer.

Parameters:

q5 The CWRUtil::Q5 value to round.

Returns:

The nearest integer as a CWRUtil::Q5 value.

valueToScreenXQ5
CWRUtil::Q5 valueToScreenXQ5 (const AbstractDataGraph * graph , const

int x const
) const

Gets graph screen x for x value.

Parameters:
graph The graph.
x The x value.

Returns:

The graph screen x for value.

valueToScreenYQ5
CWRUtil::Q5 valueToScreenYQ5 (const AbstractDataGraph * graph , const

int y const
) const

Gets graph screen y for y value.

Parameters:
graph The graph.
y The y value.

Returns:

The graph screen y for value.

xScreenRangeToIndexRange
bool xScreenRangeToIndexRange (int16_t xLow , const

int16_t xHigh , const
int16_t & elementLow , const
int16_t & elementHigh const

) const

Gets graph element range for screen x coordinate range.

Parameters:
xLow The low.
xHigh The high.
elementLow The element low.
elementHigh The element high.

Returns:

True if it succeeds, false if it fails.

Protected Attributes Documentation
dataScale

int dataScale

The scaling factor.

Version: 4.16

AbstractGraphElementNoCWR
An abstract graph element. Declares a couple of useful functions to help subclasses which do not use
CWR (CanvasWidget Renderer).

Inherits from: AbstractGraphElement, CanvasWidget, Widget, Drawable

Inherited by: AbstractGraphDecoration, GraphElementBoxes, GraphElementGridBase,
GraphElementHistogram, GraphElementVerticalGapLine

Public Functions
AbstractGraphElementNoCWR()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

virtual colortype getColor() const
Gets the color of the graph element.

virtual void setColor(colortype newColor)
Sets the color of the graph element.

Protected Functions
void normalizeRect(Rect & rect) const

Normalize rectangle by changing a rectangle with negative width or height to a
rectangle with positive width or height at the correct position.

virtual void setPainter(AbstractPainter & painter)
Protected function to prevent users from setting a painter.

Protected Attributes
colortype color

The currently assigned color.

Additional inherited members
Public Functions inherited from AbstractGraphElement

AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

virtual void invalidateGraphPointAt(int16_t index) =0
Invalidate the point at the given index.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const

Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual void draw(const Rect & invalidatedArea) const

Draws the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const

Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)

Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
AbstractGraphElementNoCWR

AbstractGraphElementNoCWR ()

drawCanvasWidget
virtual bool drawCanvasWidget (const Rect & invalidatedArea)

Draw canvas widget for the given invalidated area.

Similar to draw(), but might be invoked several times with increasingly smaller areas to due to
memory constraints from the underlying CanvasWidgetRenderer.

Parameters:
invalidatedArea The invalidated area.

Returns:

true if the widget was drawn properly, false if not.

See also:

draw

Reimplements: touchgfx::CanvasWidget::drawCanvasWidget

Reimplemented by: touchgfx::GraphTitle::drawCanvasWidget

getColor
virtual colortype getColor () const

Gets the color of the graph element.

Returns:

The color.

See also:

setColor

setColor
virtual void setColor (colortype newColor)

Sets the color of the graph element.

Parameters:
newColor The new color.

See also:

getColor

Protected Functions Documentation
normalizeRect

void normalizeRect (Rect & rect)

Normalize rectangle by changing a rectangle with negative width or height to a rectangle with
positive width or height at the correct position.

Parameters:
rect The rectangle.

setPainter
virtual void setPainter (AbstractPainter & painter)

Protected function to prevent users from setting a painter.

Parameters:
painter The painter.

Reimplements: touchgfx::CanvasWidget::setPainter

Protected Attributes Documentation
color

colortype color

The currently assigned color.

Version: 4.16

AbstractPainter
An abstract class for creating painter classes for drawing canvas widgets. All canvas widgets need a
painter to fill the shape drawn with a CanvasWidgetRenderer. The painter must provide the color of a
pixel on a given coordinate, which will the be blended into the framebuffer depending on the position
of the canvas widget and the transparency of the given pixel.

The AbstractPainter also implements a function which will blend each pixel in a scanline snippet into
the framebuffer, but for better performance, the function should be reimplemented in each painter.

Inherited by: AbstractPainterABGR2222, AbstractPainterARGB2222, AbstractPainterARGB8888,
AbstractPainterBGRA2222, AbstractPainterBW, AbstractPainterGRAY2, AbstractPainterGRAY4,
AbstractPainterRGB565, AbstractPainterRGB888, AbstractPainterRGBA2222

Public Functions
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers) =0
Paint a designated part of the RenderingBuffer with respect to the amount of
coverage of each pixel given by the parameter covers.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
AbstractPainter

AbstractPainter ()

Initializes a new instance of the AbstractPainter class.

getAlpha
virtual uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

render
virtual void render (uint8_t * ptr , =0

int x , =0
int xAdjust , =0
int y , =0
unsigned count , =0
const uint8_t * covers =0
) =0

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplemented by: touchgfx::AbstractPainterABGR2222::render,
touchgfx::AbstractPainterARGB2222::render, touchgfx::AbstractPainterARGB8888::render,
touchgfx::AbstractPainterBGRA2222::render, touchgfx::AbstractPainterBW::render,
touchgfx::AbstractPainterGRAY2::render, touchgfx::AbstractPainterGRAY4::render,
touchgfx::AbstractPainterRGB565::render, touchgfx::AbstractPainterRGB888::render,
touchgfx::AbstractPainterRGBA2222::render, touchgfx::PainterABGR2222::render,
touchgfx::PainterABGR2222Bitmap::render, touchgfx::PainterARGB2222::render,
touchgfx::PainterARGB2222Bitmap::render, touchgfx::PainterARGB8888::render,
touchgfx::PainterARGB8888Bitmap::render, touchgfx::PainterARGB8888L8Bitmap::render,
touchgfx::PainterBGRA2222::render, touchgfx::PainterBGRA2222Bitmap::render,

touchgfx::PainterBW::render, touchgfx::PainterBWBitmap::render,
touchgfx::PainterGRAY2::render, touchgfx::PainterGRAY2Bitmap::render,
touchgfx::PainterGRAY4::render, touchgfx::PainterGRAY4Bitmap::render,
touchgfx::PainterRGB565::render, touchgfx::PainterRGB565Bitmap::render,
touchgfx::PainterRGB565L8Bitmap::render, touchgfx::PainterRGB888::render,
touchgfx::PainterRGB888Bitmap::render, touchgfx::PainterRGB888L8Bitmap::render,
touchgfx::PainterRGBA2222::render, touchgfx::PainterRGBA2222Bitmap::render

setAlpha
virtual void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setOffset
void setOffset (uint16_t offsetX ,

uint16_t offsetY
)

Sets the offset of the area being drawn.

This allows render() to calculate the x, y relative to the widget, and not just relative to the
invalidated area.

Parameters:
offsetX The offset x coordinate of the invalidated area relative to the widget.
offsetY The offset y coordinate of the invalidated area relative to the widget.

NOTE

Used by CanvasWidgetRenderer - should not be overwritten.

~AbstractPainter
virtual ~AbstractPainter ()

Finalizes an instance of the AbstractPainter class.

Protected Functions Documentation
setWidgetAlpha

void setWidgetAlpha (const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be faded without changing the
painter of the widget.

Parameters:
alpha The alpha.

NOTE

Used internally by CanvasWidgetRenderer.

compatibleFramebuffer
static FORCE_INLINE_FUNCTION bool compatibleFramebuffer (Bitmap::BitmapFormat format)

Helper function to check if the provided bitmap format matches the current framebuffer format.

Parameters:
format A bitmap format.

Returns:

True if the format matches the framebuffer format, false otherwise.

Protected Attributes Documentation

areaOffsetX
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

areaOffsetY
int16_t areaOffsetY

The offset y coordinate of the area being drawn.

painterAlpha
uint8_t painterAlpha

The alpha value for the painter.

widgetAlpha
uint8_t widgetAlpha

The alpha of the widget using the painter.

Version: 4.16

AbstractPainterABGR2222
The AbstractPainterABGR2222 class is an abstract class for creating a painter to draw on a ABGR2222
display using CanvasWidgetRenderer.

See: AbstractPainter

Inherits from: AbstractPainter

Inherited by: PainterABGR2222, PainterABGR2222Bitmap

Public Functions
AbstractPainterABGR2222()

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t newpix, uint8_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t R, uint8_t G, uint8_t B, uint8_t bufpix, uint8_t
alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const
uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the
amount of coverage of each pixel given by the parameter covers.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha) =0
Get the color of the next pixel in the scan line to blend into the framebuffer.

virtual void renderPixel(uint8_t * p, uint8_t red, uint8_t green, uint8_t blue)
Renders (writes) the specified color into the framebuffer.

Protected Attributes
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Additional inherited members
Public Functions inherited from AbstractPainter

AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)

Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
AbstractPainterABGR2222

AbstractPainterABGR2222 ()

mixColors
FORCE_INLINE_FUNCTION uint8_t mixColors (uint8_t newpix ,

uint8_t bufpix ,
uint8_t alpha
)

Mix colors from a new pixel and a buffer pixel with the given alpha applied to the new pixel, and
the inverse alpha applied to the buffer pixel.

Parameters:
newpix The new pixel value.
bufpix The buffer pixel value.
alpha The alpha to apply to the new pixel.

Returns:

The result of blending the two colors into a new color.

mixColors
FORCE_INLINE_FUNCTION uint8_t mixColors (uint8_t R ,

uint8_t G ,
uint8_t B ,
uint8_t bufpix ,
uint8_t alpha
)

Mix colors from a new pixel and a buffer pixel with the given alpha applied to the new pixel, and
the inverse alpha applied to the buffer pixel.

Parameters:
R The red color.
G The green color.
B The blue color.
bufpix The buffer pixel value.
alpha The alpha of the R,G,B.

Returns:

The result of blending the two colors into a new color.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.

xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the
ptr should have been advanced "xAdjust" pixels futher into the byte).

y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainter::render

Reimplemented by: touchgfx::PainterABGR2222::render,
touchgfx::PainterABGR2222Bitmap::render

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplemented by: touchgfx::PainterABGR2222Bitmap::renderInit

renderNext
virtual bool renderNext (uint8_t & red , =0

uint8_t & green , =0
uint8_t & blue , =0
uint8_t & alpha =0
) =0

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:

red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplemented by: touchgfx::PainterABGR2222::renderNext,
touchgfx::PainterABGR2222Bitmap::renderNext

renderPixel
virtual void renderPixel (uint8_t * p ,

uint8_t red ,
uint8_t green ,
uint8_t blue
)

Renders (writes) the specified color into the framebuffer.

Parameters:
p pointer into the framebuffer where the given color should be written.
red The red color.
green The green color.
blue The blue color.

Protected Attributes Documentation
currentX

int currentX

Current x coordinate relative to the widget.

currentY
int currentY

Current y coordinate relative to the widget.

Version: 4.16

AbstractPainterARGB2222
The AbstractPainterARGB2222 class is an abstract class for creating a painter to draw on a ARGB2222
display using CanvasWidgetRenderer.

See: AbstractPainter

Inherits from: AbstractPainter

Inherited by: PainterARGB2222, PainterARGB2222Bitmap

Public Functions
AbstractPainterARGB2222()

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t newpix, uint8_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t R, uint8_t G, uint8_t B, uint8_t bufpix, uint8_t
alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const
uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the
amount of coverage of each pixel given by the parameter covers.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha) =0
Get the color of the next pixel in the scan line to blend into the framebuffer.

virtual void renderPixel(uint8_t * p, uint8_t red, uint8_t green, uint8_t blue)
Renders (writes) the specified color into the framebuffer.

Protected Attributes
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Additional inherited members
Public Functions inherited from AbstractPainter

AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)

Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
AbstractPainterARGB2222

AbstractPainterARGB2222 ()

mixColors
FORCE_INLINE_FUNCTION uint8_t mixColors (uint8_t newpix ,

uint8_t bufpix ,
uint8_t alpha
)

Mix colors from a new pixel and a buffer pixel with the given alpha applied to the new pixel, and
the inverse alpha applied to the buffer pixel.

Parameters:
newpix The new pixel value.
bufpix The buffer pixel value.
alpha The alpha to apply to the new pixel.

Returns:

The result of blending the two colors into a new color.

mixColors
FORCE_INLINE_FUNCTION uint8_t mixColors (uint8_t R ,

uint8_t G ,
uint8_t B ,
uint8_t bufpix ,
uint8_t alpha
)

Mix colors from a new pixel and a buffer pixel with the given alpha applied to the new pixel, and
the inverse alpha applied to the buffer pixel.

Parameters:
R The red color.
G The green color.
B The blue color.
bufpix The buffer pixel value.
alpha The alpha of the R,G,B.

Returns:

The result of blending the two colors into a new color.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.

xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the
ptr should have been advanced "xAdjust" pixels futher into the byte).

y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainter::render

Reimplemented by: touchgfx::PainterARGB2222::render,
touchgfx::PainterARGB2222Bitmap::render

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplemented by: touchgfx::PainterARGB2222Bitmap::renderInit

renderNext
virtual bool renderNext (uint8_t & red , =0

uint8_t & green , =0
uint8_t & blue , =0
uint8_t & alpha =0
) =0

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:

red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplemented by: touchgfx::PainterARGB2222::renderNext,
touchgfx::PainterARGB2222Bitmap::renderNext

renderPixel
virtual void renderPixel (uint8_t * p ,

uint8_t red ,
uint8_t green ,
uint8_t blue
)

Renders (writes) the specified color into the framebuffer.

Parameters:
p pointer into the framebuffer where the given color should be written.
red The red color.
green The green color.
blue The blue color.

Protected Attributes Documentation
currentX

int currentX

Current x coordinate relative to the widget.

currentY
int currentY

Current y coordinate relative to the widget.

Version: 4.16

AbstractPainterARGB8888
The AbstractPainterARGB8888 class is an abstract class for creating a painter to draw on a ARGB8888
display using CanvasWidgetRenderer.

See: AbstractPainter

Inherits from: AbstractPainter

Inherited by: PainterARGB8888, PainterARGB8888Bitmap, PainterARGB8888L8Bitmap

Public Functions
AbstractPainterARGB8888()

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha) =0
Get the color of the next pixel in the scan line to blend into the framebuffer.

virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue)
Renders (writes) the specified color into the framebuffer.

virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue, uint8_t alpha)
Renders (writes) the specified color into the framebuffer.

Protected Attributes
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Additional inherited members
Public Functions inherited from AbstractPainter

AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
AbstractPainterARGB8888

AbstractPainterARGB8888 ()

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainter::render

Reimplemented by: touchgfx::PainterARGB8888::render,
touchgfx::PainterARGB8888Bitmap::render, touchgfx::PainterARGB8888L8Bitmap::render

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplemented by: touchgfx::PainterARGB8888Bitmap::renderInit,
touchgfx::PainterARGB8888L8Bitmap::renderInit

renderNext
virtual bool renderNext (uint8_t & red , =0

uint8_t & green , =0
uint8_t & blue , =0
uint8_t & alpha =0
) =0

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplemented by: touchgfx::PainterARGB8888::renderNext,
touchgfx::PainterARGB8888Bitmap::renderNext,
touchgfx::PainterARGB8888L8Bitmap::renderNext

renderPixel
virtual void renderPixel (uint16_t * p ,

uint8_t red ,
uint8_t green ,
uint8_t blue
)

Renders (writes) the specified color into the framebuffer.

Parameters:
p pointer into the framebuffer where the given color should be written.
red The red color.
green The green color.
blue The blue color.

NOTE

Will set the alpha value to 255 (solid)

renderPixel
virtual void renderPixel (uint16_t * p ,

uint8_t red ,
uint8_t green ,
uint8_t blue ,
uint8_t alpha
)

Renders (writes) the specified color into the framebuffer.

Parameters:
p pointer into the framebuffer where the given color should be written.
red The red color.
green The green color.
blue The blue color.
alpha The alpha.

NOTE

The alpha value is written to the 32bit framebuffer, just like the color is.

Protected Attributes Documentation
currentX

int currentX

Current x coordinate relative to the widget.

currentY
int currentY

Current y coordinate relative to the widget.

Version: 4.16

AbstractPainterBGRA2222
The AbstractPainterBGRA2222 class is an abstract class for creating a painter to draw on a BGRA2222
display using CanvasWidgetRenderer.

See: AbstractPainter

Inherits from: AbstractPainter

Inherited by: PainterBGRA2222, PainterBGRA2222Bitmap

Public Functions
AbstractPainterBGRA2222()

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t newpix, uint8_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t R, uint8_t G, uint8_t B, uint8_t bufpix, uint8_t
alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const
uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the
amount of coverage of each pixel given by the parameter covers.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha) =0
Get the color of the next pixel in the scan line to blend into the framebuffer.

virtual void renderPixel(uint8_t * p, uint8_t red, uint8_t green, uint8_t blue)
Renders (writes) the specified color into the framebuffer.

Protected Attributes
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Additional inherited members
Public Functions inherited from AbstractPainter

AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)

Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
AbstractPainterBGRA2222

AbstractPainterBGRA2222 ()

mixColors
FORCE_INLINE_FUNCTION uint8_t mixColors (uint8_t newpix ,

uint8_t bufpix ,
uint8_t alpha
)

Mix colors from a new pixel and a buffer pixel with the given alpha applied to the new pixel, and
the inverse alpha applied to the buffer pixel.

Parameters:
newpix The new pixel value.
bufpix The buffer pixel value.
alpha The alpha to apply to the new pixel.

Returns:

The result of blending the two colors into a new color.

mixColors
FORCE_INLINE_FUNCTION uint8_t mixColors (uint8_t R ,

uint8_t G ,
uint8_t B ,
uint8_t bufpix ,
uint8_t alpha
)

Mix colors from a new pixel and a buffer pixel with the given alpha applied to the new pixel, and
the inverse alpha applied to the buffer pixel.

Parameters:
R The red color.
G The green color.
B The blue color.
bufpix The buffer pixel value.
alpha The alpha of the R,G,B.

Returns:

The result of blending the two colors into a new color.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.

xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the
ptr should have been advanced "xAdjust" pixels futher into the byte).

y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainter::render

Reimplemented by: touchgfx::PainterBGRA2222::render,
touchgfx::PainterBGRA2222Bitmap::render

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplemented by: touchgfx::PainterBGRA2222Bitmap::renderInit

renderNext
virtual bool renderNext (uint8_t & red , =0

uint8_t & green , =0
uint8_t & blue , =0
uint8_t & alpha =0
) =0

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:

red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplemented by: touchgfx::PainterBGRA2222::renderNext,
touchgfx::PainterBGRA2222Bitmap::renderNext

renderPixel
virtual void renderPixel (uint8_t * p ,

uint8_t red ,
uint8_t green ,
uint8_t blue
)

Renders (writes) the specified color into the framebuffer.

Parameters:
p pointer into the framebuffer where the given color should be written.
red The red color.
green The green color.
blue The blue color.

Protected Attributes Documentation
currentX

int currentX

Current x coordinate relative to the widget.

currentY
int currentY

Current y coordinate relative to the widget.

Version: 4.16

AbstractPainterBW
The AbstractPainterBW class is an abstract class for creating a painter to draw on a BW display using
CanvasWidgetRenderer. Pixels are either set or removed, alpha blending (and transparency) is not
supported.

See: AbstractPainter

Inherits from: AbstractPainter

Inherited by: PainterBW, PainterBWBitmap

Public Functions
AbstractPainterBW()

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & color) =0
Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
uint16_t currentX

Current x coordinate relative to the widget.

uint16_t currentY
Current y coordinate relative to the widget.

Additional inherited members
Public Functions inherited from AbstractPainter

AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
AbstractPainterBW

AbstractPainterBW ()

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainter::render

Reimplemented by: touchgfx::PainterBW::render, touchgfx::PainterBWBitmap::render

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplemented by: touchgfx::PainterBWBitmap::renderInit

renderNext
virtual bool renderNext (uint8_t & color)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
color The color (0 or 1).

Returns:

true if the pixel should be painted, false otherwise.

Reimplemented by: touchgfx::PainterBW::renderNext,
touchgfx::PainterBWBitmap::renderNext

Protected Attributes Documentation
currentX

uint16_t currentX

Current x coordinate relative to the widget.

currentY
uint16_t currentY

Current y coordinate relative to the widget.

Version: 4.16

AbstractPainterGRAY2
The AbstractPainterGRAY2 class is an abstract class for creating a painter to draw on a GRAY2 display
using CanvasWidgetRenderer.

See: AbstractPainter

Inherits from: AbstractPainter

Inherited by: PainterGRAY2, PainterGRAY2Bitmap

Public Functions
AbstractPainterGRAY2()

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & gray, uint8_t & alpha) =0
Get the color of the next pixel in the scan line to blend into the framebuffer.

virtual void renderPixel(uint8_t * p, uint16_t offset, uint8_t gray)
Renders (writes) the specified color into the framebuffer.

Protected Attributes
int currentX

Current x coordinate relative to the widget.

int currentY

Current y coordinate relative to the widget.

Additional inherited members
Public Functions inherited from AbstractPainter

AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
AbstractPainterGRAY2

AbstractPainterGRAY2 ()

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainter::render

Reimplemented by: touchgfx::PainterGRAY2::render, touchgfx::PainterGRAY2Bitmap::render

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplemented by: touchgfx::PainterGRAY2Bitmap::renderInit

renderNext
virtual bool renderNext (uint8_t & gray , =0

uint8_t & alpha =0
) =0

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
gray The gray color (0-3).
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplemented by: touchgfx::PainterGRAY2::renderNext,
touchgfx::PainterGRAY2Bitmap::renderNext

renderPixel
virtual void renderPixel (uint8_t * p ,

uint16_t offset ,

uint8_t gray
)

Renders (writes) the specified color into the framebuffer.

Parameters:
p pointer into the framebuffer where the given color should be written.
offset The offset to the pixel from the given pointer.
gray The gray color.

Protected Attributes Documentation
currentX

int currentX

Current x coordinate relative to the widget.

currentY
int currentY

Current y coordinate relative to the widget.

Version: 4.16

AbstractPainterGRAY4
The AbstractPainterGRAY4 class is an abstract class for creating a painter to draw on a GRAY4 display
using CanvasWidgetRenderer.

See: AbstractPainter

Inherits from: AbstractPainter

Inherited by: PainterGRAY4, PainterGRAY4Bitmap

Public Functions
AbstractPainterGRAY4()

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & gray, uint8_t & alpha) =0
Get the color of the next pixel in the scan line to blend into the framebuffer.

virtual void renderPixel(uint8_t * p, uint16_t offset, uint8_t gray)
Renders (writes) the specified color into the framebuffer.

Protected Attributes
int currentX

Current x coordinate relative to the widget.

int currentY

Current y coordinate relative to the widget.

Additional inherited members
Public Functions inherited from AbstractPainter

AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
AbstractPainterGRAY4

AbstractPainterGRAY4 ()

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainter::render

Reimplemented by: touchgfx::PainterGRAY4::render, touchgfx::PainterGRAY4Bitmap::render

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplemented by: touchgfx::PainterGRAY4Bitmap::renderInit

renderNext
virtual bool renderNext (uint8_t & gray , =0

uint8_t & alpha =0
) =0

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
gray The gray color (0-15).
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplemented by: touchgfx::PainterGRAY4::renderNext,
touchgfx::PainterGRAY4Bitmap::renderNext

renderPixel
virtual void renderPixel (uint8_t * p ,

uint16_t offset ,

uint8_t gray
)

Renders (writes) the specified color into the framebuffer.

Parameters:
p pointer into the framebuffer where the given color should be written.
offset The offset to the pixel from the given pointer.
gray The gray color.

Protected Attributes Documentation
currentX

int currentX

Current x coordinate relative to the widget.

currentY
int currentY

Current y coordinate relative to the widget.

Version: 4.16

AbstractPainterRGB565
The AbstractPainterRGB565 class is an abstract class for creating a painter to draw on a RGB565
display using CanvasWidgetRenderer.

See: AbstractPainter

Inherits from: AbstractPainter

Inherited by: PainterRGB565, PainterRGB565Bitmap, PainterRGB565L8Bitmap

Public Functions
AbstractPainterRGB565()

FORCE_INLINE_FUNCTION uint16_t mixColors(uint16_t newpix, uint16_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint16_t mixColors(uint16_t R, uint16_t G, uint16_t B, uint16_t bufpix,
uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const
uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to
the amount of coverage of each pixel given by the parameter
covers.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha) =0
Get the color of the next pixel in the scan line to blend into the framebuffer.

virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue)
Renders (writes) the specified color into the framebuffer.

Public Attributes
const uint16_t BMASK

Mask for blue (0000000000011111)

const uint16_t GMASK
Mask for green (0000011111100000)

const uint16_t RMASK
Mask for red (1111100000000000)

Protected Attributes
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Additional inherited members
Public Functions inherited from AbstractPainter

AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)

Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
AbstractPainterRGB565

AbstractPainterRGB565 ()

mixColors
FORCE_INLINE_FUNCTION uint16_t mixColors (uint16_t newpix ,

uint16_t bufpix ,
uint8_t alpha
)

Mix colors from a new pixel and a buffer pixel with the given alpha applied to the new pixel, and
the inverse alpha applied to the buffer pixel.

Parameters:
newpix The new pixel value.
bufpix The buffer pixel value.
alpha The alpha to apply to the new pixel.

Returns:

The result of blending the two colors into a new color.

mixColors
FORCE_INLINE_FUNCTION uint16_t mixColors (uint16_t R ,

uint16_t G ,
uint16_t B ,
uint16_t bufpix ,
uint8_t alpha
)

Mix colors from a new pixel and a buffer pixel with the given alpha applied to the new pixel, and
the inverse alpha applied to the buffer pixel.

Parameters:
R The red color (0-31 shifted into RMASK).
G The green color (0-63 shifted into GMASK).
B The blue color (0-31 shifted into BMASK).
bufpix The buffer pixel value.
alpha The alpha of the R,G,B.

Returns:

The result of blending the two colors into a new color.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,

int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainter::render

Reimplemented by: touchgfx::PainterRGB565::render,
touchgfx::PainterRGB565Bitmap::render, touchgfx::PainterRGB565L8Bitmap::render

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplemented by: touchgfx::PainterRGB565Bitmap::renderInit,
touchgfx::PainterRGB565L8Bitmap::renderInit

renderNext
virtual bool renderNext (uint8_t & red , =0

uint8_t & green , =0
uint8_t & blue , =0
uint8_t & alpha =0
) =0

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplemented by: touchgfx::PainterRGB565::renderNext,
touchgfx::PainterRGB565Bitmap::renderNext,
touchgfx::PainterRGB565L8Bitmap::renderNext

renderPixel
virtual void renderPixel (uint16_t * p ,

uint8_t red ,
uint8_t green ,
uint8_t blue
)

Renders (writes) the specified color into the framebuffer.

Parameters:
p pointer into the framebuffer where the given color should be written.
red The red color.
green The green color.
blue The blue color.

Public Attributes Documentation
BMASK

const uint16_t BMASK = 0x001F

Mask for blue (0000000000011111)

GMASK
const uint16_t GMASK = 0x07E0

Mask for green (0000011111100000)

RMASK
const uint16_t RMASK = 0xF800

Mask for red (1111100000000000)

Protected Attributes Documentation
currentX

int currentX

Current x coordinate relative to the widget.

currentY
int currentY

Current y coordinate relative to the widget.

Version: 4.16

AbstractPainterRGB888
The AbstractPainterRGB888 class is an abstract class for creating a painter to draw on a RGB888
display using CanvasWidgetRenderer.

See: AbstractPainter

Inherits from: AbstractPainter

Inherited by: PainterRGB888, PainterRGB888Bitmap, PainterRGB888L8Bitmap

Public Functions
AbstractPainterRGB888()

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha) =0
Get the color of the next pixel in the scan line to blend into the framebuffer.

virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue)
Renders (writes) the specified color into the framebuffer.

Protected Attributes
int currentX

Current x coordinate relative to the widget.

int currentY

Current y coordinate relative to the widget.

Additional inherited members
Public Functions inherited from AbstractPainter

AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
AbstractPainterRGB888

AbstractPainterRGB888 ()

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainter::render

Reimplemented by: touchgfx::PainterRGB888::render,
touchgfx::PainterRGB888Bitmap::render, touchgfx::PainterRGB888L8Bitmap::render

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplemented by: touchgfx::PainterRGB888Bitmap::renderInit,
touchgfx::PainterRGB888L8Bitmap::renderInit

renderNext
virtual bool renderNext (uint8_t & red , =0

uint8_t & green , =0
uint8_t & blue , =0
uint8_t & alpha =0
) =0

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplemented by: touchgfx::PainterRGB888::renderNext,
touchgfx::PainterRGB888Bitmap::renderNext,

touchgfx::PainterRGB888L8Bitmap::renderNext

renderPixel
virtual void renderPixel (uint16_t * p ,

uint8_t red ,
uint8_t green ,
uint8_t blue
)

Renders (writes) the specified color into the framebuffer.

Parameters:
p pointer into the framebuffer where the given color should be written.
red The red color.
green The green color.
blue The blue color.

Protected Attributes Documentation
currentX

int currentX

Current x coordinate relative to the widget.

currentY
int currentY

Current y coordinate relative to the widget.

Version: 4.16

AbstractPainterRGBA2222
The AbstractPainterRGBA2222 class is an abstract class for creating a painter to draw on a RGBA2222
display using CanvasWidgetRenderer.

See: AbstractPainter

Inherits from: AbstractPainter

Inherited by: PainterRGBA2222, PainterRGBA2222Bitmap

Public Functions
AbstractPainterRGBA2222()

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t newpix, uint8_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t R, uint8_t G, uint8_t B, uint8_t bufpix, uint8_t
alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const
uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the
amount of coverage of each pixel given by the parameter covers.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha) =0
Get the color of the next pixel in the scan line to blend into the framebuffer.

virtual void renderPixel(uint8_t * p, uint8_t red, uint8_t green, uint8_t blue)
Renders (writes) the specified color into the framebuffer.

Protected Attributes
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Additional inherited members
Public Functions inherited from AbstractPainter

AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)

Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
AbstractPainterRGBA2222

AbstractPainterRGBA2222 ()

mixColors
FORCE_INLINE_FUNCTION uint8_t mixColors (uint8_t newpix ,

uint8_t bufpix ,
uint8_t alpha
)

Mix colors from a new pixel and a buffer pixel with the given alpha applied to the new pixel, and
the inverse alpha applied to the buffer pixel.

Parameters:
newpix The new pixel value.
bufpix The buffer pixel value.
alpha The alpha to apply to the new pixel.

Returns:

The result of blending the two colors into a new color.

mixColors
FORCE_INLINE_FUNCTION uint8_t mixColors (uint8_t R ,

uint8_t G ,
uint8_t B ,
uint8_t bufpix ,
uint8_t alpha
)

Mix colors from a new pixel and a buffer pixel with the given alpha applied to the new pixel, and
the inverse alpha applied to the buffer pixel.

Parameters:
R The red color.
G The green color.
B The blue color.
bufpix The buffer pixel value.
alpha The alpha of the R,G,B.

Returns:

The result of blending the two colors into a new color.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.

xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the
ptr should have been advanced "xAdjust" pixels futher into the byte).

y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainter::render

Reimplemented by: touchgfx::PainterRGBA2222::render,
touchgfx::PainterRGBA2222Bitmap::render

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplemented by: touchgfx::PainterRGBA2222Bitmap::renderInit

renderNext
virtual bool renderNext (uint8_t & red , =0

uint8_t & green , =0
uint8_t & blue , =0
uint8_t & alpha =0
) =0

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:

red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplemented by: touchgfx::PainterRGBA2222::renderNext,
touchgfx::PainterRGBA2222Bitmap::renderNext

renderPixel
virtual void renderPixel (uint8_t * p ,

uint8_t red ,
uint8_t green ,
uint8_t blue
)

Renders (writes) the specified color into the framebuffer.

Parameters:
p pointer into the framebuffer where the given color should be written.
red The red color.
green The green color.
blue The blue color.

Protected Attributes Documentation
currentX

int currentX

Current x coordinate relative to the widget.

currentY
int currentY

Current y coordinate relative to the widget.

Version: 4.16

AbstractPartition
This type defines an abstract interface to a storage partition for allocating memory slots of equal size.
The "partition" is not aware of the actual types stored in the partition memory, hence it provides no
mechanism for deleting C++ objects when clear()'ed.

Inherited by: Partition< ListOfTypes, NUMBER_OF_ELEMENTS >

Public Functions
template \<typename T \>

void * allocate()

Gets the address of the next available storage slot.

virtual void * allocate(uint16_t size)
Gets the address of the next available storage slot.

template \<typename T \>
void * allocateAt(uint16_t index)

Gets the address of the specified storage slot.

virtual void * allocateAt(uint16_t index, uint16_t size)
Gets the address of the specified index.

template \<typename T \>
T & at(const uint16_t index)

Gets the object at the specified index.

template \<typename T \>
const T & at(const uint16_t index) const

const version of at().

virtual uint16_t capacity() const =0
Gets the capacity, i.e.

virtual void clear()
Prepares the Partition for new allocations.

void dec()
Decreases number of allocations.

virtual uint32_t element_size() =0
Access to concrete element-size.

template \<class T \>
Pair< T *, uint16_t > find(const void * pT)

Determines if the specified object could have been previously allocated
in the partition.

virtual uint16_t getAllocationCount() const
Gets allocation count.

virtual uint16_t indexOf(const void * address)
Determines index of previously allocated location.

virtual ~AbstractPartition()
Finalizes an instance of the AbstractPartition class.

Protected Functions
AbstractPartition()
Initializes a new instance of the AbstractPartition class.

virtual const void * element(uint16_t index) const =0
Access to stored element, const version.

virtual void * element(uint16_t index) =0
Access to stored element.

Public Functions Documentation
allocate

void * allocate ()

Gets the address of the next available storage slot.

The slot size is determined from the size of type T.

Template Parameters:
T Generic type parameter.

Returns:

The address of an empty storage slot.

NOTE

Asserts if T is too large, or the storage is depleted.

allocate
virtual void * allocate (uint16_t size)

Gets the address of the next available storage slot.

The slot size is compared with the specified size.

Parameters:
size The size.

Returns:

The address of an empty storage slot which contains minimum 'size' bytes.

NOTE

Asserts if 'size' is too large, or the storage is depleted.

allocateAt
void * allocateAt (uint16_t index)

Gets the address of the specified storage slot.

The slot size is determined from the size of type T.

Template Parameters:
T Generic type parameter.

Parameters:
index Zero-based index of the.

Returns:

The address of the appropriate storage slot.

NOTE

Asserts if T is too large.

allocateAt
virtual void * allocateAt (uint16_t index ,

uint16_t size
)

Gets the address of the specified index.

Parameters:
index Zero-based index of the.
size The size.

Returns:

The address of the appropriate storage slot which contains minimum 'size' bytes.

NOTE

Asserts if 'size' is too large.

at
T & at (const uint16_t index)

Gets the object at the specified index.

Template Parameters:
T Generic type parameter.

Parameters:
index The index into the Partition storage where the returned object is located.

Returns:

A typed reference to the object at the specified index.

at
const T & at (const uint16_t index)

const version of at().

Template Parameters:
T Generic type parameter.

Parameters:
index Zero-based index of the.

Returns:

A T&

capacity
virtual uint16_t capacity () const =0

Gets the capacity, i.e.

the maximum allocation count.

Returns:

The maximum allocation count.

Reimplemented by: touchgfx::Partition::capacity

clear
virtual void clear ()

Prepares the Partition for new allocations.

Any objects present in the Partition shall not be used after invoking this method.

dec
void dec ()

Decreases number of allocations.

element_size
virtual uint32_t element_size () =0

Access to concrete element-size.

Used internally.

Returns:

An uint32_t.

Reimplemented by: touchgfx::Partition::element_size

find
Pair< T *, uint16_t > find (const void * pT)

Determines if the specified object could have been previously allocated in the partition.

Since the Partition concept is loosely typed this method shall be used with care. The method does
not guarantee that the found object at the returned index is a valid object. It only tests whether or
not the object is within the bounds of the current partition allocations.

Template Parameters:
T Generic type parameter.

Parameters:
pT Pointer to the object to look up.

Returns:

If the object seems to be allocated in the Partition, a Pair object containing a typed pointer to
the object and an index into the Partition storage is returned. Otherwise, a Pair<0, 0> is
returned.

getAllocationCount
virtual uint16_t getAllocationCount () const

Gets allocation count.

Returns:

The currently allocated storage slots.

indexOf
virtual uint16_t indexOf (const void * address)

Determines index of previously allocated location.

Since the Partition concept is loosely typed this method shall be used with care. The method does
not guarantee that the found object at the returned index is a valid object. It only tests whether or
not the object is within the bounds of the current partition allocations.

Parameters:
address The location address to lookup.

Returns:

An uint16_t.

~AbstractPartition
virtual ~AbstractPartition ()

Finalizes an instance of the AbstractPartition class.

Protected Functions Documentation
AbstractPartition

AbstractPartition ()

Initializes a new instance of the AbstractPartition class.

element
virtual const void * element (uint16_t index)

Access to stored element, const version.

Parameters:
index Zero-based index of the.

Returns:

null if it fails, else a void*.

Reimplemented by: touchgfx::Partition::element

element
virtual void * element (uint16_t index)

Access to stored element.

Used internally.

Parameters:
index Zero-based index of the.

Returns:

null if it fails, else a void*.

Reimplemented by: touchgfx::Partition::element

Version: 4.16

AbstractProgressIndicator
The AbstractProgressIndicator declares methods that provides the basic mechanisms and tools to
implement a progress indicator. For more specific implementations see classes that inherit from
AbstractProgressIndicator.

See: BoxProgress, CircleProgress, ImageProgress, LineProgress, TextProgress

Inherits from: Container, Drawable

Inherited by: AbstractDirectionProgress, CircleProgress, Gauge, LineProgress, TextProgress

Public Functions
AbstractProgressIndicator()
Initializes a new instance of the AbstractProgressIndicator class with a default
range 0-100.

virtual uint16_t getProgress(uint16_t range =100) const
Gets the current progress based on the range set by setRange() and the value set by
setValue().

virtual int16_t getProgressIndicatorHeight() const
Gets progress indicator height.

virtual int16_t getProgressIndicatorWidth() const
Gets progress indicator width.

virtual int16_t getProgressIndicatorX() const
Gets progress indicator x coordinate.

virtual int16_t getProgressIndicatorY() const
Gets progress indicator y coordinate.

virtual void getRange(int & min, int & max) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps, uint16_t & minStep) const
Gets the range set by setRange().

virtual int getValue() const
Gets the current value set by setValue().

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void setBackground(const Bitmap & bitmapBackground)
Sets the background image.

virtual void setEasingEquation(EasingEquation easingEquation)
Sets easing equation to be used in updateValue.

virtual void setProgressIndicatorPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the position and dimensions of the actual progress indicator relative to the
background image.

virtual void setRange(int min, int max, uint16_t steps =0, uint16_t minStep =0)
Sets the range for the progress indicator.

virtual void setValue(int value)
Sets the current value in the range (min..max) set by setRange().

void setValueSetAction(GenericCallback< const AbstractProgressIndicator & > &
callback)
Sets callback that will be triggered every time a new value is assigned to the
progress indicator.

void setValueUpdatedAction(GenericCallback< const AbstractProgressIndicator & >
& callback)
Sets callback that will be triggered when updateValue has finished animating to the
final value.

virtual void updateValue(int value, uint16_t duration)
Update the current value in the range (min..max) set by setRange().

Protected Attributes
int animationDuration

Duration of the animation.

int animationEndValue
The animation end value.

int animationStartValue
The animation start value.

int animationStep
The current animation step.

Image background
The background image.

int currentValue
The current value.

EasingEquation equation
The equation used in updateValue()

Container progressIndicatorContainer
The container that holds the actual
progress indicator.

int rangeMax
The range maximum.

int rangeMin
The range minimum.

uint16_t rangeSteps
The range steps.

uint16_t rangeStepsMin
The range steps minimum.

GenericCallback< const AbstractProgressIndicator & > * valueSetCallback
New value assigned Callback.

GenericCallback< const AbstractProgressIndicator & > * valueUpdatedCallback
Animation ended Callback.

Additional inherited members
Public Functions inherited from Container

virtual void add(Drawable & d)
Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0

Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const

Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
AbstractProgressIndicator

AbstractProgressIndicator ()

Initializes a new instance of the AbstractProgressIndicator class with a default range 0-100.

getProgress
virtual uint16_t getProgress (uint16_t range =100)

Gets the current progress based on the range set by setRange() and the value set by setValue().

Parameters:
range (Optional) The range, default is 100.

Returns:

The progress.

See also:

setRange, setValue, getValue

getProgressIndicatorHeight
virtual int16_t getProgressIndicatorHeight () const

Gets progress indicator height.

Returns:

The progress indicator height.

See also:

setProgressIndicatorPosition

getProgressIndicatorWidth
virtual int16_t getProgressIndicatorWidth () const

Gets progress indicator width.

Returns:

The progress indicator width.

See also:

setProgressIndicatorPosition

getProgressIndicatorX
virtual int16_t getProgressIndicatorX () const

Gets progress indicator x coordinate.

Returns:

The progress indicator x coordinate.

See also:

setProgressIndicatorPosition

getProgressIndicatorY
virtual int16_t getProgressIndicatorY () const

Gets progress indicator y coordinate.

Returns:

The progress indicator y coordinate.

See also:

setProgressIndicatorPosition

getRange
virtual void getRange (int & min , const

int & max const
) const

Gets the range set by setRange().

Parameters:
min The minimum input value.
max The maximum input value.

See also:

setRange

getRange
virtual void getRange (int & min , const

int & max , const
uint16_t & steps const
) const

Gets the range set by setRange().

Parameters:
min The minimum input value.
max The maximum input value.
steps The steps in which to report progress.

See also:

setRange

getRange
virtual void getRange (int & min , const

int & max , const
uint16_t & steps , const
uint16_t & minStep const
) const

Gets the range set by setRange().

Parameters:
min The minimum input value.
max The maximum input value.
steps The steps in which to report progress.
minStep The step which the minimum input value is mapped to.

See also:

setRange

getValue

virtual int getValue () const

Gets the current value set by setValue().

Returns:

The value.

See also:

setValue

handleTickEvent
virtual void handleTickEvent ()

Called periodically by the framework if the Drawable instance has subscribed to timer ticks.

See also:

Application::registerTimerWidget

Reimplements: touchgfx::Drawable::handleTickEvent

setBackground
virtual void setBackground (const Bitmap & bitmapBackground)

Sets the background image.

The width and height of the progress indicator widget is updated according to the dimensions of
the bitmap.

Parameters:
bitmapBackground The background bitmap.

setEasingEquation
virtual void setEasingEquation (EasingEquation easingEquation)

Sets easing equation to be used in updateValue.

Parameters:
easingEquation The easing equation.

See also:

updateValue

setProgressIndicatorPosition
virtual void setProgressIndicatorPosition (int16_t x ,

int16_t y ,
int16_t width ,
int16_t height
)

Sets the position and dimensions of the actual progress indicator relative to the background image.

Parameters:
x The x coordinate.
y The y coordinate.
width The width of the box progress indicator.
height The height of the box progress indicator.

See also:

getProgressIndicatorX, getProgressIndicatorY, getProgressIndicatorWidth,
getProgressIndicatorHeight

Reimplemented by: touchgfx::BoxProgress::setProgressIndicatorPosition,
touchgfx::CircleProgress::setProgressIndicatorPosition,
touchgfx::ImageProgress::setProgressIndicatorPosition,
touchgfx::LineProgress::setProgressIndicatorPosition,
touchgfx::TextProgress::setProgressIndicatorPosition,
touchgfx::Gauge::setProgressIndicatorPosition

setRange
virtual void setRange (int min ,

int max ,
uint16_t steps =0,
uint16_t minStep =0
)

Sets the range for the progress indicator.

The range is the values that are given to the progress indicator while progressing through the task
at hand. If an app needs to work through 237 items to finish a task, the range should be set to (0,

237) assuming that 0 items is the minimum. Though the minimum is often 0, it is possible to
customize this.

The steps parameter is used to specify at what granularity you want the progress indicator to report
a new progress value. If the 237 items to be reported as 0%, 10%, 20%, ... 100%, the steps should
be set to 10 as there are ten steps from 0% to 100%. If you want to update a widget which is 150
pixels wide, you might want to set steps to 150 to get a new progress value for every pixel. If you
are updating a clock and want this to resemble an analog clock, you might want to use 12 or
perhaps 60 as number of steps.

The minStep parameter is used when the minimum input value (min) should give a progress
different from 0. For example, if progress is a clock face, you want to count from 0..1000 and you
want progress per minute, but want to make sure that 0 is not a blank clock face, but instead you
want 1 minute to show, use

to make sure that as values progress from 0 to 1000, getProgress() start from 1 and goes up to 60.
Another example could be a BoxProgress with a TextProgress on top and you want to make sure
that "0%" will always show in the box, use something like

if your box is 200 pixels wide and "0%" is 40 pixels wide.

Parameters:
min The minimum input value.
max The maximum input value.
steps (Optional) The steps in which to report progress.
minStep (Optional) The step which the minimum input value is mapped to.

See also:

setValue, getProgress

setValue
virtual void setValue (int value)

Sets the current value in the range (min..max) set by setRange().

Values lower than min are mapped to min, values higher than max are mapped to max. If a callback
function has been set using setValueSetAction, that callback will be called (unless the new value is

setRange(0, 1000, 60, 1)

setRange(0, 1000, 200, 40)

the same as the current value).

Parameters:
value The value.

NOTE

if value is equal to the current value, nothing happens, and the callback will not be called.

See also:

getValue, updateValue, setValueSetAction

Reimplemented by: touchgfx::BoxProgress::setValue, touchgfx::CircleProgress::setValue,
touchgfx::ImageProgress::setValue, touchgfx::LineProgress::setValue,
touchgfx::TextProgress::setValue, touchgfx::Gauge::setValue

setValueSetAction
void setValueSetAction (GenericCallback< const AbstractProgressIndicator & > & callback)

Sets callback that will be triggered every time a new value is assigned to the progress indicator.

This can happen directly from setValue() or during a gradual change initiated using
updateValue().

Parameters:
callback The callback.

See also:

setValue, updateValue

setValueUpdatedAction
void setValueUpdatedAction (GenericCallback< const AbstractProgressIndicator & > & callback)

Sets callback that will be triggered when updateValue has finished animating to the final value.

Parameters:
callback The callback.

See also:

updateValue, setValueSetAction

updateValue
virtual void updateValue (int value ,

uint16_t duration
)

Update the current value in the range (min..max) set by setRange().

Values lower than min are mapped to min, values higher than max are mapped to max. The value is
changed gradually in the given number of ticks using the easing equation set in setEasingEquation.
Function setValue() is called for every new value during the change of value, and if a callback
function has been set using setValueSetAction, that callback will be called for every new value. The
callback set using setValueUpdatedCallback is called when the animation has finished.

Parameters:
value The value.
duration The duration.

NOTE

If duration is 0, setValue will be called immediately and the valueUpdated action is called immediately.

See also:

setValue, setEasingEquation, setValueSetAction, setValueUpdatedAction

Protected Attributes Documentation
animationDuration

int animationDuration

Duration of the animation.

animationEndValue
int animationEndValue

The animation end value.

animationStartValue
int animationStartValue

The animation start value.

animationStep
int animationStep

The current animation step.

background
Image background

The background image.

currentValue
int currentValue

The current value.

equation
EasingEquation equation

The equation used in updateValue()

progressIndicatorContainer
Container progressIndicatorContainer

The container that holds the actual progress indicator.

rangeMax

g
int rangeMax

The range maximum.

rangeMin
int rangeMin

The range minimum.

rangeSteps
uint16_t rangeSteps

The range steps.

rangeStepsMin
uint16_t rangeStepsMin

The range steps minimum.

valueSetCallback
GenericCallback< const AbstractProgressIndicator & > * valueSetCallback

New value assigned Callback.

valueUpdatedCallback
GenericCallback< const AbstractProgressIndicator & > * valueUpdatedCallback

Animation ended Callback.

Version: 4.16

AbstractShape
Simple widget capable of drawing a abstractShape. The abstractShape can be scaled and rotated
around 0,0. The shapes points (corners) are calculated with regards to scaling and rotation to allow for
faster redrawing. Care must be taken to call updateAbstractShapeCache() after updating the shape, the
scale of the shape or the rotation of the shape.

Inherits from: CanvasWidget, Widget, Drawable

Inherited by: Shape< POINTS >

Public Classes
struct ShapePoint

Defines an alias for a single point.

Public Functions
AbstractShape()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

int getAngle() const
Gets the current angle of the abstractShape.

template \<typename T \>
void getAngle(T & angle)

Gets the abstractShape's angle.

virtual CWRUtil::Q5 getCornerX(int i) const =0
Gets the x coordinate of a corner (a point) of the shape.

virtual CWRUtil::Q5 getCornerY(int i) const =0
Gets the y coordinate of a corner (a point) of the shape.

virtual int getNumPoints() const =0

Gets number of points used to make up the shape.

template \<typename T \>
void getOrigin(T & dx, T & dy) const

Gets the position of the shapes (0,0).

template \<typename T \>
void getScale(T & x, T & y) const

Gets the x scale and y scale of the shape as previously set using setScale.

template \<typename T \>
void moveOrigin(T x, T y)

Sets the position of the shape's (0,0) in the widget.

template \<typename T \>
void setAngle(T angle)

Sets the absolute angle to turn the AbstractShape.

virtual void setCorner(int i, CWRUtil::Q5 x, CWRUtil::Q5 y) =0
Sets one of the points (a corner) of the shape in CWRUtil::Q5 format.

template \<typename T \>
void setOrigin(T x, T y)

Sets the position of the shape's (0,0) in the widget.

template \<typename T \>
void setScale(T newXScale, T newYScale)

Scale the AbstractShape the given amounts in the x direction and the y
direction.

template \<typename T \>
void setScale(T scale)

Scale the AbstractShape the given amount in the x direction and the y
direction.

template \<typename T \>
void setShape(const ShapePoint< T > * points)

Sets a shape the struct Points.

template \<typename T \>
void setShape(ShapePoint< T > * points)

Sets a shape the struct Points.

void updateAbstractShapeCache()
Updates the AbstractShape cache.

template \<typename T \>
void updateAngle(T angle)

Sets the absolute angle to turn the AbstractShape.

template \<typename T \>
void updateScale(T newXScale, T newYScale)

Scale the AbstractShape the given amount in the x direction and the y
direction.

Protected Functions
virtual CWRUtil::Q5 getCacheX(int i) const =0

Gets cached x coordinate of a point/corner.

virtual CWRUtil::Q5 getCacheY(int i) const =0
Gets cached y coordinate of a point/corner.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual void setCache(int i, CWRUtil::Q5 x, CWRUtil::Q5 y) =0
Sets the cached coordinates of a given point/corner.

Additional inherited members
Public Functions inherited from CanvasWidget

CanvasWidget()

virtual void draw(const Rect & invalidatedArea) const
Draws the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const

Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable

True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
AbstractShape

AbstractShape ()

drawCanvasWidget
virtual bool drawCanvasWidget (const Rect & invalidatedArea)

Draw canvas widget for the given invalidated area.

Similar to draw(), but might be invoked several times with increasingly smaller areas to due to
memory constraints from the underlying CanvasWidgetRenderer.

Parameters:
invalidatedArea The invalidated area.

Returns:

true if the widget was drawn properly, false if not.

See also:

draw

Reimplements: touchgfx::CanvasWidget::drawCanvasWidget

getAngle
int getAngle () const

Gets the current angle of the abstractShape.

Returns:

The angle of the AbstractShaperounded down to the precision of int.

getAngle
void getAngle (T & angle)

Gets the abstractShape's angle.

Template Parameters:
T Generic type parameter.

Parameters:
angle The current AbstractShape rotation angle rounded down to the precision of T.

getCornerX
virtual CWRUtil::Q5 getCornerX (int i)

Gets the x coordinate of a corner (a point) of the shape.

Parameters:
i Zero-based index of the corner.

Returns:

The corner x coordinate in CWRUtil::Q5 format.

Reimplemented by: touchgfx::Shape::getCornerX

getCornerY
virtual CWRUtil::Q5 getCornerY (int i)

Gets the y coordinate of a corner (a point) of the shape.

Parameters:
i Zero-based index of the corner.

Returns:

The corner y coordinate in CWRUtil::Q5 format.

Reimplemented by: touchgfx::Shape::getCornerY

getNumPoints

virtual int getNumPoints () const =0

Gets number of points used to make up the shape.

Returns:

The number of points.

Reimplemented by: touchgfx::Shape::getNumPoints

getOrigin
void getOrigin (T & dx , const

T & dy const
) const

Gets the position of the shapes (0,0).

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
dx The x coordinate rounded down to the precision of T.
dy The y coordinate rounded down to the precision of T.

getScale
void getScale (T & x , const

T & y const
) const

Gets the x scale and y scale of the shape as previously set using setScale.

Default is 1 for both x scale and y scale.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
x Scaling of x coordinates rounded down to the precision of T.
y Scaling of y coordinates rounded down to the precision of T.

See also:

setScale

moveOrigin
void moveOrigin (T x ,

T y
)

Sets the position of the shape's (0,0) in the widget.

This means that all coordinates initially used when created the shape are moved relative to these
given offsets. Subsequent calls to moveOrigin() or setOrigin() will replace the old values for
origin. The cached outline of the shape is automatically updated.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
x The absolute x coordinate of the shapes position (0,0).
y The absolute y coordinate of the shapes position (0,0).

NOTE

The area containing the AbstractShape is invalidated before and after the change.

See also:

setOrigin

setAngle
void setAngle (T angle)

Sets the absolute angle to turn the AbstractShape.

0 degrees means no rotation and 90 degrees is rotate the shape clockwise. Repeated calls to
setAngle(10) will therefore not rotate the shape by an additional 10 degrees. The cached outline of
the shape is automatically updated.

Template Parameters:
T Generic type parameter.

Parameters:
angle The absolute angle to turn the abstractShape to relative to 0 (straight up).

NOTE

The area containing the AbstractShape is not invalidated.

See also:

updateAngle

setCorner
virtual void setCorner (int i , =0

CWRUtil::Q5 x , =0
CWRUtil::Q5 y =0
) =0

Sets one of the points (a corner) of the shape in CWRUtil::Q5 format.

Parameters:
i Zero-based index of the corner.
x The x coordinate in CWRUtil::Q5 format.
y The y coordinate in CWRUtil::Q5 format.

NOTE

Remember to call updateAbstractShapeCache() after calling setCorner one or more times, to make sure
that the cached outline of the shape is correct.

See also:

updateAbstractShapeCache

Reimplemented by: touchgfx::Shape::setCorner

setOrigin
void setOrigin (T x ,

T y
)

Sets the position of the shape's (0,0) in the widget.

This means that all coordinates initially used when created the shape are moved relative to these
given offsets. Subsequent calls to setOrigin() or moveOrigin() will replace the old values for
origin. The cached outline of the shape is automatically updated.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
x The absolute x coordinate of the shapes position (0,0).
y The absolute y coordinate of the shapes position (0,0).

NOTE

The area containing the AbstractShape is not invalidated.

See also:

moveOrigin

setScale
void setScale (T newXScale ,

T newYScale
)

Scale the AbstractShape the given amounts in the x direction and the y direction.

The new scaling factors do not multiply to previously set scaling factors, so scaling by 2 and later
scaling by 2 again will not scale by 4, only by 2. The cached outline of the shape is automatically
updated.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
newXScale The new scale in the x direction.
newYScale The new scale in the y direction.

NOTE

The area containing the AbstractShape is not invalidated.

See also:

getScale, updateScale

setScale
void setScale (T scale)

Scale the AbstractShape the given amount in the x direction and the y direction.

The new scaling factors do not multiply to previously set scaling factors, so scaling by 2 and later
scaling by 2 again will not scale by 4, only by 2. The cached outline of the shape is automatically
updated.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
scale The scale in the x direction.

NOTE

The area containing the AbstractShape is not invalidated.

See also:

getScale

setShape
void setShape (const ShapePoint< T > * points)

Sets a shape the struct Points.

The cached outline of the shape is automatically updated.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
points The points that make up the shape. The pointer must point to an array of

getNumPoints() elements of type ShapePoint.

NOTE

The area containing the shape is not invalidated.

setShape
void setShape (ShapePoint< T > * points)

Sets a shape the struct Points.

The cached outline of the shape is automatically updated.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
points The points that make up the shape. The pointer must point to an array of

getNumPoints() elements of type ShapePoint.

NOTE

The area containing the shape is not invalidated.

updateAbstractShapeCache
void updateAbstractShapeCache ()

Updates the AbstractShape cache.

The cache is used to be able to quickly redraw the AbstractShape without calculating the points
that make up the abstractShape (with regards to scaling and rotation).

updateAngle
void updateAngle (T angle)

Sets the absolute angle to turn the AbstractShape.

0 degrees means no rotation and 90 degrees is rotate the shape clockwise. Repeated calls to
setAngle(10) will therefore not rotate the shape by an additional 10 degrees. The cached outline of
the shape is automatically updated.

Template Parameters:
T Generic type parameter.

Parameters:
angle The angle to turn the abstractShape.

NOTE

The area containing the AbstractShape is invalidated before and after the change.

See also:

setAngle

updateScale
void updateScale (T newXScale ,

T newYScale
)

Scale the AbstractShape the given amount in the x direction and the y direction.

The new scaling factors do not multiply to previously set scaling factors, so scaling by 2 and later
scaling by 2 again will not scale by 4, only by 2. The cached outline of the shape is automatically
updated.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
newXScale The new scale in the x direction.
newYScale The new scale in the y direction.

NOTE

The area containing the AbstractShape is invalidated before and after the change.

See also:

setScale

Protected Functions Documentation
getCacheX

virtual CWRUtil::Q5 getCacheX (int i)

Gets cached x coordinate of a point/corner.

Parameters:
i Zero-based index of the point/corner.

Returns:

The cached x coordinate, or zero if nothing is cached for the given i.

Reimplemented by: touchgfx::Shape::getCacheX

getCacheY
virtual CWRUtil::Q5 getCacheY (int i)

Gets cached y coordinate of a point/corner.

Parameters:
i Zero-based index of the point/corner.

Returns:

The cached y coordinate, or zero if nothing is cached for the given i.

Reimplemented by: touchgfx::Shape::getCacheY

getMinimalRect
virtual Rect getMinimalRect () const

Gets minimal rectangle containing the shape drawn by this widget.

Default implementation returns the size of the entire widget, but this function should be
overwritten in subclasses and return the minimal rectangle containing the shape. See classes such
as Circle for example implementations.

Returns:

The minimal rectangle containing the shape drawn.

Reimplements: touchgfx::CanvasWidget::getMinimalRect

setCache
virtual void setCache (int i , =0

CWRUtil::Q5 x , =0
CWRUtil::Q5 y =0
) =0

Sets the cached coordinates of a given point/corner.

The coordinates in the cache are the coordinates from the corners after rotation and scaling has
been applied to the coordinate.

Parameters:

i Zero-based index of the corner.
x The x coordinate.
y The y coordinate.

Reimplemented by: touchgfx::Shape::setCache

Version: 4.16

AnalogClock
An analog clock. Should be supplied with images for the background, hour hand, minute hand and the
optional second hand. You setup the AnalogClock by specifying the rotation point of each hand as
well as the global rotation point of the clock. You can customize the behavior of the AnalogClock in
respect to animations and relations between the hands e.g. if the hour hand should move gradually
towards the next hour as the minute hand progresses (setHourHandMinuteCorrection())

Inherits from: AbstractClock, Container, Drawable

Public Functions
AnalogClock()

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual uint16_t getAnimationDuration()
Gets the animation duration.

virtual bool getHourHandMinuteCorrection() const
Gets hour hand minute correction.

virtual bool getMinuteHandSecondCorrection() const
Gets minute hand second correction.

virtual void initializeTime12Hour(uint8_t hour, uint8_t minute, uint8_t second, bool am)
Sets the time with input format as 12H.

virtual void initializeTime24Hour(uint8_t hour, uint8_t minute, uint8_t second)
Sets the time with input format as 24H.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setAnimation(uint16_t duration =10, EasingEquation
animationProgressionEquation =EasingEquations::backEaseInOut)
Setup the clock to use animation for hand movements.

virtual void setBackground(const BitmapId backgroundBitmapId)

Sets the background image of the clock.

virtual void setBackground(const BitmapId backgroundBitmapId, int16_t rotationCenterX,
int16_t rotationCenterY)
Sets the background image of the clock and the rotation center of the clock.

virtual void setHourHandMinuteCorrection(bool active)
Sets whether hour hand minute correction should be active.

virtual void setMinuteHandSecondCorrection(bool active)
Sets whether minute hand second correction should be active.

virtual void setRotationCenter(int16_t rotationCenterX, int16_t rotationCenterY)
Sets the rotation center of the clock.

virtual void setupHourHand(const BitmapId hourHandBitmapId, int16_t rotationCenterX,
int16_t rotationCenterY)
Sets up the hour hand.

virtual void setupMinuteHand(const BitmapId minuteHandBitmapId, int16_t rotationCenterX,
int16_t rotationCenterY)
Sets up the minute hand.

virtual void setupSecondHand(const BitmapId secondHandBitmapId, int16_t rotationCenterX,
int16_t rotationCenterY)
Sets up the second hand.

Protected Functions
virtual bool animationEnabled() const

Is animation enabled for the hands?

virtual float convertHandValueToAngle(uint8_t steps, uint8_t handValue, uint8_t secondHandValue
=0) const
Convert hand value to angle.

virtual void setupHand(TextureMapper & hand, const BitmapId bitmapId, int16_t rotationCenterX,
int16_t rotationCenterY)
Sets up a given the hand.

virtual void updateClock()
Update the visual representation of the clock on the display.

Protected Attributes
uint16_t animationDuration

The duration of hand animations. If 0 animations are disabled.

EasingEquation animationEquation
The easing equation used by hand animations.

Image background
The background image of the AnalogClock.

int16_t clockRotationCenterX
The x coordinate of the rotation point of the hands.

int16_t clockRotationCenterY
The y coordinate of the rotation point of the hands.

AnimationTextureMapper hourHand
TextureMapper used for drawing the hourHand.

bool hourHandMinuteCorrectionActive
Is hour hand minute correction active.

uint8_t lastHour
The last know hour value.

uint8_t lastMinute
The last know minute value.

uint8_t lastSecond
The last know second value.

AnimationTextureMapper minuteHand
TextureMapper used for drawing the minuteHand.

bool minuteHandSecondCorrectionActive
Is minute hand second correction active.

AnimationTextureMapper secondHand
TextureMapper used for drawing the secondHand.

Additional inherited members
Public Functions inherited from AbstractClock

AbstractClock()

bool getCurrentAM() const
Is the current time a.m.

uint8_t getCurrentHour() const
Gets the current hour.

uint8_t getCurrentHour12() const
Gets current hour 12, i.e.

uint8_t getCurrentHour24() const
Gets current hour 24, i.e.

uint8_t getCurrentMinute() const
Gets the current minute.

uint8_t getCurrentSecond() const
Gets the current second.

virtual void setTime12Hour(uint8_t hour, uint8_t minute, uint8_t second, bool am)
Sets the time with input format as 12H.

virtual void setTime24Hour(uint8_t hour, uint8_t minute, uint8_t second)
Sets the time with input format as 24H.

Protected Attributes inherited from AbstractClock
uint8_t currentHour

Local copy of the current hour.

uint8_t currentMinute
Local copy of the current minute.

uint8_t currentSecond
Local copy of the current second.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()

Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const

Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
AnalogClock

AnalogClock ()

getAlpha
virtual uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getAnimationDuration
virtual uint16_t getAnimationDuration ()

Gets the animation duration.

Returns:

The animation duration.

See also:

setAnimation

getHourHandMinuteCorrection
virtual bool getHourHandMinuteCorrection () const

Gets hour hand minute correction.

Returns:

true if hour hand minute correction is active.

See also:

setHourHandMinuteCorrection

getMinuteHandSecondCorrection
virtual bool getMinuteHandSecondCorrection () const

Gets minute hand second correction.

Returns:

true if minute hand second correction is active.

See also:

setHourHandMinuteCorrection

initializeTime12Hour
virtual void initializeTime12Hour (uint8_t hour ,

uint8_t minute ,
uint8_t second ,
bool am
)

Sets the time with input format as 12H.

No animations are performed regardless of the animation settings. This is often useful when setting
up the AnalogClock where you do not want an initial animation.

Parameters:
hour The hours, value should be between 1 and 12.
minute The minutes, value should be between 0 and 59.
second The seconds, value should be between 0 and 59.
am AM/PM setting. True = AM, false = PM.

NOTE

that this does not affect any selected presentation formats.

See also:

setTime12Hour

initializeTime24Hour
virtual void initializeTime24Hour (uint8_t hour ,

uint8_t minute ,
uint8_t second
)

Sets the time with input format as 24H.

No animations are performed regardless of the animation settings. This is often useful when setting
up the AnalogClock where you do not want an initial animation.

Parameters:
hour The hours, value should be between 0 and 23.
minute The minutes, value should be between 0 and 59.
second The seconds, value should be between 0 and 59.

NOTE

that this does not affect any selected presentation formats.

See also:

setTime24Hour

setAlpha
virtual void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display. The alpha value is reflected in the
background image

See also:

getAlpha

setAnimation
virtual void setAnimation (uint16_t duration =10,

EasingEquation animationProgressionEquation
=EasingEquations::backEaseInOut

)

Setup the clock to use animation for hand movements.

Parameters:
duration (Optional) The animation duration, default is 10.
animationProgressionEquation (Optional) The animation progression equation, default is

EasingEquations::backEaseInOut.

setBackground
virtual void setBackground (const BitmapId backgroundBitmapId)

Sets the background image of the clock.

The clock rotation center is automatically set to the background image center. The clock rotation
center is the point that the clock hands rotates around. The size of the AnalocClock widget is set to
the size of the bitmap.

Parameters:
backgroundBitmapId Identifier for the background bitmap.

setBackground
virtual void setBackground (const BitmapId backgroundBitmapId ,

int16_t rotationCenterX ,
int16_t rotationCenterY
)

Sets the background image of the clock and the rotation center of the clock.

The clock rotation center is the point that the clock hands rotates around. The size of the
AnalocClock widget is set to the size of the bitmap.

Parameters:
backgroundBitmapId Identifier for the background bitmap.
rotationCenterX The rotation center x coordinate.
rotationCenterY The rotation center y coordinate.

See also:

setBackground(BitmapId), setRotationCenter

setHourHandMinuteCorrection
virtual void setHourHandMinuteCorrection (bool active)

Sets whether hour hand minute correction should be active.

If set to true the hour hand will be positioned between the current hour and the next depending on
the minute hands position.

Parameters:
active true to use hour hand correction.

See also:

getHourHandMinuteCorrection

setMinuteHandSecondCorrection
virtual void setMinuteHandSecondCorrection (bool active)

Sets whether minute hand second correction should be active.

If set to true the minute hand will be positioned between the current minute and the next
depending on the second hands position.

Parameters:
active true to use.

See also:

setMinuteHandSecondCorrection

setRotationCenter
virtual void setRotationCenter (int16_t rotationCenterX ,

int16_t rotationCenterY
)

Sets the rotation center of the clock.

The clock rotation center is the point that the clock hands rotates around.

Parameters:
rotationCenterX The rotation center x coordinate.
rotationCenterY The rotation center y coordinate.

setupHourHand
virtual void setupHourHand (const BitmapId hourHandBitmapId ,

int16_t rotationCenterX ,
int16_t rotationCenterY
)

Sets up the hour hand.

The specified rotation center is the point of the hand that is to be placed on top of the clock
rotation center. That is the point that the hand rotates around. The rotation point is relative to the
supplied bitmap and can be placed outside of it.

Parameters:
hourHandBitmapId Identifier for the hour hand bitmap.
rotationCenterX The hand rotation center x coordinate.
rotationCenterY The hand rotation center y coordinate.

NOTE

If no hour hand is setup it will just be omitted.

setupMinuteHand
virtual void setupMinuteHand (const BitmapId minuteHandBitmapId ,

int16_t rotationCenterX ,
int16_t rotationCenterY
)

Sets up the minute hand.

The specified rotation center is the point of the hand that is to be placed on top of the clock
rotation center. That is the point that the hand rotates around. The rotation point is relative to the
supplied bitmap but can be placed outside of it.

Parameters:
minuteHandBitmapId Identifier for the minute hand bitmap.
rotationCenterX The hand rotation center x coordinate.

rotationCenterY The hand rotation center y coordinate.

NOTE

If no minute hand is setup it will just be omitted.

setupSecondHand
virtual void setupSecondHand (const BitmapId secondHandBitmapId ,

int16_t rotationCenterX ,
int16_t rotationCenterY
)

Sets up the second hand.

The specified rotation center is the point of the hand that is to be placed on top of the clock
rotation center. That is the point that the hand rotates around. The rotation point is relative to the
supplied bitmap but can be placed outside of it.

Parameters:
secondHandBitmapId Identifier for the second hand bitmap.
rotationCenterX The hand rotation center x coordinate.
rotationCenterY The hand rotation center y coordinate.

NOTE

If no second hand is setup it will just be omitted.

Protected Functions Documentation
animationEnabled

virtual bool animationEnabled () const

Is animation enabled for the hands?

Returns:

true if animation is enabled.

convertHandValueToAngle

virtual float convertHandValueToAngle (uint8_t steps , const
uint8_t handValue , const
uint8_t secondHandValue =0 const
) const

Convert hand value to angle.

Parameters:
steps Number of steps the primary hand value is divided into, i.e. 60 for

minutes/seconds and 12 for hour.
handValue The actual value for the hand in question (in the range [0; steps]).
secondHandValue (Optional) If the angle should be corrected for a secondary hand its value

should be specified here (in the range [0; 60]). This is the case when
setHourHandMinuteCorrection(true) or
setMinuteHandSecondCorrection(true) is selected.

Returns:

The converted value to angle.

setupHand
virtual void setupHand (TextureMapper & hand ,

const BitmapId bitmapId ,
int16_t rotationCenterX ,
int16_t rotationCenterY
)

Sets up a given the hand.

Parameters:
hand Reference to the hand being setup.
bitmapId The bitmap identifier for the given hand.
rotationCenterX The hand rotation center x coordinate.
rotationCenterY The hand rotation center y coordinate.

updateClock
virtual void updateClock ()

Update the visual representation of the clock on the display.

Reimplements: touchgfx::AbstractClock::updateClock

Protected Attributes Documentation
animationDuration

uint16_t animationDuration

The duration of hand animations. If 0 animations are disabled.

animationEquation
EasingEquation animationEquation

The easing equation used by hand animations.

background
Image background

The background image of the AnalogClock.

clockRotationCenterX
int16_t clockRotationCenterX

The x coordinate of the rotation point of the hands.

clockRotationCenterY
int16_t clockRotationCenterY

The y coordinate of the rotation point of the hands.

hourHand
AnimationTextureMapper hourHand

TextureMapper used for drawing the hourHand.

hourHandMinuteCorrectionActive
bool hourHandMinuteCorrectionActive

Is hour hand minute correction active.

lastHour
uint8_t lastHour

The last know hour value.

lastMinute
uint8_t lastMinute

The last know minute value.

lastSecond
uint8_t lastSecond

The last know second value.

minuteHand
AnimationTextureMapper minuteHand

TextureMapper used for drawing the minuteHand.

minuteHandSecondCorrectionActive
bool minuteHandSecondCorrectionActive

Is minute hand second correction active.

secondHand
AnimationTextureMapper secondHand

TextureMapper used for drawing the secondHand.

Version: 4.16

AnimatedImage
A widget capable of basic animation using a range of bitmaps. The AnimatedImage is capable of
running the animation from start to end or, in reverse order, end to start. It is capable of doing a single
animation or looping the animation until stopped or paused.

Inherits from: Image, Widget, Drawable

Public Functions
AnimatedImage(const BitmapId & start, const BitmapId & end, const uint8_t &
updateInterval =1)
Constructs an AnimatedImage.

AnimatedImage(const uint8_t & updateInterval =1)
Constructs an AnimatedImage without initializing bitmaps.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to timer
ticks.

bool isAnimatedImageRunning() const
Gets the running state of the AnimatedImage.

bool isReverse()
Query if this object is running in reverse.

virtual void pauseAnimation()
Toggles the running state of an animation.

virtual void setBitmap(const Bitmap & bitmap)
Sets the bitmap for this Image and updates the width and height of this widget to match
those of the Bitmap.

virtual void setBitmapEnd(const Bitmap & bitmap)
Sets the end bitmap for this AnimatedImage sequence.

void setBitmaps(BitmapId start, BitmapId end)
Sets the bitmaps that are used by the animation.

void setDoneAction(GenericCallback< const AnimatedImage & > & callback)
Associates an action to be performed when the animation of the AnimatedImage is
done.

void setUpdateTicksInterval(uint8_t updateInterval)
Sets the update interval.

virtual void startAnimation(const bool rev, const bool reset =false, const bool loop =false)
Starts the animation with the given parameters for animation direction, normal or
reverse, whether to restart the animation and finally if the animation should loop
automatically upon completion.

virtual void stopAnimation()
Stops and resets the animation.

Protected Attributes
GenericCallback< const AnimatedImage & > * animationDoneAction

Pointer to the callback to be executed when
animation is done.

BitmapId endId
Id of last bitmap in animation.

bool loopAnimation
If true, continuously loop animation.

bool reverse
If true, run in reverse direction (last to first).

bool running
If true, animation is running.

BitmapId startId
Id of first bitmap in animation.

uint8_t ticksSinceUpdate
Number of ticks since last animation update.

uint8_t updateTicksInterval
Number of ticks between each animation update
(image change).

Additional inherited members
Public Functions inherited from Image
virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

Bitmap getBitmap() const
Gets the Bitmap currently assigned to the Image widget.

BitmapId getBitmapId() const
Gets the BitmapId currently assigned to the Image widget.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

Image(const Bitmap & bitmap =Bitmap())
Constructs a new Image with a default alpha value of 255 (solid) and a default Bitmap
(undefined) if none is specified.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

Protected Attributes inherited from Image
uint8_t alpha

The Alpha for this image.

Bitmap bitmap
The Bitmap to display.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)

Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
AnimatedImage

AnimatedImage (const BitmapId & start ,
const BitmapId & end ,
const uint8_t & updateInterval =1
)

Constructs an AnimatedImage.

The start and the end specifies the range of bitmaps to be used for animation. The update interval
defines how often the animation should be updated. The animation will iterate over the bitmaps
that lies between the IDs of start and end, both included.

Parameters:
start Defines the start of the range of images in the animation.
end Defines the end of the range of images in the animation.
updateInterval (Optional) Defines the number of ticks between each animation step. Higher

value results in a slower animation. Default is to update the image on every
tick.

AnimatedImage
AnimatedImage (const uint8_t & updateInterval =1)

Constructs an AnimatedImage without initializing bitmaps.

Parameters:
updateInterval (Optional) Defines the number of ticks between each animation step. Higher

value results in a slower animation.

NOTE

The bitmaps to display must be configured through set setBitmaps function before this widget displays
anything.

handleTickEvent
virtual void handleTickEvent ()

Called periodically by the framework if the Drawable instance has subscribed to timer ticks.

See also:

Application::registerTimerWidget

Reimplements: touchgfx::Drawable::handleTickEvent

isAnimatedImageRunning
bool isAnimatedImageRunning () const

Gets the running state of the AnimatedImage.

Returns:

true if the animation is currently running, false otherwise.

isReverse
bool isReverse ()

Query if this object is running in reverse.

Returns:

true if the animation is performed in reverse order.

pauseAnimation
virtual void pauseAnimation ()

Toggles the running state of an animation.

Pauses the animation if the animation is running. Continues the animation if previously paused.

See also:

stopAnimation

setBitmap
virtual void setBitmap (const Bitmap & bitmap)

Sets the bitmap for this Image and updates the width and height of this widget to match those of
the Bitmap.

Parameters:
bitmap The bitmap instance.

NOTE

The user code must call invalidate() in order to update the image on the display.This only sets the start
image.

See also:

setBitmaps, setEndBitmap

Reimplements: touchgfx::Image::setBitmap

setBitmapEnd

virtual void setBitmapEnd (const Bitmap & bitmap)

Sets the end bitmap for this AnimatedImage sequence.

Parameters:
bitmap The bitmap.

See also:

setBitmaps, setBitmap

setBitmaps
void setBitmaps (BitmapId start ,

BitmapId end
)

Sets the bitmaps that are used by the animation.

The animation will iterate over the bitmaps that lies between the IDs of start and end, both
inclusive.

Parameters:
start Defines the start of the range of images in the animation.
end Defines the end of the range of images in the animation.

See also:

setBitmap, SetBitmapEnd

setDoneAction
void setDoneAction (GenericCallback< const AnimatedImage & > & callback)

Associates an action to be performed when the animation of the AnimatedImage is done.

If the animation is set to loop at the end, the action is also triggered when the animation starts
over.

Parameters:
callback The callback is executed when done. The callback is given the animated image.

setUpdateTicksInterval

void setUpdateTicksInterval (uint8_t updateInterval)

Sets the update interval.

The value specifies the number of ticks between each step of the animation. The default update
interval for animated images is 1, which means results in the fastest possible animation.

Parameters:
updateInterval Defines the number of ticks between each animation step. Higher value results

in a slower animation.

startAnimation
virtual void startAnimation (const bool rev ,

const bool reset =false,
const bool loop =false
)

Starts the animation with the given parameters for animation direction, normal or reverse, whether
to restart the animation and finally if the animation should loop automatically upon completion.

Parameters:
rev Defines if the animation should be performed in reverse order.
reset (Optional) Defines if the animation should reset and start from the first (or last if reverse

order) bitmap.
loop (Optional) Defines if the animation should loop or do a single animation.

stopAnimation
virtual void stopAnimation ()

Stops and resets the animation.

If the animation should not reset to the first image in the animation sequence, use
pauseAnimation().

See also:

startAnimation, pauseAnimation

Protected Attributes Documentation

animationDoneAction
GenericCallback< const AnimatedImage & > * animationDoneAction

Pointer to the callback to be executed when animation is done.

endId
BitmapId endId

Id of last bitmap in animation.

loopAnimation
bool loopAnimation

If true, continuously loop animation.

reverse
bool reverse

If true, run in reverse direction (last to first).

running
bool running

If true, animation is running.

startId
BitmapId startId

Id of first bitmap in animation.

ticksSinceUpdate

p
uint8_t ticksSinceUpdate

Number of ticks since last animation update.

updateTicksInterval
uint8_t updateTicksInterval

Number of ticks between each animation update (image change).

Version: 4.16

AnimatedImageButtonStyle
An animated image button style. An animated image button style. This class is supposed to be used
with one of the ButtonTrigger classes to create a functional button. This class will show the first or last
image of an animated image depending on the state of the button (pressed or released). When the
state changes the button will show the sequence of images in forward or reversed order.

The AnimatedImageButtonStyle will set the size of the enclosing container (normally
AbstractButtonContainer) to the size of the first Bitmap. This can be overridden by calling
setWidth/setHeight after setting the bitmaps.

The position of the bitmap can be adjusted with setBitmapXY (default is upper left corner).

Template Parameters:

T Generic type parameter. Typically a AbstractButtonContainer subclass.

See: AbstractButtonContainer

Inherits from: T

Public Functions
AnimatedImageButtonStyle()

void setBitmaps(const Bitmap & bitmapStart, const Bitmap & bitmapEnd)
Sets the bitmaps.

void setBitmapXY(uint16_t x, uint16_t y)
Sets bitmap x and y.

void setUpdateTicksInterval(uint8_t updateInterval)
Sets update ticks interval.

Protected Functions
virtual void handleAlphaUpdated()

Handles what should happen when the alpha is updated.

virtual void handlePressedUpdated()
Handles what should happen when the pressed state is updated.

Protected Attributes
AnimatedImage buttonAnimatedImage

The button animated image.

Public Functions Documentation
AnimatedImageButtonStyle

AnimatedImageButtonStyle ()

setBitmaps
void setBitmaps (const Bitmap & bitmapStart ,

const Bitmap & bitmapEnd
)

Sets the bitmaps.

Parameters:
bitmapStart The bitmap start.
bitmapEnd The bitmap end.

setBitmapXY
void setBitmapXY (uint16_t x ,

uint16_t y
)

Sets bitmap x and y.

Parameters:
x An uint16_t to process.
y An uint16_t to process.

setUpdateTicksInterval
void setUpdateTicksInterval (uint8_t updateInterval)

Sets update ticks interval.

Parameters:
updateInterval The update interval.

Protected Functions Documentation
handleAlphaUpdated

virtual void handleAlphaUpdated ()

Handles what should happen when the alpha is updated.

handlePressedUpdated
virtual void handlePressedUpdated ()

Handles what should happen when the pressed state is updated.

Protected Attributes Documentation
buttonAnimatedImage

AnimatedImage buttonAnimatedImage

The button animated image.

Version: 4.16

AnimationSetting
Information about how a specific animation parameter should be animated.

Public Attributes
bool animationActive

Should this animation be performed?

uint16_t animationDelay
A delay before the actual animation start. Expressed in ticks.

uint16_t animationDuration
The complete duration of the animation. Expressed in ticks.

float animationEnd
The animation end value.

EasingEquation animationProgressionEquation
EasingEquation expressing the development of the value during the animation.

float animationStart
The animation start value.

Public Attributes Documentation
animationActive

bool animationActive

Should this animation be performed?

animationDelay
uint16_t animationDelay

A delay before the actual animation start. Expressed in ticks.

animationDuration
uint16_t animationDuration

The complete duration of the animation. Expressed in ticks.

animationEnd
float animationEnd

The animation end value.

animationProgressionEquation
EasingEquation animationProgressionEquation

EasingEquation expressing the development of the value during the animation.

animationStart
float animationStart

The animation start value.

Version: 4.16

AnimationTextureMapper
A TextureMapper with animation capabilities. Note that the angles of the TextureMapper is normalized
to lie in the range [0; 2PI[at the beginning at the animation. The end angles should be relative to this
and are limited to values in the range [-32.7; 32.7].

Inherits from: TextureMapper, Image, Widget, Drawable

Protected Classes
struct AnimationSetting

Information about how a specific animation parameter should be animated.

Public Types
enum AnimationParameter { X_ROTATION, Y_ROTATION, Z_ROTATION, SCALE }

Values that represent different animation parameter.

Public Functions
AnimationTextureMapper()

virtual void cancelAnimationTextureMapperAnimation()
Cancel move animation.

virtual uint16_t getAnimationStep()
Gets the current animation step measured in ticks since the call to startAnimation().

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to timer
ticks.

virtual bool isTextureMapperAnimationRunning() const
Gets whether or not the animation is running.

void setTextureMapperAnimationEndedAction(GenericCallback< const
AnimationTextureMapper & > & callback)

Associates an action to be performed when the animation ends.

void setTextureMapperAnimationStepAction(GenericCallback< const
AnimationTextureMapper & > & callback)
Associates an action to be performed for every step in the animation.

virtual void
setupAnimation(AnimationParameter parameter, float endValue, uint16_t duration,
uint16_t delay, EasingEquation progressionEquation
=&EasingEquations::linearEaseNone)
Sets up the animation for a specific parameter (angle/scale) for the next animation.

virtual void startAnimation()
Starts the animation from the current position to the specified end angles/scale, as
specified by one or more calls to setupAnimation().

Public Attributes
const int NUMBER_OF_ANIMATION_PARAMETERS

Number of animation parameters.

Protected Attributes
uint16_t animationCounter

Counter that is equal to the current step in
the animation.

bool animationRunning
Boolean that is true if the animation is
running.

AnimationSetting animations
Descriptions of the animation of specific
animation parameters.

GenericCallback< const AnimationTextureMapper & > * textureMapperAnimationEndedCallback
Callback that is executed after the
animation ends.

GenericCallback< const AnimationTextureMapper & > * textureMapperAnimationStepCallback
Callback that is executed after every step
of the animation.

Additional inherited members
Public Types inherited from TextureMapper

enum RenderingAlgorithm { NEAREST_NEIGHBOR, BILINEAR_INTERPOLATION }
Rendering algorithm to use when scaling the bitmap.

Public Functions inherited from TextureMapper
virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

virtual float getBitmapPositionX() const
Gets bitmap position x coordinate.

virtual float getBitmapPositionY() const
Gets bitmap position y coordinate.

virtual float getCameraDistance() const
Gets camera distance.

virtual float getCameraX() const
Gets camera x coordinate.

virtual float getCameraY() const
Gets camera y coordinate.

virtual float getOrigoX() const
Gets transformation origo x coordinate.

virtual float getOrigoY() const
Gets transformation origo y coordinate.

virtual float getOrigoZ() const
Gets transformation origo z coordinate.

virtual RenderingAlgorithm getRenderingAlgorithm() const
Gets the algorithm used when rendering.

virtual float getScale() const
Gets the scale of the image.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid
(opaque).

virtual float getX0() const
Get the x coordinate of the top left corner of the transformed bitmap.

virtual float getX1() const
Get the x coordinate of the top right corner of the transformed bitmap.

virtual float getX2() const
Get the x coordinate of the bottom right of the transformed bitmap.

virtual float getX3() const
Get the x coordinate of the bottom left corner of the transformed
bitmap.

virtual float getXAngle() const
Get the x angle.

virtual float getY0() const
Get the y coordinate of the top left corner of the transformed bitmap.

virtual float getY1() const
Get the y coordinate of the top right corner of the transformed bitmap.

virtual float getY2() const
Get the y coordinate of the bottom right corner of the transformed
bitmap.

virtual float getY3() const
Get the y coordinate of the bottom left corner of the transformed
bitmap.

virtual float getYAngle() const
Get the y angle.

virtual float getZ0() const
Get the z coordinate of the top left corner of the transformed bitmap.

virtual float getZ1() const
Get the z coordinate of the top right corner of the transformed bitmap.

virtual float getZ2() const

Get the z coordinate of the bottom right corner of the transformed
bitmap.

virtual float getZ3() const
Get the z coordinate of the bottom left corner of the transformed
bitmap.

virtual float getZAngle() const
Get the z angle.

void invalidateBoundingRect() const
Invalidate the bounding rectangle of the transformed bitmap.

virtual void setBitmap(const Bitmap & bitmap)
Sets the bitmap for this TextureMapper and updates the width and
height of this widget to match those of the Bitmap.

virtual void setBitmapPosition(float x, float y)
Sets the position of the bitmap within the TextureMapper.

virtual void setBitmapPosition(int x, int y)
Sets the position of the bitmap within the TextureMapper.

virtual void setCamera(float x, float y)
Sets the camera coordinate.

virtual void setCameraDistance(float d)
Sets camera distance.

virtual void setOrigo(float x, float y)
Sets the transformation origo (center) in two dimensions.

virtual void setOrigo(float x, float y, float z)
Sets the transformation origo (center).

virtual void setRenderingAlgorithm(RenderingAlgorithm algorithm)
Sets the render algorithm to be used.

virtual void setScale(float scale)
Sets the scale of the image.

TextureMapper(const Bitmap & bitmap =Bitmap())
Constructs a new TextureMapper with a default alpha value of 255
(solid) and a default Bitmap (undefined) if none is specified.

virtual void updateAngles(float newXAngle, float newYAngle, float newZAngle)
Updates the angles of the image.

virtual void updateXAngle(float newXAngle)
Updates the x angle.

virtual void updateYAngle(float newYAngle)
Updates the y angle.

virtual void updateZAngle(float newZAngle)
Updates the z angle.

Protected Functions inherited from TextureMapper
void applyTransformation()

Transform the bitmap using the supplied origo, scale, rotation and camera.

void
drawTriangle(const Rect & invalidatedArea, uint16_t fb, const float triangleXs,
const float triangleYs, const float triangleZs, const float triangleUs, const float
triangleVs) const
The TextureMapper will draw the transformed bitmap by drawing two triangles.

Rect getBoundingRect() const
Gets bounding rectangle of the transformed bitmap.

RenderingVariant lookupRenderVariant() const
Returns the rendering variant based on the bitmap format, alpha value and
rendering algorithm.

Protected Attributes inherited from TextureMapper
float cameraDistance

The camera distance.

RenderingAlgorithm currentRenderingAlgorithm
The current rendering algorithm.

float imageX0
The coordinate for the image points.

float imageX1
The coordinate for the image points.

float imageX2
The coordinate for the image points.

float imageX3
The coordinate for the image points.

float imageY0
The coordinate for the image points.

float imageY1
The coordinate for the image points.

float imageY2
The coordinate for the image points.

float imageY3
The coordinate for the image points.

float imageZ0
The coordinate for the image points.

float imageZ1
The coordinate for the image points.

float imageZ2
The coordinate for the image points.

float imageZ3
The coordinate for the image points.

float scale
The scale.

uint16_t subDivisionSize
The size of the affine sub divisions.

float xAngle
The angle x.

float xBitmapPosition
The bitmap position x.

float xCamera
The camera x coordinate.

float xOrigo
The origo x coordinate.

float yAngle
The angle y.

float yBitmapPosition
The bitmap position y.

float yCamera
The camera y coordinate.

float yOrigo
The origo y coordinate.

float zAngle
The angle z.

float zOrigo
The origo z coordinate.

const int MINIMAL_CAMERA_DISTANCE
The minimal camera distance.

Public Functions inherited from Image
virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

Bitmap getBitmap() const
Gets the Bitmap currently assigned to the Image widget.

BitmapId getBitmapId() const
Gets the BitmapId currently assigned to the Image widget.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

Image(const Bitmap & bitmap =Bitmap())

Constructs a new Image with a default alpha value of 255 (solid) and a default Bitmap
(undefined) if none is specified.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setBitmap(const Bitmap & bitmap)
Sets the bitmap for this Image and updates the width and height of this widget to match
those of the Bitmap.

Protected Attributes inherited from Image
uint8_t alpha

The Alpha for this image.

Bitmap bitmap
The Bitmap to display.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const

Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)

Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Types Documentation
AnimationParameter

enum AnimationParameter

Values that represent different animation parameter.

X_ROTATION Rotation around the X axis.
Y_ROTATION Rotation around the Y axis.
Z_ROTATION Rotation around the Z axis.
SCALE Scaling of the image.

Public Functions Documentation
AnimationTextureMapper

AnimationTextureMapper ()

cancelAnimationTextureMapperAnimation
virtual void cancelAnimationTextureMapperAnimation ()

Cancel move animation.

Stops any running animation at the current position regardless of the progress made so far. Disables
all animation parameters set using setupAnimation and mark the animation as stopped.

getAnimationStep
virtual uint16_t getAnimationStep ()

Gets the current animation step measured in ticks since the call to startAnimation().

The steps during the initial delay are also counted.

Returns:

The current animation step.

handleTickEvent
virtual void handleTickEvent ()

Called periodically by the framework if the Drawable instance has subscribed to timer ticks.

See also:

Application::registerTimerWidget

Reimplements: touchgfx::Drawable::handleTickEvent

isTextureMapperAnimationRunning
virtual bool isTextureMapperAnimationRunning () const

Gets whether or not the animation is running.

Returns:

true if the animation is running.

setTextureMapperAnimationEndedAction

void setTextureMapperAnimationEndedAction (GenericCallback< const
AnimationTextureMapper & > & callback)

Associates an action to be performed when the animation ends.

Parameters:
callback The callback to be executed. The callback will be given a reference to the

AnimationTextureMapper.

See also:

GenericCallback

setTextureMapperAnimationStepAction

void setTextureMapperAnimationStepAction (GenericCallback< const
AnimationTextureMapper & > & callback)

Associates an action to be performed for every step in the animation.

Will not be called during the delay period.

Parameters:
callback The callback to be executed. The callback will be given a reference to the

AnimationTextureMapper.

See also:

GenericCallback

setupAnimation
virtual void setupAnimation (AnimationParameter parameter ,

float endValue ,
uint16_t duration ,
uint16_t delay ,

EasingEquation progressionEquation
=&EasingEquations::linearEaseNone

)

Sets up the animation for a specific parameter (angle/scale) for the next animation.

The specific parameter is chosen using the AnimationType enum. AnimationTypes that are not setup
using this method will keep their value during the animation.

Parameters:
parameter The parameter of the TextureMapper that should be animated.
endValue The end value for the parameter.
duration The duration for the animation of the parameter. Specified in ticks.
delay The delay before the animation of the parameter starts. Specified in ticks.
progressionEquation (Optional) the progression equation for the animation of this parameter.

Default is EasingEquations::linearEaseNone.

startAnimation
virtual void startAnimation ()

Starts the animation from the current position to the specified end angles/scale, as specified by one
or more calls to setupAnimation().

Public Attributes Documentation

NUMBER_OF_ANIMATION_PARAMETERS
const int NUMBER_OF_ANIMATION_PARAMETERS = SCALE + 1

Number of animation parameters.

Protected Attributes Documentation
animationCounter

uint16_t animationCounter

Counter that is equal to the current step in the animation.

animationRunning
bool animationRunning

Boolean that is true if the animation is running.

animations
AnimationSetting animations

Descriptions of the animation of specific animation parameters.

textureMapperAnimationEndedCallback
GenericCallback< const AnimationTextureMapper & > *
textureMapperAnimationEndedCallback

Callback that is executed after the animation ends.

textureMapperAnimationStepCallback
GenericCallback< const AnimationTextureMapper & > * textureMapperAnimationStepCallback

Callback that is executed after every step of the animation.

Version: 4.16

Application
The Application class is the main interface for manipulating screen contents. It holds a pointer to the
currently displayed Screen, and delegates draw requests and events to that Screen. Additionally it
contains some global application settings.

Inherits from: UIEventListener

Inherited by: MVPApplication

Protected Types
typedef Vector< Rect, 8 > RectVector_t

Type to ensure the same number of rects are in the Vector.

Public Functions
DebugPrinter * getDebugPrinter()

Returns the DebugPrinter object associated with the application.

Application * getInstance()
Gets the single instance application.

void invalidateDebugRegion()
Sets the debug string to be displayed onscreen on top of the framebuffer.

void setDebugPrinter(DebugPrinter * printer)
Sets the DebugPrinter object to be used by the application to print debug
messages.

void setDebugString(const char * string)
Sets the debug string to be displayed onscreen on top of the framebuffer.

virtual void appSwitchScreen(uint8_t screenId)
An application specific function for switching screen.

virtual void cacheDrawOperations(bool enableCache)
This function allows for deferring draw operations to a later time.

void clearAllTimerWidgets()
Clears all currently registered timer widgets.

void copyInvalidatedAreasFromTFTToClientBuffer()
This function copies the parts that were updated in the previous frame (in the tft
buffer) to the active framebuffer (client buffer).

virtual void draw()
Initiate a draw operation of the entire screen.

virtual void draw(Rect & rect)
Initiate a draw operation of the specified region of the screen.

Screen * getCurrentScreen()
Gets the current screen.

uint16_t getNumberOfRegisteredTimerWidgets() const
gets the number of timer widgets that has been registered.

uint16_t getTimerWidgetCountForDrawable(const Drawable * w) const
Gets the number of timer events registered to a widget, i.e.

virtual void handleClickEvent(const ClickEvent & evt)
Handle a click event.

virtual void handleDragEvent(const DragEvent & evt)
Handle drag events.

virtual void handleGestureEvent(const GestureEvent & evt)
Handle gestures.

virtual void handleKeyEvent(uint8_t c)
Handle an incoming character received by the HAL layer.

virtual void handlePendingScreenTransition()
Evaluates the pending Callback instances.

virtual void handleTickEvent()
Handle tick.

void registerTimerWidget(Drawable * w)
Adds a widget to the list of widgets receiving ticks every frame (typically 16.67ms)

virtual void requestRedraw()
An application specific function for requesting redraw of entire screen.

virtual void requestRedraw(Rect & rect)
An application specific function for requesting redraw of given Rect.

virtual void switchScreen(Screen * newScreen)
Switch to another Screen.

void unregisterTimerWidget(const Drawable * w)
Removes a widget from the list of widgets receiving ticks every frame (typically
16.67ms) milliseconds.

Protected Functions
Application()
Protected constructor.

void invalidateArea(Rect area)
Invalidates this area.

Public Attributes
const uint8_t MAX_TIMER_WIDGETS

Maximum number of widgets receiving ticks.

const uint16_t TICK_INTERVAL_MS
Deprecated, do not use this constant. Tick interval depends on VSYNC of your target
platform.

Protected Attributes
RectVector_t cachedDirtyAreas

When draw caching is enabled, these rects keeps
track of the dirty screen area.

bool drawCacheEnabled

True when draw caching is active.

RectVector_t lastRects
The dirty areas from last frame that needs to be
redrawn because we have swapped frame buffers.

Rect redraw
Rect describing application requested invalidate
area.

uint8_t timerWidgetCounter
A counter for each potentially registered timer
widget. Increase when registering for timer events,
decrease when unregistering.

Vector< Drawable *, MAX_TIMER_WIDGETS > timerWidgets
List of widgets that receive timer ticks.

bool transitionHandled
True if the transition is done and
Screen::afterTransition has been called.

Screen * currentScreen
Pointer to currently displayed Screen.

Transition * currentTransition
Pointer to current transition.

DebugPrinter * debugPrinter
Pointer to the DebugPrinter instance.

Rect debugRegionInvalidRect
Invalidated Debug Region.

Application * instance
Pointer to the instance of the Application-derived
subclass.

Additional inherited members
Public Functions inherited from UIEventListener

virtual ~UIEventListener()
Finalizes an instance of the UIEventListener class.

Protected Types Documentation
RectVector_t

typedef Vector< Rect, 8 > RectVector_t

Type to ensure the same number of rects are in the Vector.

Public Functions Documentation
getDebugPrinter

static DebugPrinter * getDebugPrinter ()

Returns the DebugPrinter object associated with the application.

Returns:

DebugPrinter The DebugPrinter object.

getInstance
static Application * getInstance ()

Gets the single instance application.

Returns:

The instance of this application.

invalidateDebugRegion
static void invalidateDebugRegion ()

Sets the debug string to be displayed onscreen on top of the framebuffer.

setDebugPrinter
static void setDebugPrinter (DebugPrinter * printer)

Sets the DebugPrinter object to be used by the application to print debug messages.

Parameters:
printer The debug printer to configure.

setDebugString
static void setDebugString (const char * string)

Sets the debug string to be displayed onscreen on top of the framebuffer.

Parameters:
string The debug string to display onscreen.

appSwitchScreen
virtual void appSwitchScreen (uint8_t screenId)

An application specific function for switching screen.

Overloading this can provide a means to switch screen from places that does not have access to a
pointer to the new screen. Base implementation is empty.

Parameters:
screenId An id that maps to the desired screen.

cacheDrawOperations
virtual void cacheDrawOperations (bool enableCache)

This function allows for deferring draw operations to a later time.

If active, calls to draw will simply note that the specified area is dirty, but not perform any actual
drawing. When disabling the draw cache, the dirty area will be flushed (drawn) immediately.

Parameters:
enableCache if true, all future draw operations will be cached. If false draw caching is disabled,

and the current cache (if not empty) is drawn immediately.

clearAllTimerWidgets
void clearAllTimerWidgets ()

Clears all currently registered timer widgets.

copyInvalidatedAreasFromTFTToClientBuffer
void copyInvalidatedAreasFromTFTToClientBuffer ()

This function copies the parts that were updated in the previous frame (in the tft buffer) to the
active framebuffer (client buffer).

This function only copies pixels in double buffering mode.

draw
virtual void draw ()

Initiate a draw operation of the entire screen.

Standard implementation is to delegate draw request to the current Screen.

DEPRECATED

Use draw(Rect&)

draw
virtual void draw (Rect & rect)

Initiate a draw operation of the specified region of the screen.

Standard implementation is to delegate draw request to the current Screen.

Parameters:
rect The area to draw.

NOTE

Unlike Widget::draw this is safe to call from user code as it will properly traverse widgets in z-order. The
coordinates given must be absolute coordinates.

getCurrentScreen
Screen * getCurrentScreen ()

Gets the current screen.

Returns:

The current screen.

getNumberOfRegisteredTimerWidgets
uint16_t getNumberOfRegisteredTimerWidgets () const

gets the number of timer widgets that has been registered.

Returns:

The size of timerWidgets.

getTimerWidgetCountForDrawable
uint16_t getTimerWidgetCountForDrawable (const Drawable * w)

Gets the number of timer events registered to a widget, i.e.

how many times a drawable must be unregistered until it no longer receives timer ticks.

Parameters:
w The widget to to get count from.

Returns:

0 if the drawable is not registered as a timer widget, otherwise returns how many times the
drawable is currently registered.

handleClickEvent
virtual void handleClickEvent (const ClickEvent & evt)

Handle a click event.

Standard implementation is to delegate the event to the current screen. Called by the framework
when a click is detected by some platform specific means.

Parameters:
evt The ClickEvent.

Reimplements: touchgfx::UIEventListener::handleClickEvent

handleDragEvent
virtual void handleDragEvent (const DragEvent & evt)

Handle drag events.

Called by the framework when a drag is detected by some platform specific means. Standard
implementation is to delegate drag event to current screen.

Parameters:
evt The drag event, expressed in absolute coordinates.

Reimplements: touchgfx::UIEventListener::handleDragEvent

handleGestureEvent
virtual void handleGestureEvent (const GestureEvent & evt)

Handle gestures.

Called by the framework when a gesture is detected by some platform specific means. Standard
implementation is to delegate drag event to current screen.

Parameters:
evt The gesture event.

Reimplements: touchgfx::UIEventListener::handleGestureEvent

handleKeyEvent
virtual void handleKeyEvent (uint8_t c)

Handle an incoming character received by the HAL layer.

Standard implementation delegates to current screen (which, in turn, does nothing).

Parameters:
c The incomming character to handle.

Reimplements: touchgfx::UIEventListener::handleKeyEvent

handlePendingScreenTransition
virtual void handlePendingScreenTransition ()

Evaluates the pending Callback instances.

If a callback is valid, it is executed and a Screen transition is executed. This base implementation is
empty and does nothing.

Reimplements: touchgfx::UIEventListener::handlePendingScreenTransition

Reimplemented by: touchgfx::MVPApplication::handlePendingScreenTransition

handleTickEvent
virtual void handleTickEvent ()

Handle tick.

Standard implementation is to delegate tick to the widgets that have registered to receive one.
Called by some platform specific means.

Reimplements: touchgfx::UIEventListener::handleTickEvent

registerTimerWidget
void registerTimerWidget (Drawable * w)

Adds a widget to the list of widgets receiving ticks every frame (typically 16.67ms)

Parameters:
w The widget to add.

NOTE

The framework keeps track of the number of times a specific widget is registered.

See also:

unregisterTimerWidget

requestRedraw
virtual void requestRedraw ()

An application specific function for requesting redraw of entire screen.

requestRedraw
virtual void requestRedraw (Rect & rect)

An application specific function for requesting redraw of given Rect.

Parameters:
rect The Rect that must be redrawn.

switchScreen
virtual void switchScreen (Screen * newScreen)

Switch to another Screen.

Will call tearDownScreen on current Screen before switching, and subsequently call setupScreen
and draw automatically for the new Screen.

Parameters:
newScreen A pointer to the new screen.

unregisterTimerWidget
void unregisterTimerWidget (const Drawable * w)

Removes a widget from the list of widgets receiving ticks every frame (typically 16.67ms)
milliseconds.

Parameters:
w The widget to remove.

NOTE

If widget has been registered multiple times, an equal number of calls to unregister are required to stop
widget from receiving tick events.

Protected Functions Documentation
Application

Application ()

Protected constructor.

invalidateArea
void invalidateArea (Rect area)

Invalidates this area.

Parameters:
area The area to invalidate.

Public Attributes Documentation
MAX_TIMER_WIDGETS

const uint8_t MAX_TIMER_WIDGETS = 32

Maximum number of widgets receiving ticks.

TICK_INTERVAL_MS
const uint16_t TICK_INTERVAL_MS = 10

Deprecated, do not use this constant. Tick interval depends on VSYNC of your target platform.

Protected Attributes Documentation
cachedDirtyAreas

RectVector_t cachedDirtyAreas

When draw caching is enabled, these rects keeps track of the dirty screen area.

drawCacheEnabled
bool drawCacheEnabled

True when draw caching is active.

lastRects
RectVector_t lastRects

The dirty areas from last frame that needs to be redrawn because we have swapped frame buffers.

redraw
Rect redraw

Rect describing application requested invalidate area.

timerWidgetCounter
uint8_t timerWidgetCounter

A counter for each potentially registered timer widget. Increase when registering for timer events,
decrease when unregistering.

timerWidgets
Vector< Drawable *, MAX_TIMER_WIDGETS > timerWidgets

List of widgets that receive timer ticks.

transitionHandled
bool transitionHandled

True if the transition is done and Screen::afterTransition has been called.

currentScreen
Screen * currentScreen

Pointer to currently displayed Screen.

currentTransition
Transition * currentTransition

Pointer to current transition.

debugPrinter
DebugPrinter * debugPrinter

Pointer to the DebugPrinter instance.

debugRegionInvalidRect
Rect debugRegionInvalidRect

Invalidated Debug Region.

instance
Application * instance

Pointer to the instance of the Application-derived subclass.

Version: 4.16

Bitmap
This class provides a proxy object for a bitmap image stored in the application specific bitmap
database. The proxy provides access to the raw bitmap data as well as metadata.

Public Classes
struct BitmapData

Data of a bitmap.

struct CacheTableEntry
Cache bookkeeping.

struct DynamicBitmapData
Data of a dynamic Bitmap.

Public Types
enum BitmapFormat { RGB565, RGB888, ARGB8888, BW, BW_RLE, GRAY2, GRAY4, ARGB2222,

ABGR2222, RGBA2222, BGRA2222, L8, A4, CUSTOM }
Data of a bitmap can be stored in the following formats.

enum ClutFormat { CLUT_FORMAT_L8_ARGB8888, CLUT_FORMAT_L8_RGB888,
CLUT_FORMAT_L8_RGB565 }
Color data of a clut can be stored in the following formats.

Public Functions
Bitmap(const BitmapId id =BITMAP_INVALID)
Creates and binds a Bitmap instance to the corresponding entry in the BitmapData
array.

const uint8_t * getData() const
Gets a pointer to the Bitmap data.

const uint8_t * getExtraData() const

Gets a pointer to the extra (alpha) data, if present in the Bitmap.

BitmapFormat getFormat() const
Gets the format of how the Bitmap is stored.

uint16_t getHeight() const
Gets the height of the Bitmap in pixels.

BitmapId getId() const
Gets the id of this Bitmap.

Rect getRect() const
Gets the rectangle describing the dimensions of the Bitmap.

Rect getSolidRect() const
Gets the largest solid, i.e.

uint16_t getWidth() const
Gets the width of the Bitmap in pixels.

bool hasTransparentPixels() const
Query if this object has transparent pixels.

bool isAlphaPerPixel() const
Query if this object has an alpha channel.

operator BitmapId() const
Gets the id of this Bitmap.

bool cache(BitmapId id)
Cache this Bitmap into unused RAM in the bitmap cache.

bool cacheAll()
Cache all bitmaps from the Bitmap Database into RAM.

uint8_t * cacheGetAddress(BitmapId id)
Get address of cache buffer for this Bitmap.

bool cacheIsCached(BitmapId id)
Check if the Bitmap is cached.

bool cacheRemoveBitmap(BitmapId id)
Remove this Bitmap from the RAM cache.

bool cacheReplaceBitmap(BitmapId out, BitmapId in)
Replace a Bitmap in RAM with another Bitmap.

void clearCache()
Clears the cached bitmaps from RAM.

void compactCache()
Compact the bitmap cache to get continuous free memory on top.

bool dynamicBitmapAddSolidRect(BitmapId id, const Rect & solidRect)
Updates the solid rectangle of a dynamic Bitmap to include the given rectangle.

BitmapId dynamicBitmapCreate(const uint16_t width, const uint16_t height, BitmapFormat
format, ClutFormat clutFormat =CLUT_FORMAT_L8_ARGB8888)
Create a dynamic Bitmap.

BitmapId dynamicBitmapCreateCustom(const uint16_t width, const uint16_t height, uint8_t
customSubformat, uint32_t size)
Create a dynamic bitmap in custom format.

BitmapId dynamicBitmapCreateExternal(const uint16_t width, const uint16_t height, const
void * pixels, BitmapFormat format, uint8_t customSubformat =0)
Create a dynamic bitmap without reserving memory in the dynamic bitmap cache.

bool dynamicBitmapDelete(BitmapId id)
Delete a dynamic bitmap.

uint8_t * dynamicBitmapGetAddress(BitmapId id)
Get the address of the dynamic Bitmap data.

bool dynamicBitmapSetSolidRect(BitmapId id, const Rect & solidRect)
Set the solid rectangle of a dynamic Bitmap.

uint8_t * getCacheTopAddress()
Gets the address of the first unused memory in the cache.

bool isDynamicBitmap(BitmapId id)
Check if a given bitmap id is the id of a dynamic bitmap.

void registerBitmapDatabase(const BitmapData data, const uint16_t n, uint16_t cachep
=0, uint32_t csize =0, uint32_t numberOfDynamicBitmaps =0)
Registers an array of bitmaps.

void removeCache()

Removes the Bitmap cache.

void setCache(uint16_t * cachep, uint32_t csize, uint32_t numberOfDynamicBitmaps =0)
Register a memory region in which Bitmap data can be cached.

Public Types Documentation
BitmapFormat

enum BitmapFormat

Data of a bitmap can be stored in the following formats.

RGB565 16-bit, 5 bits for red, 6 bits for green, 5 bits for blue. No alpha channel
RGB888 24-bit, 8 bits for each of red, green and blue. No alpha channel
ARGB8888 32-bit, 8 bits for each of red, green, blue and alpha channel
BW 1-bit, black / white. No alpha channel
BW_RLE 1-bit, black / white. No alpha channel. Image is compressed with horizontal RLE
GRAY2 2-bit grayscale
GRAY4 4-bit grayscale
ARGB2222 8-bit color
ABGR2222 8-bit color
RGBA2222 8-bit color
BGRA2222 8-bit color
L8 8-bit indexed color
A4 4-bit alpha level
CUSTOM Non-standard platform specific format.

ClutFormat
enum ClutFormat

Color data of a clut can be stored in the following formats.

CLUT_FORMAT_L8_ARGB8888 32-bit, 8 bits for each of red, green, blue and alpha

CLUT_FORMAT_L8_RGB888 24-bit, 8 bits for each of red, green and blue. No per pixel alpha
channel

CLUT_FORMAT_L8_RGB565 16-bit, 5 bits for red, 6 bits for green, 5 bits for blue. No per pixel
alpha channel

Public Functions Documentation
Bitmap

Bitmap (const BitmapId id =BITMAP_INVALID)

Creates and binds a Bitmap instance to the corresponding entry in the BitmapData array.

Parameters:
id (Optional) The unique bitmap identifier.

getData
const uint8_t * getData () const

Gets a pointer to the Bitmap data.

Returns:

A pointer to the raw Bitmap data.

NOTE

If this Bitmap is cached, it will return the cached version of Bitmap data.

getExtraData
const uint8_t * getExtraData () const

Gets a pointer to the extra (alpha) data, if present in the Bitmap.

For images stored in L8 format, a pointer to the CLUT will be returned. For non-opaque RGB565
images, a pointer to the alpha channel will be returned.

Returns:

A pointer to the raw alpha channel data or CLUT. If no alpha channel or CLUT exist for the given
Bitmap, 0 is returned.

NOTE

If this Bitmap is cached, it will return the cached version of alpha data for this Bitmap.

getFormat
BitmapFormat getFormat () const

Gets the format of how the Bitmap is stored.

Returns:

The format of how the Bitmap data is stored.

getHeight
uint16_t getHeight () const

Gets the height of the Bitmap in pixels.

Returns:

The Bitmap height in pixels.

getId
BitmapId getId () const

Gets the id of this Bitmap.

Returns:

The id of this Bitmap.

getRect
Rect getRect () const

Gets the rectangle describing the dimensions of the Bitmap.

Returns:

a Rect describing the dimensions of this Bitmap.

getSolidRect
Rect getSolidRect () const

Gets the largest solid, i.e.

not transparent, rectangle in the Bitmap.

Returns:

The maximum solid rectangle of the Bitmap.

getWidth
uint16_t getWidth () const

Gets the width of the Bitmap in pixels.

Returns:

The Bitmap width in pixels.

hasTransparentPixels
bool hasTransparentPixels () const

Query if this object has transparent pixels.

Returns:

True if this bitmap has transparent pixels.

isAlphaPerPixel
bool isAlphaPerPixel () const

Query if this object has an alpha channel.

Returns:

True if the bitmap contains an alpha channel (an alpha value for each pixel)

operator BitmapId
operator BitmapId () const

Gets the id of this Bitmap.

Returns:

The id of this Bitmap.

cache
static bool cache (BitmapId id)

Cache this Bitmap into unused RAM in the bitmap cache.

A memory region large enough to hold this bitmap must be configured and a large enough part of
it must be available. Caching of a bitmap may involve a defragmentation of the bitmap cache.

Parameters:
id The id of the Bitmap to cache.

Returns:

true if caching went well, false otherwise.

See also:

registerBitmapDatabase, compactCache

cacheAll
static bool cacheAll ()

Cache all bitmaps from the Bitmap Database into RAM.

A memory region large enough to hold all bitmaps must be configured.

Returns:

True if all bitmaps where cached.

See also:

cache

cacheGetAddress

static uint8_t * cacheGetAddress (BitmapId id)

Get address of cache buffer for this Bitmap.

Parameters:
id The id of the Bitmap in cache.

Returns:

Address if Bitmap was found, zero otherwise.

NOTE

The address is only valid until next Bitmap::cache() call.

cacheIsCached
static bool cacheIsCached (BitmapId id)

Check if the Bitmap is cached.

Parameters:
id The id of the Bitmap.

Returns:

true if Bitmap is cached.

cacheRemoveBitmap
static bool cacheRemoveBitmap (BitmapId id)

Remove this Bitmap from the RAM cache.

Unless the Bitmap is otherwise stored in (slower) memory it can not be drawn anymore and must
be cached again before use. The RAM freed can be used for caching of another bitmap.

Parameters:
id The id of the Bitmap to cache.

Returns:

true if Bitmap was found and removed, false otherwise.

See also:

registerBitmapDatabase

cacheReplaceBitmap
static bool cacheReplaceBitmap (BitmapId out ,

BitmapId in
)

Replace a Bitmap in RAM with another Bitmap.

The Bitmaps must have same size.

Parameters:
out The id of the Bitmap to remove from the cache.
in The id of the Bitmap to cache.

Returns:

true if the replacement went well, false otherwise.

clearCache
static void clearCache ()

Clears the cached bitmaps from RAM.

compactCache
static void compactCache ()

Compact the bitmap cache to get continuous free memory on top.

This method is called by Bitmap::cache when required.

dynamicBitmapAddSolidRect
static bool dynamicBitmapAddSolidRect (BitmapId id ,

const Rect & solidRect
)

Updates the solid rectangle of a dynamic Bitmap to include the given rectangle.

Only relevant for ARGB8888 bitmap and 8bpp bitmap formats, as these formats include an alpha
channel. The solid part of the Bitmap is drawn faster than the transparent parts.

Parameters:
id The identifier.
solidRect The solid rectangle.

Returns:

true if it succeeds, false if it fails.

dynamicBitmapCreate
static BitmapId dynamicBitmapCreate (const uint16_t width ,

const uint16_t height ,
BitmapFormat format ,
ClutFormat clutFormat =CLUT_FORMAT_L8_ARGB8888
)

Create a dynamic Bitmap.

The clutFormat parameter is ignored for bitmaps not in L8 format. Creation of a new dynamic
bitmap may cause existing dynamic bitmaps to be moved in memory. Do not rely on bitmap
memory addresses of dynamic bitmaps obtained from dynamicBitmapGetAddress() to be valid
across calls to dynamicBitmapCreate().

Parameters:
width Width of the Bitmap.
height Height of the Bitmap.
format Bitmap format of the Bitmap.
clutFormat (Optional) Color lookup table format of the Bitmap.

Returns:

BitmapId of the new Bitmap or BITMAP_INVALID if cache memory is full.

See also:

DynamicBitmapData

dynamicBitmapCreateCustom
static BitmapId dynamicBitmapCreateCustom (const uint16_t width ,

const uint16_t height ,
uint8_t customSubformat ,
uint32_t size
)

Create a dynamic bitmap in custom format.

Parameters:
width Width of the bitmap.
height Height of the bitmap.
customSubformat Custom format specifier
size Size in bytes of the dynamic bitmap

Returns:

BitmapId of the new bitmap or BITMAP_INVALID if cache memory is full.

NOTE

Creation of a new dynamic bitmap may cause existing dynamic bitmaps to be moved in memory. Do not
rely on bitmap memory addresses of dynamic bitmaps obtained from dynamicBitmapGetAddress() to be
valid across calls to dynamicBitmapCreateCustom() .

See also:

dynamicBitmapAddress, dynamicBitmapCreate, dynamicBitmapSetSolidRect

dynamicBitmapCreateExternal
static BitmapId dynamicBitmapCreateExternal (const uint16_t width ,

const uint16_t height ,
const void * pixels ,
BitmapFormat format ,
uint8_t customSubformat =0
)

Create a dynamic bitmap without reserving memory in the dynamic bitmap cache.

Parameters:

 Create a dynamic bitmap in custom format. size number of
 bytes is reserved in the dynamic bitmap cache. A more
 specific format can be given in the customSubformat
 parameter for use when handling more than one CUSTOM
 format. Set the solid rect if applicable.

 Create a dynamic bitmap without reserving memory in the
 dynamic bitmap cache. The pixels must be already
 available in the memory, e.g. in flash. No copying is
 performed.

width Width of the bitmap.
height Height of the bitmap.
pixels Pointer to the bitmap pixels.
format Bitmap format of the bitmap.
customSubformat Custom format specifier

Returns:

BitmapId of the new bitmap or BITMAP_INVALID if not possible.

See also:

dynamicBitmapAddress, dynamicBitmapCreate, dynamicBitmapSetSolidRect

dynamicBitmapDelete
static bool dynamicBitmapDelete (BitmapId id)

Delete a dynamic bitmap.

Parameters:
id The BitmapId of the dynamic Bitmap.

Returns:

true if it succeeds, false if it fails.

dynamicBitmapGetAddress
static uint8_t * dynamicBitmapGetAddress (BitmapId id)

Get the address of the dynamic Bitmap data.

It is important that the address of a dynamic Bitmap is not stored elsewhere as a dynamic Bitmap
may be moved in memory when other bitmaps are added and removed. Only store the BitmapId
and ask for the address of the Bitmap data when needed. The address of a dynamic bitmap may
change when other dynamic bitmaps are added and removed.

Parameters:
id The BitmapId of the dynamic bitmap.

Returns:

null if it fails, else an uint8_t*.

NOTE

Never keep the address of dynamic images, only store the BitmapId as that will not change.

dynamicBitmapSetSolidRect
static bool dynamicBitmapSetSolidRect (BitmapId id ,

const Rect & solidRect
)

Set the solid rectangle of a dynamic Bitmap.

Only relevant for ARGB8888 Bitmap and 8bpp Bitmap formats, as these formats include an alpha
channel. The solid part of the Bitmap is drawn faster than the transparent parts.

Parameters:
id The identifier.
solidRect The solid rectangle.

Returns:

true if it succeeds, false if it fails.

getCacheTopAddress
static uint8_t * getCacheTopAddress ()

Gets the address of the first unused memory in the cache.

Can be used in advanced application to reduce power consumption of external RAM by turning off
unused RAM.

Returns:

Returns the highest used address in the cache.

isDynamicBitmap
static bool isDynamicBitmap (BitmapId id)

Check if a given bitmap id is the id of a dynamic bitmap.

Parameters:
id The BitmapId of the dynamic Bitmap.

Returns:

true if the bitmap is dynamic, false otherwise.

registerBitmapDatabase
static void registerBitmapDatabase (const BitmapData * data ,

const uint16_t n ,
uint16_t * cachep =0,
uint32_t csize =0,
uint32_t numberOfDynamicBitmaps =0
)

Registers an array of bitmaps.

All Bitmap instances are bound to this database. This function is called automatically from
HAL::touchgfx_generic_init().

Parameters:
data A reference to the BitmapData storage array.
n The number of bitmaps in the array.
cachep (Optional) Pointer to memory region in which bitmap data can be

cached.
csize (Optional) Size of cache memory region in bytes (0 if unused)
numberOfDynamicBitmaps (Optional) Number of dynamic bitmaps to be allowed in the

cache.

removeCache
static void removeCache ()

Removes the Bitmap cache.

The memory can hereafter be used for other purposes. All dynamic Bitmap IDs are invalid after
this.

setCache
static void setCache (uint16_t * cachep ,

uint32_t csize ,
uint32_t numberOfDynamicBitmaps =0
)

Register a memory region in which Bitmap data can be cached.

Parameters:
cachep Pointer to memory region in which bitmap data can be cached.
csize Size of cache memory region in bytes.
numberOfDynamicBitmaps (Optional) Number of dynamic bitmaps to be allowed in the

cache.

Version: 4.16

BitmapData
Data of a bitmap.

Public Functions
BitmapFormat getFormat() const

Gets the Bitmap format by combining the high and low parts (format_hi << 3)

Public Attributes
const uint8_t *const data

The data of this Bitmap.

const uint8_t *const extraData
The data of either the alpha channel (if present) or clut data in case of indexed
color bitmap. 0 if not used.

const uint16_t format_hi
Determine the format of the data (high 3 bits)

const uint16_t format_lo
Determine the format of the data (low 3 bits)

const uint16_t height
The height of the Bitmap.

const uint16_t solidRect_height
The height of the maximum solid rectangle of the Bitmap.

const uint16_t solidRect_width
The width of the maximum solid rectangle of the Bitmap.

const uint16_t solidRect_x
The x coordinate of the maximum solid rectangle of the Bitmap.

const uint16_t solidRect_y
The y coordinate of the maximum solid rectangle of the Bitmap.

const uint16_t width
The width of the Bitmap.

Public Functions Documentation
getFormat

BitmapFormat getFormat () const

Gets the Bitmap format by combining the high and low parts (format_hi << 3) | format_lo.

Returns:

The BitmapFormat

Public Attributes Documentation
data

const uint8_t *const data

The data of this Bitmap.

extraData
const uint8_t *const extraData

The data of either the alpha channel (if present) or clut data in case of indexed color bitmap. 0 if
not used.

format_hi
const uint16_t format_hi

Determine the format of the data (high 3 bits)

format_lo
const uint16_t format_lo

Determine the format of the data (low 3 bits)

height
const uint16_t height

The height of the Bitmap.

solidRect_height
const uint16_t solidRect_height

The height of the maximum solid rectangle of the Bitmap.

solidRect_width
const uint16_t solidRect_width

The width of the maximum solid rectangle of the Bitmap.

solidRect_x
const uint16_t solidRect_x

The x coordinate of the maximum solid rectangle of the Bitmap.

solidRect_y
const uint16_t solidRect_y

The y coordinate of the maximum solid rectangle of the Bitmap.

width

const uint16_t width

The width of the Bitmap.

Version: 4.16

BlitOp
BlitOp instances carry the required information for performing operations on the LCD (framebuffer)
using DMA.

Public Attributes
uint8_t alpha

The alpha to use.

colortype color
Color to fill.

uint8_t dstFormat
The destination format.

uint16_t dstLoopStride
The number of bytes to stride the destination after every loop.

uint16_t nLoops
The number of lines.

uint16_t nSteps
The number of pixels in a line.

uint32_t operation
The operation to perform.

const uint8_t * pClut
Pointer to the source CLUT entires.

uint16_t * pDst
Pointer to the destination.

const uint16_t * pSrc
Pointer to the source (pixels or indexes)

uint8_t srcFormat
The source format.

uint16_t srcLoopStride
The number of bytes to stride the source after every loop.

Public Attributes Documentation
alpha

uint8_t alpha

The alpha to use.

color
colortype color

Color to fill.

dstFormat
uint8_t dstFormat

The destination format.

dstLoopStride
uint16_t dstLoopStride

The number of bytes to stride the destination after every loop.

nLoops
uint16_t nLoops

The number of lines.

nSteps
uint16_t nSteps

The number of pixels in a line.

operation
uint32_t operation

The operation to perform.

pClut
const uint8_t * pClut

Pointer to the source CLUT entires.

pDst
uint16_t * pDst

Pointer to the destination.

pSrc
const uint16_t * pSrc

Pointer to the source (pixels or indexes)

srcFormat
uint8_t srcFormat

The source format.

srcLoopStride

p
uint16_t srcLoopStride

The number of bytes to stride the source after every loop.

Version: 4.16

BlockTransition
A Transition that draws two small blocks in every frame. It is therefore very usefull on MCUs with
limited performance.

Inherits from: Transition

Public Functions
BlockTransition()
Initializes a new instance of the BlockTransition class.

virtual void handleTickEvent()
Handles the tick event when transitioning.

virtual void init()
Initializes the transition.

virtual void invalidate()
Block transition does not require an invalidation.

virtual void tearDown()
Tears down the Animation.

Additional inherited members
Public Functions inherited from Transition

bool isDone() const
Query if the transition is done transitioning.

virtual void setScreenContainer(Container & cont)
Sets the ScreenContainer.

Transition()
Initializes a new instance of the Transition class.

virtual ~Transition()
Finalizes an instance of the Transition class.

Protected Attributes inherited from Transition
bool done

Flag that indicates when the transition is done. This should be set by implementing
classes.

Container * screenContainer
The screen Container of the Screen transitioning to.

Public Functions Documentation
BlockTransition

BlockTransition ()

Initializes a new instance of the BlockTransition class.

Parameters:
transitionSteps (Optional) Number of steps in the transition animation.

handleTickEvent
virtual void handleTickEvent ()

Handles the tick event when transitioning.

It uncovers and invalidates two blocks in every frame, for a total of 24 frames.

Reimplements: touchgfx::Transition::handleTickEvent

init
virtual void init ()

Initializes the transition.

Called after the constructor is called, when the application changes the transition.

Reimplements: touchgfx::Transition::init

invalidate
virtual void invalidate ()

Block transition does not require an invalidation.

Invalidation is handled by the class. Do no invalidation initially.

Reimplements: touchgfx::Transition::invalidate

tearDown
virtual void tearDown ()

Tears down the Animation.

Called before the destructor is called, when the application changes the transition.

Reimplements: touchgfx::Transition::tearDown

Version: 4.16

Box
Simple widget capable of showing a rectangle of a specific color and an optional alpha.

Inherits from: Widget, Drawable

Inherited by: BoxWithBorder

Public Functions
Box()
Construct a new Box with a default alpha value of 255 (solid)

Box(uint16_t width, uint16_t height, colortype color, uint8_t
alpha =255)
Construct a Box with the given size and color (and optionally
alpha).

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

FORCE_INLINE_FUNCTION uint8_t getAlpha() const
Gets the current alpha value of the widget.

FORCE_INLINE_FUNCTION colortype getColor() const
Gets the current color of the Box.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be
solid (opaque).

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setColor(colortype color)
Sets the color of the Box.

Protected Attributes

uint8_t alpha
The alpha value used for this Box.

colortype color
The fill color for this Box.

Additional inherited members
Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation

Box
Box ()

Construct a new Box with a default alpha value of 255 (solid)

Box
Box (uint16_t width ,

uint16_t height ,
colortype color ,
uint8_t alpha =255
)

Construct a Box with the given size and color (and optionally alpha).

Parameters:
width The width of the box.
height The height of the box.
color The color of the box.
alpha (Optional) The alpha of the box. Default is 255 (solid).

draw
virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Drawable::draw

Reimplemented by: touchgfx::BoxWithBorder::draw

getAlpha

FORCE_INLINE_FUNCTION uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getColor
FORCE_INLINE_FUNCTION colortype getColor () const

Gets the current color of the Box.

Returns:

The current color of the box.

See also:

setColor, Color::getRedColor, Color::getGreenColor, Color::getRedColor

getSolidRect
virtual Rect getSolidRect () const

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

This information is important, as any Drawable underneath the solid area does not need to be
drawn.

Returns:

The solid rectangle part of the Drawable.

NOTE

The rectangle returned must be relative to upper left corner of the Drawable, meaning that a completely
solid widget should return the full size Rect(0, 0, getWidth(), getHeight()). If no area can be guaranteed to
be solid, an empty Rect(0, 0, 0, 0) must be returned. Failing to return the correct rectangle may result in
errors on the display.

Reimplements: touchgfx::Drawable::getSolidRect

setAlpha
void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setColor
void setColor (colortype color)

Sets the color of the Box.

Parameters:
color The color of the box.

See also:

getColor, Color::getColorFrom24BitRGB

Protected Attributes Documentation
alpha

uint8_t alpha

The alpha value used for this Box.

color
colortype color

The fill color for this Box.

Version: 4.16

BoxProgress
A BoxProgress which shows the current progress using a simple Box. It is possible to set the color and
the alpha of the box. It is also possible to control in what direction the box will progress (up, down, to
the left or to the right).

Inherits from: AbstractDirectionProgress, AbstractProgressIndicator, Container, Drawable

Public Functions
BoxProgress()

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual colortype getColor() const
Gets the color of the Box.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setColor(colortype color)
Sets the color of the Box.

virtual void setProgressIndicatorPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the position and dimensions of the actual progress indicator relative to the
background image.

virtual void setValue(int value)
Sets the current value in the range (min..max) set by setRange().

Protected Attributes
Box box

The box.

Additional inherited members
Public Types inherited from AbstractDirectionProgress

enum DirectionType { RIGHT, LEFT, DOWN, UP }
Values that represent directions.

Public Functions inherited from AbstractDirectionProgress
AbstractDirectionProgress()

virtual DirectionType getDirection() const
Gets the current direction for the progress indicator.

virtual void setDirection(DirectionType direction)
Sets a direction for the progress indicator.

Protected Attributes inherited from
AbstractDirectionProgress

DirectionType progressDirection
The progress direction.

Public Functions inherited from AbstractProgressIndicator
AbstractProgressIndicator()
Initializes a new instance of the AbstractProgressIndicator class with a default
range 0-100.

virtual uint16_t getProgress(uint16_t range =100) const
Gets the current progress based on the range set by setRange() and the value set by
setValue().

virtual int16_t getProgressIndicatorHeight() const
Gets progress indicator height.

virtual int16_t getProgressIndicatorWidth() const
Gets progress indicator width.

virtual int16_t getProgressIndicatorX() const
Gets progress indicator x coordinate.

virtual int16_t getProgressIndicatorY() const
Gets progress indicator y coordinate.

virtual void getRange(int & min, int & max) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps, uint16_t & minStep) const
Gets the range set by setRange().

virtual int getValue() const
Gets the current value set by setValue().

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void setBackground(const Bitmap & bitmapBackground)
Sets the background image.

virtual void setEasingEquation(EasingEquation easingEquation)
Sets easing equation to be used in updateValue.

virtual void setRange(int min, int max, uint16_t steps =0, uint16_t minStep =0)
Sets the range for the progress indicator.

void setValueSetAction(GenericCallback< const AbstractProgressIndicator & > &
callback)
Sets callback that will be triggered every time a new value is assigned to the
progress indicator.

void setValueUpdatedAction(GenericCallback< const AbstractProgressIndicator & >
& callback)
Sets callback that will be triggered when updateValue has finished animating to the
final value.

virtual void updateValue(int value, uint16_t duration)
Update the current value in the range (min..max) set by setRange().

Protected Attributes inherited from AbstractProgressIndicator
int animationDuration

Duration of the animation.

int animationEndValue
The animation end value.

int animationStartValue
The animation start value.

int animationStep
The current animation step.

Image background
The background image.

int currentValue
The current value.

EasingEquation equation
The equation used in updateValue()

Container progressIndicatorContainer
The container that holds the actual
progress indicator.

int rangeMax
The range maximum.

int rangeMin
The range minimum.

uint16_t rangeSteps
The range steps.

uint16_t rangeStepsMin
The range steps minimum.

GenericCallback< const AbstractProgressIndicator & > * valueSetCallback
New value assigned Callback.

GenericCallback< const AbstractProgressIndicator & > * valueUpdatedCallback

Animation ended Callback.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0

Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible

True if this drawable should be drawn.

Public Functions Documentation
BoxProgress

BoxProgress ()

getAlpha
virtual uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getColor
virtual colortype getColor () const

Gets the color of the Box.

Returns:

The color.

See also:

setColor

setAlpha
virtual void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setColor
virtual void setColor (colortype color)

Sets the color of the Box.

Parameters:
color The color.

See also:

getColor

setProgressIndicatorPosition
virtual void setProgressIndicatorPosition (int16_t x ,

int16_t y ,
int16_t width ,
int16_t height
)

Sets the position and dimensions of the actual progress indicator relative to the background image.

Parameters:
x The x coordinate.
y The y coordinate.
width The width of the box progress indicator.
height The height of the box progress indicator.

See also:

getProgressIndicatorX, getProgressIndicatorY, getProgressIndicatorWidth,
getProgressIndicatorHeight

Reimplements: touchgfx::AbstractProgressIndicator::setProgressIndicatorPosition

setValue
virtual void setValue (int value)

Sets the current value in the range (min..max) set by setRange().

Values lower than min are mapped to min, values higher than max are mapped to max. If a callback
function has been set using setValueSetAction, that callback will be called (unless the new value is
the same as the current value).

Parameters:
value The value.

NOTE

if value is equal to the current value, nothing happens, and the callback will not be called.

See also:

getValue, updateValue, setValueSetAction

Reimplements: touchgfx::AbstractProgressIndicator::setValue

Protected Attributes Documentation
box

Box box

The box.

Version: 4.16

BoxWithBorder
The BoxWithBorder class is used to create objects that can draw a box with a border on the display.
The width of the border can be specified. If the border width is 0 the BoxWithBorder will function just
like a Box.

Inherits from: Box, Widget, Drawable

Public Functions
BoxWithBorder()

BoxWithBorder(uint16_t width, uint16_t height, colortype
color, colortype borderColor, uint16_t borderSize, uint8_t
alpha =255)
Constructor that allows specification of dimensions and colors
of the BoxWithBorder.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

FORCE_INLINE_FUNCTION colortype getBorderColor() const
Gets the color of the border drawn along the edge of the
BoxWithBorder.

FORCE_INLINE_FUNCTION uint16_t getBorderSize() const
Gets the width of the border.

void setBorderColor(colortype color)
Sets the color of the border drawn along the edge of the
BoxWithBorder.

void setBorderSize(uint16_t size)
Sets the width of the border.

Protected Attributes
colortype borderColor

The color of the border along the edge.

uint16_t borderSize
Width of the border along the edge.

Additional inherited members
Public Functions inherited from Box

Box()
Construct a new Box with a default alpha value of 255 (solid)

Box(uint16_t width, uint16_t height, colortype color, uint8_t
alpha =255)
Construct a Box with the given size and color (and optionally
alpha).

FORCE_INLINE_FUNCTION uint8_t getAlpha() const
Gets the current alpha value of the widget.

FORCE_INLINE_FUNCTION colortype getColor() const
Gets the current color of the Box.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be
solid (opaque).

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setColor(colortype color)
Sets the color of the Box.

Protected Attributes inherited from Box
uint8_t alpha

The alpha value used for this Box.

colortype color
The fill color for this Box.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)

Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
BoxWithBorder

BoxWithBorder ()

BoxWithBorder

BoxWithBorder (uint16_t width ,
uint16_t height ,
colortype color ,
colortype borderColor ,
uint16_t borderSize ,
uint8_t alpha =255
)

Constructor that allows specification of dimensions and colors of the BoxWithBorder.

Parameters:
width The width.
height The height.
color The color.
borderColor The border color.
borderSize Size of the border.
alpha (Optional) The alpha.

draw
virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Box::draw

getBorderColor
FORCE_INLINE_FUNCTION colortype getBorderColor () const

Gets the color of the border drawn along the edge of the BoxWithBorder.

Returns:

The color of the border.

See also:

setBorderColor, getColor, Color::getRedColor, Color::getGreenColor, Color::getRedColor

getBorderSize
FORCE_INLINE_FUNCTION uint16_t getBorderSize () const

Gets the width of the border.

Returns:

The width of the border.

See also:

setBorderSize

setBorderColor
void setBorderColor (colortype color)

Sets the color of the border drawn along the edge of the BoxWithBorder.

Parameters:
color The color of the border.

See also:

setColor, getBorderColor, Color::getColorFrom24BitRGB

setBorderSize
void setBorderSize (uint16_t size)

Sets the width of the border.

If the width is set to 0, the BoxWithBorder will look exactly like a Box.

Parameters:
size The width of the border.

See also:

getBorderSize

Protected Attributes Documentation
borderColor

colortype borderColor

The color of the border along the edge.

borderSize
uint16_t borderSize

Width of the border along the edge.

Version: 4.16

BoxWithBorderButtonStyle
A box with border button style. This class is supposed to be used with one of the ButtonTrigger classes
to create a functional button. This class will show a box with a border in different colors depending on
the state of the button (pressed or released).

An image button style. This class is supposed to be used with one of the ButtonTrigger classes to
create a functional button. This class will show one of two images depending on the state of the
button (pressed or released).

Template Parameters:

T Generic type parameter. Typically a AbstractButtonContainer subclass.

See: AbstractButtonContainer, BoxWithBorder

Inherits from: T

Public Functions
BoxWithBorderButtonStyle()

void setBorderSize(uint8_t size)
Sets border size.

void setBoxWithBorderColors(const colortype colorReleased, const colortype colorPressed, const
colortype borderColorReleased, const colortype borderColorPressed)
Sets the colors.

void setBoxWithBorderHeight(int16_t height)
Sets the height.

void setBoxWithBorderPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this BoxWithBorderButtonStyle, relative to its parent.

void setBoxWithBorderWidth(int16_t width)
Sets the width.

Protected Functions
virtual void handleAlphaUpdated()

Handles what should happen when the alpha is updated.

virtual void handlePressedUpdated()
Handles what should happen when the pressed state is updated.

Protected Attributes
BoxWithBorder borderBox

The border box.

colortype borderDown
The border down.

colortype borderUp
The border up.

colortype down
The down.

colortype up
The up.

Public Functions Documentation
BoxWithBorderButtonStyle

BoxWithBorderButtonStyle ()

setBorderSize
void setBorderSize (uint8_t size)

Sets border size.

Parameters:

size The size.

setBoxWithBorderColors
void setBoxWithBorderColors (const colortype colorReleased ,

const colortype colorPressed ,
const colortype borderColorReleased ,
const colortype borderColorPressed
)

Sets the colors.

Parameters:
colorReleased The color released.
colorPressed The color pressed.
borderColorReleased The border color released.
borderColorPressed The border color pressed.

setBoxWithBorderHeight
void setBoxWithBorderHeight (int16_t height)

Sets the height.

Parameters:
height The height.

setBoxWithBorderPosition
void setBoxWithBorderPosition (int16_t x ,

int16_t y ,
int16_t width ,
int16_t height
)

Sets the size and position of this BoxWithBorderButtonStyle, relative to its parent.

Parameters:
x The x coordinate of this BoxWithBorderButtonStyle.
y The y coordinate of this BoxWithBorderButtonStyle.
width The width of this BoxWithBorderButtonStyle.
height The height of this BoxWithBorderButtonStyle.

NOTE

Changing this does not automatically yield a redraw.

setBoxWithBorderWidth
void setBoxWithBorderWidth (int16_t width)

Sets the width.

Parameters:
width The width.

Protected Functions Documentation
handleAlphaUpdated

virtual void handleAlphaUpdated ()

Handles what should happen when the alpha is updated.

handlePressedUpdated
virtual void handlePressedUpdated ()

Handles what should happen when the pressed state is updated.

Protected Attributes Documentation
borderBox

BoxWithBorder borderBox

The border box.

borderDown

colortype borderDown

The border down.

borderUp
colortype borderUp

The border up.

down
colortype down

The down.

up
colortype up

The up.

Version: 4.16

Button
A button with two images. One image showing the unpressed button and one image showing the
pressed state.

Inherits from: AbstractButton, Widget, Drawable

Inherited by: ButtonWithIcon, ButtonWithLabel, RepeatButton, ToggleButton

Public Functions
Button()

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

Bitmap getCurrentlyDisplayedBitmap() const
Gets currently displayed bitmap.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setBitmaps(const Bitmap & bitmapReleased, const Bitmap & bitmapPressed)
Sets the two bitmaps used by this button.

Protected Attributes
uint8_t alpha

The current alpha value. 255=solid, 0=invisible.

Bitmap down

The image to display when button is pressed.

Bitmap up
The image to display when button is released (normal state).

Additional inherited members
Public Functions inherited from AbstractButton

AbstractButton()
Sets this Widget touchable so the user can interact with buttons.

virtual void executeAction()
Executes the previously set action.

virtual bool getPressedState() const
Function to determine if the AbstractButton is currently pressed.

virtual void handleClickEvent(const ClickEvent & event)
Updates the current state of the button.

void setAction(GenericCallback< const AbstractButton & > & callback)
Associates an action with the button.

Protected Attributes inherited from AbstractButton
GenericCallback< const AbstractButton & > * action

The callback to be executed when this
AbstractButton is clicked.

bool pressed
Is the button pressed or released? True if pressed.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
Button

Button ()

draw
virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Drawable::draw

Reimplemented by: touchgfx::ButtonWithLabel::draw, touchgfx::ButtonWithIcon::draw

getAlpha
uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getCurrentlyDisplayedBitmap
Bitmap getCurrentlyDisplayedBitmap () const

Gets currently displayed bitmap.

This depends on the current state of the button, released (normal) or pressed.

Returns:

The bitmap currently displayed.

getSolidRect
virtual Rect getSolidRect () const

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

This information is important, as any Drawable underneath the solid area does not need to be
drawn.

Returns:

The solid rectangle part of the Drawable.

NOTE

The rectangle returned must be relative to upper left corner of the Drawable, meaning that a completely
solid widget should return the full size Rect(0, 0, getWidth(), getHeight()). If no area can be guaranteed to
be solid, an empty Rect(0, 0, 0, 0) must be returned. Failing to return the correct rectangle may result in
errors on the display.

Reimplements: touchgfx::Drawable::getSolidRect

setAlpha
void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setBitmaps
virtual void setBitmaps (const Bitmap & bitmapReleased ,

const Bitmap & bitmapPressed
)

Sets the two bitmaps used by this button.

One bitmap for the released (normal) state and one bitmap for the pressed state. The images are
expected to be of the same dimensions, and the Button is resized to the dimensions of the pressed
Bitmap.

Parameters:
bitmapReleased Bitmap to use when button is released.
bitmapPressed Bitmap to use when button is pressed.

NOTE

It is assumed that the dimensions of the bitmaps are the same. Unexpected (visual) behavior may be
observed if the bitmaps are of different sizes. The user code must call invalidate() in order to update the
button on the display.

Reimplemented by: touchgfx::ToggleButton::setBitmaps

Protected Attributes Documentation
alpha

uint8_t alpha

The current alpha value. 255=solid, 0=invisible.

down
Bitmap down

The image to display when button is pressed.

up
Bitmap up

The image to display when button is released (normal state).

Version: 4.16

ButtonController
Interface for sampling external key events.

Public Functions
virtual void init() =0

Initializes button controller.

virtual void reset()
Resets button controller.

virtual bool sample(uint8_t & key) =0
Sample external key events.

virtual ~ButtonController()
Finalizes an instance of the ButtonController class.

Public Functions Documentation
init

virtual void init () =0

Initializes button controller.

reset
virtual void reset ()

Resets button controller.

Does nothing in the default implementation.

sample

virtual bool sample (uint8_t & key)

Sample external key events.

Parameters:
key Output parameter that will be set to the key value if a keypress was detected.

Returns:

True if a keypress was detected and the "key" parameter is set to a value.

~ButtonController
virtual ~ButtonController ()

Finalizes an instance of the ButtonController class.

Version: 4.16

Buttons
A class for accessing a physical button.

Public Functions
void init()

Perform configuration of IO pins.

unsigned int sample()
Sample button states.

Public Functions Documentation
init

static void init ()

Perform configuration of IO pins.

sample
static unsigned int sample ()

Sample button states.

Returns:

the sampled state of the buttons.

Version: 4.16

ButtonWithIcon
A Button that has a bitmap with an icon on top of it. It is possible to have two different icons
depending on the current state of the button (released or pressed).

Typical use case could be a blue button with a released and a pressed image. Those images can be
reused across several buttons. The ButtonWithIcon will then allow an image to superimposed on top
of the blue button.

Inherits from: Button, AbstractButton, Widget, Drawable

Public Functions
ButtonWithIcon()

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

Bitmap getCurrentlyDisplayedIcon() const
Gets currently displayed icon.

int16_t getIconX() const
Gets the x coordinate of the icon bitmap.

int16_t getIconY() const
Gets the y coordinate of the icon bitmap.

virtual void
setBitmaps(const Bitmap & newBackgroundReleased, const Bitmap &
newBackgroundPressed, const Bitmap & newIconReleased, const Bitmap &
newIconPressed)
Sets the four bitmaps used by this button.

void setIconX(int16_t x)
Sets the x coordinate of the icon bitmaps.

void setIconXY(int16_t x, int16_t y)
Sets the x and y coordinates of the icon bitmap.

void setIconY(int16_t y)
Sets the y coordinate of the icon bitmaps.

Protected Attributes
Bitmap iconPressed

Icon to display when button is pressed.

Bitmap iconReleased
Icon to display when button is not pressed.

int16_t iconX
x coordinate offset for icon.

int16_t iconY
y coordinate offset for icon.

Additional inherited members
Public Functions inherited from Button

Button()

uint8_t getAlpha() const
Gets the current alpha value of the widget.

Bitmap getCurrentlyDisplayedBitmap() const
Gets currently displayed bitmap.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

Protected Attributes inherited from Button
uint8_t alpha

The current alpha value. 255=solid, 0=invisible.

Bitmap down
The image to display when button is pressed.

Bitmap up
The image to display when button is released (normal state).

Public Functions inherited from AbstractButton
AbstractButton()
Sets this Widget touchable so the user can interact with buttons.

virtual void executeAction()
Executes the previously set action.

virtual bool getPressedState() const
Function to determine if the AbstractButton is currently pressed.

virtual void handleClickEvent(const ClickEvent & event)
Updates the current state of the button.

void setAction(GenericCallback< const AbstractButton & > & callback)
Associates an action with the button.

Protected Attributes inherited from AbstractButton
GenericCallback< const AbstractButton & > * action

The callback to be executed when this
AbstractButton is clicked.

bool pressed
Is the button pressed or released? True if pressed.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable

virtual void childGeometryChanged()
This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const

Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)

Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const

Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
ButtonWithIcon

ButtonWithIcon ()

draw
virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:

invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in
coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Button::draw

getCurrentlyDisplayedIcon
Bitmap getCurrentlyDisplayedIcon () const

Gets currently displayed icon.

This depends on the current state of the button, released (normal) or pressed.

Returns:

The icon currently displayed.

getIconX
int16_t getIconX () const

Gets the x coordinate of the icon bitmap.

Returns:

The x coordinate of the icon bitmap.

getIconY
int16_t getIconY () const

Gets the y coordinate of the icon bitmap.

Returns:

The y coordinate of the icon bitmap.

setBitmaps
virtual void setBitmaps (const Bitmap & newBackgroundReleased ,

const Bitmap & newBackgroundPressed ,
const Bitmap & newIconReleased ,
const Bitmap & newIconPressed

)

Sets the four bitmaps used by this button.

The last two bitmaps are drawn on top of the first two, again depending on the current state of the
Button. This means that when the button state is released (normal), the newIconReleased is drawn
on top of the newBackgroundReleased, and when the button state is pressed, the newIconPressed
is drawn on top of the newBackgroundPressed.

The default position if the icons is set to the center of the bitmaps. The two icons are assumed to
have the same dimensions. The size of the released icon is used to position the icons centered on
the Button.

Parameters:
newBackgroundReleased Bitmap to use when button is released.
newBackgroundPressed Bitmap to use when button is pressed.
newIconReleased The bitmap for the icon in the released (normal) button state.
newIconPressed The bitmap for the icon in the pressed button state.

NOTE

The user code must call invalidate() in order to update the button on the display.

setIconX
void setIconX (int16_t x)

Sets the x coordinate of the icon bitmaps.

The same x coordinate is used for both icons (released and pressed).

Parameters:
x The new x value, relative to the background bitmap. A negative value is allowed.

NOTE

The user code must call invalidate() in order to update the button on the display. The value set is
overwritten on a subsequent call to setBitmaps.

setIconXY
void setIconXY (int16_t x ,

int16_t y

)

Sets the x and y coordinates of the icon bitmap.

Same as calling setIconX and setIconY.

Parameters:
x The new x value, relative to the background bitmap. A negative value is allowed.
y The new y value, relative to the background bitmap. A negative value is allowed.

NOTE

The user code must call invalidate() in order to update the button on the display. The values set are
overwritten on a subsequent call to setBitmaps.

setIconY
void setIconY (int16_t y)

Sets the y coordinate of the icon bitmaps.

The same y coordinate is used for both icons (released and pressed).

Parameters:
y The new y value, relative to the background bitmap. A negative value is allowed.

NOTE

The user code must call invalidate() in order to update the button on the display. The value set is
overwritten on a subsequent call to setBitmaps.

Protected Attributes Documentation
iconPressed

Bitmap iconPressed

Icon to display when button is pressed.

iconReleased

Bitmap iconReleased

Icon to display when button is not pressed.

iconX
int16_t iconX

x coordinate offset for icon.

iconY
int16_t iconY

y coordinate offset for icon.

Version: 4.16

ButtonWithLabel
A Button that has a bitmap with a text on top of it. It is possible to have two different colors for the
text depending on the current state of the button (released or pressed).

Typical use case could be a red button with a normal and a pressed image. Those images can be
reused across several buttons. The ButtonWithLabel will then allow a text to be superimposed on top
of the red button.

See: Button

Inherits from: Button, AbstractButton, Widget, Drawable

Public Functions
ButtonWithLabel()

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

TextRotation getLabelRotation()
Gets the current rotation of the text on the label.

TypedText getLabelText() const
Gets the text used for the label.

void setLabelColor(colortype col)
Sets label color for the text when the button is in the normal, released state.

void setLabelColorPressed(colortype col)
Sets label color for the text when the button is in the pressed state.

void setLabelRotation(TextRotation rotation)
Sets the rotation of the text on the label.

void setLabelText(TypedText t)
Sets the text to display on the button.

void updateTextPosition()

Positions the label text horizontally centered.

Protected Attributes
colortype color

The color used for the label when the button is in the released, normal state.

colortype colorPressed
The color used for the label when the button is in the pressed state.

TextRotation rotation
The rotation used for the label.

uint8_t textHeightIncludingSpacing
Total height of the label (text height + spacing).

TypedText typedText
The TypedText used for the button label.

Additional inherited members
Public Functions inherited from Button

Button()

uint8_t getAlpha() const
Gets the current alpha value of the widget.

Bitmap getCurrentlyDisplayedBitmap() const
Gets currently displayed bitmap.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setBitmaps(const Bitmap & bitmapReleased, const Bitmap & bitmapPressed)
Sets the two bitmaps used by this button.

Protected Attributes inherited from Button
uint8_t alpha

The current alpha value. 255=solid, 0=invisible.

Bitmap down
The image to display when button is pressed.

Bitmap up
The image to display when button is released (normal state).

Public Functions inherited from AbstractButton
AbstractButton()
Sets this Widget touchable so the user can interact with buttons.

virtual void executeAction()
Executes the previously set action.

virtual bool getPressedState() const
Function to determine if the AbstractButton is currently pressed.

virtual void handleClickEvent(const ClickEvent & event)
Updates the current state of the button.

void setAction(GenericCallback< const AbstractButton & > & callback)
Associates an action with the button.

Protected Attributes inherited from AbstractButton
GenericCallback< const AbstractButton & > * action

The callback to be executed when this
AbstractButton is clicked.

bool pressed
Is the button pressed or released? True if pressed.

Public Functions inherited from Widget

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()

Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)

Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
ButtonWithLabel

ButtonWithLabel ()

draw
virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Button::draw

getLabelRotation
TextRotation getLabelRotation ()

Gets the current rotation of the text on the label.

Returns:

The current rotation of the text.

getLabelText
TypedText getLabelText () const

Gets the text used for the label.

Returns:

The text used for the label.

setLabelColor
void setLabelColor (colortype col)

Sets label color for the text when the button is in the normal, released state.

Parameters:
col The color with which the text label should be drawn.

NOTE

If the button is currently in the normal, released state, the button should be forced to redraw itself. This is
done by calling invalidate() on the ButtonWithLabel. The user code must call invalidate() in order to
update the button on the display.

See also:

setLabelColorPressed

setLabelColorPressed
void setLabelColorPressed (colortype col)

Sets label color for the text when the button is in the pressed state.

Parameters:
col The color with which the text label should be drawn when the button is pressed.

NOTE

If the button is currently in the pressed state, the button should be forced to redraw itself. This is done by
calling invalidate() on the ButtonWithLabel. The user code must call invalidate() in order to update the
button on the display.

See also:

setLabelColor

setLabelRotation
void setLabelRotation (TextRotation rotation)

Sets the rotation of the text on the label.

The text can be rotated in steps of 90 degrees.

Parameters:
rotation The rotation of the text. Default is TEXT_ROTATE_0.

NOTE

that this will not rotate the bitmap of the label, only the text. The user code must call invalidate() in order
to update the button on the display.

See also:

TextArea::setRotation

setLabelText

void setLabelText (TypedText t)

Sets the text to display on the button.

Texts with wildcards are not supported.

Parameters:
t The text to display.

NOTE

The user code must call invalidate() in order to update the button on the display.

updateTextPosition
void updateTextPosition ()

Positions the label text horizontally centered.

If the text changes due to a language change you may need to reposition the label text by calling
this function to keep the text horizontally centered.

NOTE

The user code must call invalidate() in order to update the button on the display.

Protected Attributes Documentation
color

colortype color

The color used for the label when the button is in the released, normal state.

colorPressed
colortype colorPressed

The color used for the label when the button is in the pressed state.

rotation
TextRotation rotation

The rotation used for the label.

textHeightIncludingSpacing
uint8_t textHeightIncludingSpacing

Total height of the label (text height + spacing).

typedText
TypedText typedText

The TypedText used for the button label.

Version: 4.16

CacheableContainer
A CacheableContainer can be seen as a regular Container, i.e. a Drawable that can have child nodes.
The z-order of children is determined by the order in which Drawables are added to the container -
the Drawable added last will be front-most on the screen.

The important difference is that a CacheableContainer can also render its content to a dynamic bitmap
which can then be used as a texture in subsequent drawing operations, either as a simple Image or in
a TextureMapper. If the bitmap format of the dynamic bitmap differs from the format of the current
LCD, the LCD from drawing the bitmap must be setup using HAL::setAuxiliaryLCD().

See: Container, Bitmap, Image, TextureMapper

Inherits from: Container, Drawable

Public Functions
CacheableContainer()

void enableCachedMode(bool enable)
Toggle cached mode on and off.

BitmapId getCacheBitmap() const
Get the dynamic bitmap used by the CacheableContainer.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a subregion of this drawable is redrawn.

bool isChildInvalidated() const
Queries the CacheableContainer whether any child widget has been invalidated.

void setCacheBitmap(BitmapId bitmapId)
Set the dynamic bitmap into which the container content will be rendered.

bool setSolidRect(const Rect & rect)
Set the solid area on the dynamic bitmap assigned to the CacheableContainer.

void updateCache()
Render the container into the attached dynamic bitmap.

void updateCache(const Rect & rect)
Render the container into the attached dynamic bitmap.

Additional inherited members
Public Functions inherited from Container

virtual void add(Drawable & d)
Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const

Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()

Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible

True if this drawable should be drawn.

Public Functions Documentation
CacheableContainer

CacheableContainer ()

enableCachedMode
void enableCachedMode (bool enable)

Toggle cached mode on and off.

The CacheableContainer behaves just like a regular Container when cached mode is turned off.

Parameters:
enable Enable or disable cached mode.

getCacheBitmap
BitmapId getCacheBitmap () const

Get the dynamic bitmap used by the CacheableContainer.

Returns:

the id of the assigned bitmap or BITMAP_INVALID if no bitmap has been assigned.

See also:

setCacheBitmap

invalidateRect
virtual void invalidateRect (Rect & invalidatedArea)

Request that a subregion of this drawable is redrawn.

Will recursively traverse the children. When this function returns, the specified invalidated area has
been redrawn for all appropriate Drawables covering the region.

Parameters:
invalidatedArea The area of this drawable to redraw expressed in coordinates relative to its

parent (e.g. to request a complete redraw, invalidatedArea will be (0, 0, width,
height).

Reimplements: touchgfx::Drawable::invalidateRect

isChildInvalidated
bool isChildInvalidated () const

Queries the CacheableContainer whether any child widget has been invalidated.

Returns:

True if a child widget has been invalidated and false otherwise.

setCacheBitmap
void setCacheBitmap (BitmapId bitmapId)

Set the dynamic bitmap into which the container content will be rendered.

The format of the bitmap must be the same as the current LCD or the same as the auxiliary LCD
setup using HAL::setAuxiliaryLCD.

Parameters:
bitmapId Id of the dynamic bitmap to serve as a render target.

See also:

updateCache, getCacheBitmap, HAL::setAuxiliaryLCD

setSolidRect
bool setSolidRect (const Rect & rect)

Set the solid area on the dynamic bitmap assigned to the CacheableContainer.

Parameters:
rect The rectangle of th CacheableContainer that is solid.

Returns:

true if the operation succeeds, false otherwise.

updateCache
void updateCache ()

Render the container into the attached dynamic bitmap.

See also:

setCacheBitmap

updateCache
void updateCache (const Rect & rect)

Render the container into the attached dynamic bitmap.

Only the specified Rect region is updated.

Parameters:
rect Region to update.

See also:

setCacheBitmap

Version: 4.16

CacheTableEntry
Cache bookkeeping.

Public Attributes
uint8_t * data

Pointer to location of image data for this Bitmap in the cache. 0 if bitmap not cached.

Public Attributes Documentation
data

uint8_t * data

Pointer to location of image data for this Bitmap in the cache. 0 if bitmap not cached.

Version: 4.16

Callback
A Callback is basically a wrapper of a pointer-to-member-function. It is used for registering callbacks
between widgets. For instance, a Button can be configured to call a member function when it is
clicked.

The class is templated in order to provide the class type of the object in which the member function
resides, and the argument types of the function to call.

The Callback class exists in four versions, for supporting member functions with 0, 1, 2 or 3 arguments.
The compiler will infer which type to use automatically.

Template Parameters:

dest_type The type of the class in which the member function resides.
T1 The type of the first argument in the member function, or void if none.
T2 The type of the second argument in the member function, or void if none.
T3 The type of the third argument in the member function, or void if none.

Note: The member function to call must return void. The function can have zero, one, two or three
arguments of any type.

Inherits from: GenericCallback< void, void, void >

Public Functions
Callback()
Initializes a new instance of the Callback class.

Callback(dest_type pobject, void(dest_type::)(T1, T2, T3) pmemfun_3)
Initializes a Callback with an object and a pointer to the member function in that object
to call.

virtual void execute(T1 t1, T2 t2, T3 t3)
Calls the member function.

virtual bool isValid() const
Function to check whether the Callback has been initialized with values.

Additional inherited members
Public Functions inherited from GenericCallback< void, void,
void >

virtual ~GenericCallback()
Finalizes an instance of the GenericCallback class.

Public Functions Documentation
Callback

Callback ()

Initializes a new instance of the Callback class.

Callback
Callback (dest_type * pobject ,

void(dest_type::*)(T1, T2, T3) pmemfun_3
)

Initializes a Callback with an object and a pointer to the member function in that object to call.

Initializes a Callback with an object and a pointer to the member function in that object to call.

Parameters:
pobject Pointer to the object on which the function should be called.
pmemfun_3 Address of member function. This is the version where function takes three

arguments.

execute
virtual void execute (T1 t1 ,

T2 t2 ,
T3 t3
)

Calls the member function.

Do not call execute unless isValid() returns true (ie. a pointer to the object and the function has
been set).

Parameters:
t1 This value will be passed as the first argument in the function call.
t2 This value will be passed as the second argument in the function call.
t3 This value will be passed as the third argument in the function call.

isValid
virtual bool isValid () const

Function to check whether the Callback has been initialized with values.

Returns:

true If the callback is valid (i.e. safe to call execute).

Version: 4.16

Callback<dest_type,T1,T2,void>
A Callback is basically a wrapper of a pointer-to-member-function. It is used for registering callbacks
between widgets. For instance, a Button can be configured to call a member function when it is
clicked.

The class is templated in order to provide the class type of the object in which the member function
resides, and the argument types of the function to call.

The Callback class exists in four versions, for supporting member functions with 0, 1, 2 or 3 arguments.
The compiler will infer which type to use automatically.

Template Parameters:

dest_type The type of the class in which the member function resides.
T1 The type of the first argument in the member function, or void if none.
T2 The type of the second argument in the member function, or void if none.

Note: The member function to call must return void. The function can have zero, one, two or three
arguments of any type.

Inherits from: GenericCallback< T1, T2 >

Public Functions
Callback()
Initializes a new instance of the Callback class.

Callback(dest_type pobject, void(dest_type::)(T1, T2) pmemfun_2)
Initializes a Callback with an object and a pointer to the member function in that object
to call.

virtual void execute(T1 t1, T2 t2)
Calls the member function.

virtual bool isValid() const
Function to check whether the Callback has been initialized with values.

Additional inherited members
Public Functions inherited from GenericCallback< T1, T2 >

virtual ~GenericCallback()
Finalizes an instance of the GenericCallback class.

Public Functions Documentation
Callback

Callback ()

Initializes a new instance of the Callback class.

Callback
Callback (dest_type * pobject ,

void(dest_type::*)(T1, T2) pmemfun_2
)

Initializes a Callback with an object and a pointer to the member function in that object to call.

Parameters:
pobject Pointer to the object on which the function should be called.
pmemfun_2 Address of member function. This is the version where function takes two

arguments.

execute
virtual void execute (T1 t1 ,

T2 t2
)

Calls the member function.

Do not call execute unless isValid() returns true (ie. a pointer to the object and the function has
been set).

Parameters:

t1 This value will be passed as the first argument in the function call.
t2 This value will be passed as the second argument in the function call.

isValid
virtual bool isValid () const

Function to check whether the Callback has been initialized with values.

Returns:

true If the callback is valid (i.e. safe to call execute).

Version: 4.16

Callback<dest_type,T1,void,voi
d>
A Callback is basically a wrapper of a pointer-to-member-function. It is used for registering callbacks
between widgets. For instance, a Button can be configured to call a member function when it is
clicked.

The class is templated in order to provide the class type of the object in which the member function
resides, and the argument types of the function to call.

The Callback class exists in four versions, for supporting member functions with 0, 1, 2 or 3 arguments.
The compiler will infer which type to use automatically.

Template Parameters:

dest_type The type of the class in which the member function resides.
T1 The type of the first argument in the member function, or void if none.

Note: The member function to call must return void. The function can have zero, one, two or three
arguments of any type.

Inherits from: GenericCallback< T1 >

Public Functions
Callback()
Initializes a new instance of the Callback class.

Callback(dest_type pobject, void(dest_type::)(T1) pmemfun_1)
Initializes a Callback with an object and a pointer to the member function in that object
to call.

virtual void execute(T1 t1)
Calls the member function.

virtual bool isValid() const
Query if this object is valid.

Additional inherited members
Public Functions inherited from GenericCallback< T1 >

virtual ~GenericCallback()
Finalizes an instance of the GenericCallback class.

Public Functions Documentation
Callback

Callback ()

Initializes a new instance of the Callback class.

Callback
Callback (dest_type * pobject ,

void(dest_type::*)(T1) pmemfun_1
)

Initializes a Callback with an object and a pointer to the member function in that object to call.

Parameters:
pobject Pointer to the object on which the function should be called.
pmemfun_1 Address of member function. This is the version where function takes one

argument.

execute
virtual void execute (T1 t1)

Calls the member function.

Do not call execute unless isValid() returns true (ie. a pointer to the object and the function has
been set).

Parameters:
t1 This value will be passed as the first argument in the function call.

See also:

isValid

isValid
virtual bool isValid () const

Query if this object is valid.

Returns:

true if valid, false if not.

Version: 4.16

Callback<dest_type,void,void,v
oid>
A Callback is basically a wrapper of a pointer-to-member-function. It is used for registering callbacks
between widgets. For instance, a Button can be configured to call a member function when it is
clicked.

The class is templated in order to provide the class type of the object in which the member function
resides, and the argument types of the function to call.

The Callback class exists in four versions, for supporting member functions with 0, 1, 2 or 3 arguments.
The compiler will infer which type to use automatically.

Template Parameters:

dest_type The type of the class in which the member function resides.

Note: The member function to call must return void. The function can have zero, one, two or three
arguments of any type.

Inherits from: GenericCallback<>

Public Functions
Callback()
Initializes a new instance of the Callback class.

Callback(dest_type pobject, void(dest_type::)() pmemfun_0)
Initializes a Callback with an object and a pointer to the member function in that object
to call.

virtual void execute()
Calls the member function.

virtual bool isValid() const
Function to check whether the Callback has been initialized with values.

Additional inherited members
Public Functions inherited from GenericCallback<>

virtual ~GenericCallback()
Finalizes an instance of the GenericCallback class.

Public Functions Documentation
Callback

Callback ()

Initializes a new instance of the Callback class.

Callback
Callback (dest_type * pobject ,

void(dest_type::*)() pmemfun_0
)

Initializes a Callback with an object and a pointer to the member function in that object to call.

Parameters:
pobject Pointer to the object on which the function should be called.
pmemfun_0 Address of member function. This is the version where function takes zero

arguments.

execute
virtual void execute ()

Calls the member function.

Do not call execute unless isValid() returns true (ie. a pointer to the object and the function has
been set).

isValid

virtual bool isValid () const

Function to check whether the Callback has been initialized with values.

Returns:

true If the callback is valid (i.e. safe to call execute).

Version: 4.16

CallbackArea
Mapping from rectangle to a callback method to execute.

Public Attributes
GenericCallback * callback

The callback to execute, when the area is "pressed". The callback should be a
Callback<YourClass> member in the class using the keyboard.

BitmapId highlightBitmapId
A bitmap to show when the area is "pressed".

Rect keyArea
The area occupied by a key.

Public Attributes Documentation
callback

GenericCallback * callback

The callback to execute, when the area is "pressed". The callback should be a Callback<YourClass>
member in the class using the keyboard.

highlightBitmapId
BitmapId highlightBitmapId

A bitmap to show when the area is "pressed".

keyArea
Rect keyArea

The area occupied by a key.

Version: 4.16

Canvas
Class for easy rendering using CanvasWidgetRenderer. The Canvas class will make implementation of a
new CanvasWidget very easy. The few simple primitives allows moving a "pen" and drawing the
outline of a shape which can then be rendered.

The Canvas class has been optimized to eliminate drawing unnecessary lines outside the currently
invalidated rectangle.

Public Functions
Canvas(const CanvasWidget * _widget, const Rect & invalidatedArea)
Canvas Constructor.

void lineTo(CWRUtil::Q5 x, CWRUtil::Q5 y)
Draw line from the current (x, y) to the new (x, y) as part of the shape
being drawn.

template \<typename T \>
void lineTo(T x, T y)

Draw line from the current (x, y) to the new (x, y) as part of the shape
being drawn.

void moveTo(CWRUtil::Q5 x, CWRUtil::Q5 y)
Move the current pen position to (x, y).

template \<typename T \>
void moveTo(T x, T y)

Move the current pen position to (x, y).

bool render(uint8_t customAlpha =255)
Render the graphical shape drawn using moveTo() and lineTo() with the
given Painter.

virtual ~Canvas()
Finalizes an instance of the Canvas class.

Public Functions Documentation

Canvas
Canvas (const CanvasWidget * _widget ,

const Rect & invalidatedArea
)

Canvas Constructor.

Locks the framebuffer and prepares for drawing only in the allowed area which has been
invalidated. The color depth of the LCD is taken into account.

Parameters:
_widget a pointer to the CanvasWidget using this Canvas. Used for getting the canvas

dimensions.
invalidatedArea the are which should be updated.

NOTE

Locks the framebuffer.

lineTo
void lineTo (CWRUtil::Q5 x ,

CWRUtil::Q5 y
)

Draw line from the current (x, y) to the new (x, y) as part of the shape being drawn.

As for moveTo, lineTo commands completely outside the drawing are are discarded.

Parameters:
x The x coordinate for the pen position in CWRUtil::Q5 format.
y The y coordinate for the pen position in CWRUtil::Q5 format.

See also:

CWRUtil::Q5, moveTo

lineTo
void lineTo (T x ,

T y
)

Draw line from the current (x, y) to the new (x, y) as part of the shape being drawn.

As for moveTo, lineTo commands completely outside the drawing are are discarded.

Template Parameters:
T either int or float.

Parameters:
x The x coordinate for the pen position.
y The y coordinate for the pen position.

moveTo
void moveTo (CWRUtil::Q5 x ,

CWRUtil::Q5 y
)

Move the current pen position to (x, y).

If the pen is outside the drawing area, nothing is done, but the coordinates are saved in case the
next operation is lineTo a coordinate which is inside (or on the opposite side of) the drawing area.

Parameters:
x The x coordinate for the pen position in CWRUtil::Q5 format.
y The y coordinate for the pen position in CWRUtil::Q5 format.

See also:

CWRUtil::Q5, lineTo

moveTo
void moveTo (T x ,

T y
)

Move the current pen position to (x, y).

If the pen is outside (above or below) the drawing area, nothing is done, but the coordinates are
saved in case the next operation is lineTo a coordinate which is inside (or on the opposite side of)
the drawing area.

Template Parameters:
T Either int or float.

Parameters:
x The x coordinate for the pen position.
y The y coordinate for the pen position.

render
bool render (uint8_t customAlpha =255)

Render the graphical shape drawn using moveTo() and lineTo() with the given Painter.

The shape is automatically closed, i.e. a lineTo() is automatically inserted connecting the current
pen position with the initial pen position given in the first moveTo() command.

Parameters:
customAlpha (Optional) Alpha to apply to the entire canvas. Useful if the canvas is part of a

more complex container setup that needs to be faded. Default is solid.

Returns:

true if the widget was rendered, false if insufficient memory was available to render the widget.

~Canvas
virtual ~Canvas ()

Finalizes an instance of the Canvas class.

NOTE

Unlocks the framebuffer.

Version: 4.16

CanvasWidget
Class for drawing complex polygons on the display using CanvasWidgetRenderer. The CanvasWidget
is used by passing it to a Canvas object, drawing the outline of the object and then having
CanvasWidget render the outline on the display using the assigned painter.

Inherits from: Widget, Drawable

Inherited by: AbstractGraphElement, AbstractShape, Circle, Line

Public Functions
CanvasWidget()

virtual void draw(const Rect & invalidatedArea) const
Draws the given invalidated area.

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const =0
Draw canvas widget for the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)

Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Additional inherited members
Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()

Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const

Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
CanvasWidget

CanvasWidget ()

draw
virtual void draw (const Rect & invalidatedArea)

Draws the given invalidated area.

If the underlying CanvasWidgetRenderer fail to render the widget (if the widget is too complex),
the invalidated area is cut into smaller slices (horizontally) which are then drawn separately. If
drawing a single raster line fails, that line is considered too complex and skipped (it is left
blank/transparent) and drawing continues on the next raster line.

If drawing has failed at least once, which means that the number of horizontal lines draw has been
reduced, the number of successfully drawn horizontal lines is remembered for the next invocation
of draw(). A future call to draw() would then start off with the reduced number of horizontal lines
to prevent potentially drawing the canvas widget in vain, as happened previously in draw().

Parameters:
invalidatedArea The invalidated area.

NOTE

Subclasses of CanvasWidget should implement drawCanvasWidget(), not draw(). The term "too complex"
means that the size of the buffer (assigned to CanvasWidgetRenderer using
CanvasWidgetRenderer::setupBuffer()) is too small.

See also:

drawCanvasWidget

Reimplements: touchgfx::Drawable::draw

Reimplemented by: touchgfx::GraphElementGridX::draw,
touchgfx::GraphElementGridY::draw, touchgfx::GraphElementVerticalGapLine::draw,
touchgfx::GraphElementHistogram::draw, touchgfx::GraphElementBoxes::draw,
touchgfx::GraphLabelsX::draw, touchgfx::GraphLabelsY::draw, touchgfx::GraphTitle::draw

drawCanvasWidget
virtual bool drawCanvasWidget (const Rect & invalidatedArea)

Draw canvas widget for the given invalidated area.

Similar to draw(), but might be invoked several times with increasingly smaller areas to due to
memory constraints from the underlying CanvasWidgetRenderer.

Parameters:

invalidatedArea The invalidated area.

Returns:

true if the widget was drawn properly, false if not.

See also:

draw

Reimplemented by: touchgfx::AbstractShape::drawCanvasWidget,
touchgfx::Circle::drawCanvasWidget, touchgfx::Line::drawCanvasWidget,
touchgfx::AbstractGraphElementNoCWR::drawCanvasWidget,
touchgfx::GraphElementArea::drawCanvasWidget,
touchgfx::GraphElementLine::drawCanvasWidget,
touchgfx::GraphElementDots::drawCanvasWidget,
touchgfx::GraphElementDiamonds::drawCanvasWidget,
touchgfx::GraphTitle::drawCanvasWidget

getAlpha
virtual uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getMinimalRect
virtual Rect getMinimalRect () const

Gets minimal rectangle containing the shape drawn by this widget.

Default implementation returns the size of the entire widget, but this function should be
overwritten in subclasses and return the minimal rectangle containing the shape. See classes such
as Circle for example implementations.

Returns:

The minimal rectangle containing the shape drawn.

Reimplemented by: touchgfx::AbstractShape::getMinimalRect,
touchgfx::Circle::getMinimalRect, touchgfx::Line::getMinimalRect

getPainter
virtual AbstractPainter & getPainter () const

Gets the current painter for the CanvasWidget.

Returns:

The painter.

See also:

setPainter

getSolidRect
virtual Rect getSolidRect () const

Gets the largest solid (non-transparent) rectangle.

Since canvas widgets typically do not have a solid rect, it is recommended to return an empty
rectangle.

Returns:

The largest solid (non-transparent) rectangle.

NOTE

Function draw() might fail for some horizontal lines due to memory constraints. These lines will not be
drawn and may cause strange display artifacts.

See also:

draw

Reimplements: touchgfx::Drawable::getSolidRect

invalidate
virtual void invalidate () const

Invalidates the area covered by this CanvasWidget.

Since many widgets are a lot smaller than the actual size of the canvas widget, each widget must be
able to tell the smallest rectangle completely containing the shape drawn by the widget. For
example a circle arc is typically much smaller than the widget containing the circle.

See also:

getMinimalRect

Reimplements: touchgfx::Drawable::invalidate

resetMaxRenderLines
void resetMaxRenderLines ()

Resets the maximum render lines.

The maximum render lines is decreates if the rendering buffer is found to be too small to render a
complex outline. This is done to speed up subsequent draws by not having to draw the outline in
vain (as was done previously) to force the outline to be drawn in smaller blocks. The
resetMaxRenderLines() will try to render the entire outline in one go on the next call to draw().

setAlpha
virtual void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setPainter
virtual void setPainter (AbstractPainter & painter)

Sets a painter for the CanvasWidget.

Parameters:
painter The painter for the CanvasWidget.

NOTE

If setPainter() is used to change the painter to a different painter, the area containing the CanvasWidget is
not automatically invalidated.

See also:

getPainter

Reimplemented by: touchgfx::AbstractGraphElementNoCWR::setPainter

Version: 4.16

CanvasWidgetRenderer
Class for supporting drawing of figures. This class holds the memory which is used by the underlying
algorithms. CanvasWidget will not allocate memory dynamically, but will use memory from the buffer
passed to CanvasWidgetRenderer. When using the TouchGFX simulator, it is also possible to get a
report on the actual amount of memory used for drawing with CanvasWidgetRenderer to help
adjusting the buffer size.

See: Widget, setWriteMemoryUsageReport, getWriteMemoryUsageReport

Public Functions
unsigned getMissingBufferSize()

Calculate how much memory was required by CanvasWidgets, but was unavailable.

unsigned getUsedBufferSize()
Calculate how much memory has been required by CanvasWidgets.

bool getWriteMemoryUsageReport()
Gets write memory usage report flag.

void setupBuffer(uint8_t * buffer, unsigned bufferSize)
Setup the buffers used by CanvasWidget.

void setWriteMemoryUsageReport(bool writeUsageReport)
Memory reporting.

Public Functions Documentation
getMissingBufferSize

static unsigned getMissingBufferSize ()

Calculate how much memory was required by CanvasWidgets, but was unavailable.

If the value returned is greater than 0 it means the This can be used to fine tune the size of the
buffer passed to CanvasWidgetRenderer upon initialization.

Returns:

The number of bytes required.

getUsedBufferSize
static unsigned getUsedBufferSize ()

Calculate how much memory has been required by CanvasWidgets.

This can be used to fine tune the size of the buffer passed to CanvasWidgetRenderer upon
initialization.

Returns:

The number of bytes required.

getWriteMemoryUsageReport
static bool getWriteMemoryUsageReport ()

Gets write memory usage report flag.

Returns:

true if it CWR writes memory reports, false if not.

setupBuffer
static void setupBuffer (uint8_t * buffer ,

unsigned bufferSize
)

Setup the buffers used by CanvasWidget.

Parameters:
buffer Buffer reserved for CanvasWidget.
bufferSize The size of the buffer.

setWriteMemoryUsageReport
static void setWriteMemoryUsageReport (bool writeUsageReport)

Memory reporting.

Memory reporting can be turned on (and off) using this method. CWR will try to work with the
given amount of memory passed when calling setupBuffer(). If the outline of the figure is too
complex, this will be reported.

"CWR requires X bytes" means that X bytes is the highest number of bytes required by CWR so far,
but since the size of the invalidated area and the shape of things draw can influence this, this may
be reported several times with a higher and higher number. Leave your app running for a long time
to find out what the memory requirements are.

"CWR requires X bytes (Y bytes missing)" means the same as the report above, but there as was not
enough memory to render the entire shape. To get around this, CWR will split the shape into two
separate drawings of half size. This means that less memory is required, but drawing will be
(somewhat) slower. After you see this message all future draws will be split into smaller chunks, so
memory requirements might not get as high. This is followed by:

"CWR will split draw into multiple draws due to limited memory." actually just means that CWR will
try to work with a smaller amount of memory.

In general, if there is enough memory available to run the simulation and never see the message
"CWR will split draw ...", this is preferred. The size of the buffer required will be the highest number
X reported as "CWR requires X bytes". Good numbers can also be around half of X.

Parameters:
writeUsageReport true to write report.

See also:

setupBuffer

Version: 4.16

Circle
Simple widget capable of drawing a circle, or part of a circle (an arc). The Circle can be filled or be
drawn as a simple line along the circumference of the circle. Several parameters of the circle can be
changed: Center, radius, line width, line cap, start angle and end angle.

Note:

Since the underlying CanwasWidgetRenderer only supports straight lines, the circle is drawn using
many small straight lines segments. The granularity can be adjusted to match the requirements -
large circles need more line segments, small circles need fewer line segments, to look smooth and
round.
All circle parameters are internally handled as CWRUtil::Q5 which means that floating point values
are rounded down to a fixed number of binary digits, for example:

.

Inherits from: CanvasWidget, Widget, Drawable

Public Functions
Circle()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

template \<typename T \>
void getArc(T & startAngle, T & endAngle) const

Gets the start and end angles in degrees for the circle arc.

int16_t getArcEnd() const
Gets the end angle in degrees for the arc.

Circle circle;
circle.setCircle(1.1f, 1.1f, 0.9); // Will use (35/32, 35/32, 28/32) = (1.09375f, 1.09375f
int x, y, r;
circle.getCenter(&x, &y); // Will return (1, 1)
circle.getRadius(&r); // Will return 0

template \<typename T \>
void getArcEnd(T & angle) const

Gets the end angle in degrees for the arc.

int16_t getArcStart() const
Gets the start angle in degrees for the arc.

template \<typename T \>
void getArcStart(T & angle) const

Gets the start angle in degrees for the arc.

int getCapPrecision() const
Gets the precision of the ends of the Circle arc.

template \<typename T \>
void getCenter(T & x, T & y) const

Gets the center coordinates of the Circle.

template \<typename T \>
void getLineWidth(T & width) const

Gets line width.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

Rect getMinimalRect(CWRUtil::Q5 arcStart, CWRUtil::Q5 arcEnd) const
Gets minimal rectangle containing a given circle arc using the set line
width.

Rect getMinimalRect(int16_t arcStart, int16_t arcEnd) const
Gets minimal rectangle containing a given circle arc using the set line
width.

int getPrecision() const
Gets the precision of the circle drawing function.

template \<typename T \>
void getRadius(T & r) const

Gets the radius of the Circle.

void setArc(const int16_t startAngle, const int16_t endAngle)
Sets the start and end angles in degrees of the Circle arc.

template \<typename T \>
void setArc(const T startAngle, const T endAngle)

Sets the start and end angles in degrees of the Circle arc.

void setCapPrecision(const int precision)
Sets the precision of the ends of the Circle arc.

void setCenter(const int16_t x, const int16_t y)
Sets the center of the Circle.

template \<typename T \>
void setCenter(const T x, const T y)

Sets the center of the Circle.

void setCircle(const int16_t x, const int16_t y, const int16_t r)
Sets the center and radius of the Circle.

template \<typename T \>
void setCircle(const T x, const T y, const T r)

Sets the center and radius of the Circle.

template \<typename T \>
void setLineWidth(const T width)

Sets the line width for this Circle.

void setPixelCenter(int x, int y)
Sets the center of the circle / arc in the middle of a pixel.

void setPrecision(const int precision)
Sets precision of the Circle drawing function.

template \<typename T \>
void setRadius(const T r)

Sets the radius of the Circle.

template \<typename T \>
void updateArc(const T startAngle, const T endAngle)

Updates the start and end angle in degrees for this Circle arc.

template \<typename T \>
void updateArcEnd(const T endAngle)

Updates the end angle in degrees for this Circle arc.

template \<typename T \>
void updateArcStart(const T startAngle)

Updates the start angle in degrees for this Circle arc.

Protected Functions
void updateArc(const CWRUtil::Q5 setStartAngleQ5, const CWRUtil::Q5 setEndAngleQ5)

Updates the start and end angle in degrees for this Circle arc.

Additional inherited members
Public Functions inherited from CanvasWidget

CanvasWidget()

virtual void draw(const Rect & invalidatedArea) const
Draws the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const

Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const

Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
Circle

Circle ()

drawCanvasWidget
virtual bool drawCanvasWidget (const Rect & invalidatedArea)

Draw canvas widget for the given invalidated area.

Similar to draw(), but might be invoked several times with increasingly smaller areas to due to
memory constraints from the underlying CanvasWidgetRenderer.

Parameters:
invalidatedArea The invalidated area.

Returns:

true if the widget was drawn properly, false if not.

See also:

draw

Reimplements: touchgfx::CanvasWidget::drawCanvasWidget

getArc
void getArc (T & startAngle , const

T & endAngle const
) const

Gets the start and end angles in degrees for the circle arc.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
startAngle The start angle rounded down to the precision of T.
endAngle The end angle rounded down to the precision of T.

See also:

setArc

getArcEnd
int16_t getArcEnd () const

Gets the end angle in degrees for the arc.

Returns:

The end angle for the arc rounded down to an integer.

See also:

getArc, setArc

getArcEnd
void getArcEnd (T & angle)

Gets the end angle in degrees for the arc.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
angle The end angle rounded down to the precision of T.

getArcStart
int16_t getArcStart () const

Gets the start angle in degrees for the arc.

Returns:

The starting angle for the arc rounded down to an integer.

See also:

getArc, setArc

getArcStart
void getArcStart (T & angle)

Gets the start angle in degrees for the arc.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
angle The starting angle rounded down to the precision of T.

See also:

getArc, setArc

getCapPrecision
int getCapPrecision () const

Gets the precision of the ends of the Circle arc.

Returns:

The cap precision in degrees.

See also:

getCapPrecision

getCenter
void getCenter (T & x , const

T & y const
) const

Gets the center coordinates of the Circle.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
x The x coordinate of the center rounded down to the precision of T.
y The y coordinate of the center rounded down to the precision of T.

See also:

setCenter

getLineWidth
void getLineWidth (T & width)

Gets line width.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
width The line width rounded down to the precision of T.

See also:

setLineWidth

getMinimalRect
virtual Rect getMinimalRect () const

Gets minimal rectangle containing the shape drawn by this widget.

Default implementation returns the size of the entire widget, but this function should be
overwritten in subclasses and return the minimal rectangle containing the shape. See classes such
as Circle for example implementations.

Returns:

The minimal rectangle containing the shape drawn.

Reimplements: touchgfx::CanvasWidget::getMinimalRect

getMinimalRect
Rect getMinimalRect (CWRUtil::Q5 arcStart , const

CWRUtil::Q5 arcEnd const
) const

Gets minimal rectangle containing a given circle arc using the set line width.

Parameters:
arcStart The arc start.
arcEnd The arc end.

Returns:

The minimal rectangle.

getMinimalRect
Rect getMinimalRect (int16_t arcStart , const

int16_t arcEnd const
) const

Gets minimal rectangle containing a given circle arc using the set line width.

Parameters:
arcStart The arc start.
arcEnd The arc end.

Returns:

The minimal rectangle.

getPrecision
int getPrecision () const

Gets the precision of the circle drawing function.

The precision is the number of degrees used as step counter when drawing smaller line fragments
around the circumference of the circle, the default being 5.

Returns:

The precision.

See also:

setPrecision

getRadius
void getRadius (T & r)

Gets the radius of the Circle.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
r The radius rounded down to the precision of T.

setArc
void setArc (const int16_t startAngle ,

const int16_t endAngle
)

Sets the start and end angles in degrees of the Circle arc.

0 degrees is straight up (12 o'clock) and 90 degrees is to the left (3 o'clock). Any positive or
negative degrees can be used to specify the part of the Circle to draw.

Parameters:
startAngle The start degrees.
endAngle The end degrees.

NOTE

The area containing the Circle is not invalidated.

See also:

getArc, updateArcStart, updateArcEnd, updateArc

setArc
void setArc (const T startAngle ,

const T endAngle
)

Sets the start and end angles in degrees of the Circle arc.

0 degrees is straight up (12 o'clock) and 90 degrees is to the left (3 o'clock). Any positive or
negative degrees can be used to specify the part of the Circle to draw.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
startAngle The start degrees.
endAngle The end degrees.

NOTE

The area containing the Circle is not invalidated.

See also:

getArc, updateArcStart, updateArcEnd, updateArc

setCapPrecision

void setCapPrecision (const int precision)

Sets the precision of the ends of the Circle arc.

The precision is given in degrees where 180 is the default which results in a square ended arc (aka
"butt cap"). 90 will draw "an arrow head" and smaller values gives a round cap. Larger values of
precision results in faster rendering of the circle.

Parameters:
precision The new cap precision.

NOTE

The circle is not invalidated. The cap precision is not used if the circle is filled (if line width is zero) or when
a full circle is drawn.

setCenter
void setCenter (const int16_t x ,

const int16_t y
)

Sets the center of the Circle.

Parameters:
x The x coordinate of center.
y The y coordinate of center.

NOTE

The area containing the Circle is not invalidated.

See also:

setRadius, setCircle, getCenter

setCenter
void setCenter (const T x ,

const T y
)

Sets the center of the Circle.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
x The x coordinate of center.
y The y coordinate of center.

NOTE

The area containing the Circle is not invalidated.

See also:

setRadius, setCircle, getCenter

setCircle
void setCircle (const int16_t x ,

const int16_t y ,
const int16_t r
)

Sets the center and radius of the Circle.

Parameters:
x The x coordinate of center.
y The y coordinate of center.
r The radius.

NOTE

The area containing the Circle is not invalidated.

See also:

setCenter, setRadius

setCircle
void setCircle (const T x ,

const T y ,
const T r
)

Sets the center and radius of the Circle.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
x The x coordinate of center.
y The y coordinate of center.
r The radius.

NOTE

The area containing the Circle is not invalidated.

See also:

setCenter, setRadius

setLineWidth
void setLineWidth (const T width)

Sets the line width for this Circle.

If the line width is set to zero, the circle will be filled.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
width The width of the line measured in pixels.

NOTE

The area containing the Circle is not invalidated. if the new line with is smaller than the old width, the circle
should be invalidated before updating the width to ensure that the old circle is completely erased.

setPixelCenter
void setPixelCenter (int x ,

int y
)

Sets the center of the circle / arc in the middle of a pixel.

Normally the coordinate is between pixel number x and x+1 horizontally and between pixel y and
y+1 vertically. This function will set the center in the middle of the pixel by adding 0.5 to both x and
y.

Parameters:
x The x coordinate of the center of the circle.
y The y coordinate of the center of the circle.

setPrecision
void setPrecision (const int precision)

Sets precision of the Circle drawing function.

The number given as precision is the number of degrees used as step counter when drawing the
line fragments around the circumference of the circle, five being a reasonable value. Higher values
results in less nice circles but faster rendering and possibly sufficient for very small circles. Large
circles might require a precision smaller than five to make the edge of the circle look nice and
smooth.

Parameters:
precision The precision measured in degrees.

NOTE

The circle is not invalidated.

setRadius
void setRadius (const T r)

Sets the radius of the Circle.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
r The radius.

NOTE

The area containing the Circle is not invalidated.

See also:

setCircle, setCenter, getRadius

updateArc
void updateArc (const T startAngle ,

const T endAngle
)

Updates the start and end angle in degrees for this Circle arc.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
startAngle The new start angle in degrees.
endAngle The new end angle in degrees.

NOTE

The areas containing the updated Circle arcs are invalidated. As little as possible will be invalidated for best
performance.

See also:

setArc, getArc, updateArcStart, updateArcEnd

updateArcEnd
void updateArcEnd (const T endAngle)

Updates the end angle in degrees for this Circle arc.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
endAngle The end angle in degrees.

NOTE

The area containing the updated Circle arc is invalidated.

See also:

setArc, updateArcStart, updateArc

updateArcStart
void updateArcStart (const T startAngle)

Updates the start angle in degrees for this Circle arc.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
startAngle The start angle in degrees.

NOTE

The area containing the updated Circle arc is invalidated.

See also:

setArc, updateArcEnd, updateArc

Protected Functions Documentation
updateArc

void updateArc (const CWRUtil::Q5 setStartAngleQ5 ,
const CWRUtil::Q5 setEndAngleQ5
)

Updates the start and end angle in degrees for this Circle arc.

Parameters:
setStartAngleQ5 The new start angle in degrees.
setEndAngleQ5 The new end angle in degrees.

NOTE

The areas containing the updated Circle arcs are invalidated. As little as possible will be invalidated for best
performance.

See also:

setArc, getArc, updateArcStart, updateArcEnd

Version: 4.16

CircleProgress
A circle progress indicator uses CanvasWidgetRenderer for drawing the arc of a Circle to show
progress. This means that the user must create a painter for painting the circle. The circle progress is
defined by setting the minimum and maximum angle of the arc.

Note: As CircleProgress uses CanvasWidgetRenderer, it is important that a buffer is set up by calling
CanvasWidgetRendere::setBuffer().

Inherits from: AbstractProgressIndicator, Container, Drawable

Public Functions
CircleProgress()

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual int getCapPrecision() const
Gets the cap precision.

virtual void getCenter(int & x, int & y) const
Gets the circle center coordinates.

virtual int getEndAngle() const
Gets end angle.

virtual int getLineWidth() const
Gets line width.

virtual int getRadius() const
Gets the radius of the circle.

virtual int getStartAngle() const
Gets start angle.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setCapPrecision(int precision)

Sets the cap precision of end of the circle arc.

virtual void setCenter(int x, int y)
Sets the center of the circle / arc.

virtual void setLineWidth(int width)
Sets line width of the circle.

virtual void setPainter(AbstractPainter & painter)
Sets the painter to use for drawing the circle progress.

virtual void setProgressIndicatorPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the position and dimensions of the actual progress indicator relative to the
background image.

virtual void setRadius(int r)
Sets the radius of the circle.

virtual void setStartEndAngle(int startAngle, int endAngle)
Sets start and end angle.

virtual void setValue(int value)
Sets the current value in the range (min..max) set by setRange().

Protected Attributes
Circle circle

The circle.

int circleEndAngle
The end angle.

Additional inherited members
Public Functions inherited from AbstractProgressIndicator

AbstractProgressIndicator()
Initializes a new instance of the AbstractProgressIndicator class with a default
range 0-100.

virtual uint16_t getProgress(uint16_t range =100) const
Gets the current progress based on the range set by setRange() and the value set by
setValue().

virtual int16_t getProgressIndicatorHeight() const
Gets progress indicator height.

virtual int16_t getProgressIndicatorWidth() const
Gets progress indicator width.

virtual int16_t getProgressIndicatorX() const
Gets progress indicator x coordinate.

virtual int16_t getProgressIndicatorY() const
Gets progress indicator y coordinate.

virtual void getRange(int & min, int & max) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps, uint16_t & minStep) const
Gets the range set by setRange().

virtual int getValue() const
Gets the current value set by setValue().

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void setBackground(const Bitmap & bitmapBackground)
Sets the background image.

virtual void setEasingEquation(EasingEquation easingEquation)
Sets easing equation to be used in updateValue.

virtual void setRange(int min, int max, uint16_t steps =0, uint16_t minStep =0)
Sets the range for the progress indicator.

void setValueSetAction(GenericCallback< const AbstractProgressIndicator & > &
callback)

Sets callback that will be triggered every time a new value is assigned to the
progress indicator.

void setValueUpdatedAction(GenericCallback< const AbstractProgressIndicator & >
& callback)
Sets callback that will be triggered when updateValue has finished animating to the
final value.

virtual void updateValue(int value, uint16_t duration)
Update the current value in the range (min..max) set by setRange().

Protected Attributes inherited from AbstractProgressIndicator
int animationDuration

Duration of the animation.

int animationEndValue
The animation end value.

int animationStartValue
The animation start value.

int animationStep
The current animation step.

Image background
The background image.

int currentValue
The current value.

EasingEquation equation
The equation used in updateValue()

Container progressIndicatorContainer
The container that holds the actual
progress indicator.

int rangeMax
The range maximum.

int rangeMin
The range minimum.

uint16_t rangeSteps
The range steps.

uint16_t rangeStepsMin
The range steps minimum.

GenericCallback< const AbstractProgressIndicator & > * valueSetCallback
New value assigned Callback.

GenericCallback< const AbstractProgressIndicator & > * valueUpdatedCallback
Animation ended Callback.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)

Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const

Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)

Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent

Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
CircleProgress

CircleProgress ()

getAlpha
virtual uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getCapPrecision
virtual int getCapPrecision () const

Gets the cap precision.

Returns:

The cap precision.

See also:

setCapPrecision

getCenter
virtual void getCenter (int & x , const

int & y const
) const

Gets the circle center coordinates.

Parameters:
x The x coordinate of the center of the circle.
y The y coordinate of the center of the circle.

getEndAngle
virtual int getEndAngle () const

Gets end angle.

Beware that the value returned is not related to the current progress of the circle but rather the end
point of the circle when it is at 100%.

Returns:

The end angle.

See also:

setStartEndAngle

getLineWidth
virtual int getLineWidth () const

Gets line width.

Returns:

The line width.

See also:

setLineWidth

getRadius
virtual int getRadius () const

Gets the radius of the circle.

Returns:

The radius.

getStartAngle
virtual int getStartAngle () const

Gets start angle.

Returns:

The start angle.

See also:

setStartEndAngle, getEndAngle

setAlpha
virtual void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.The alpha can also be set on the Painter,
but this can be controlled directly from the user app, setting alpha for the CircleProgress will set the alpha
of the actual circle.

See also:

getAlpha

setCapPrecision
virtual void setCapPrecision (int precision)

Sets the cap precision of end of the circle arc.

This is not used if line width is zero.

Parameters:
precision The cap precision.

See also:

Circle::setCapPrecision, getCapPrecision

setCenter
virtual void setCenter (int x ,

int y
)

Sets the center of the circle / arc.

Parameters:
x The x coordinate of the center of the circle.
y The y coordinate of the center of the circle.

setLineWidth
virtual void setLineWidth (int width)

Sets line width of the circle.

If a line width of zero is specified, it has a special meaning of drawing a filled circle (with the set
radius) instead of just the circle arc.

Parameters:
width The width of the line (0 produces a filled circle with the given radius).

See also:

Circle::setLineWidth, setRadius

setPainter

virtual void setPainter (AbstractPainter & painter)

Sets the painter to use for drawing the circle progress.

Parameters:
painter The painter.

See also:

Circle::setPainter, AbstractPainter

setProgressIndicatorPosition
virtual void setProgressIndicatorPosition (int16_t x ,

int16_t y ,
int16_t width ,
int16_t height
)

Sets the position and dimensions of the actual progress indicator relative to the background image.

Parameters:
x The x coordinate.
y The y coordinate.
width The width of the box progress indicator.
height The height of the box progress indicator.

See also:

getProgressIndicatorX, getProgressIndicatorY, getProgressIndicatorWidth,
getProgressIndicatorHeight

Reimplements: touchgfx::AbstractProgressIndicator::setProgressIndicatorPosition

setRadius
virtual void setRadius (int r)

Sets the radius of the circle.

Parameters:
r The radius.

See also:

Circle::setRadius

setStartEndAngle
virtual void setStartEndAngle (int startAngle ,

int endAngle
)

Sets start and end angle.

By swapping end and start angles, circles can progress backwards.

Parameters:
startAngle The start angle.
endAngle The end angle.

setValue
virtual void setValue (int value)

Sets the current value in the range (min..max) set by setRange().

Values lower than min are mapped to min, values higher than max are mapped to max. If a callback
function has been set using setValueSetAction, that callback will be called (unless the new value is
the same as the current value).

Parameters:
value The value.

NOTE

if value is equal to the current value, nothing happens, and the callback will not be called.

See also:

getValue, updateValue, setValueSetAction

Reimplements: touchgfx::AbstractProgressIndicator::setValue

Protected Attributes Documentation
circle

Circle circle

The circle.

circleEndAngle
int circleEndAngle

The end angle.

Version: 4.16

ClickButtonTrigger
A click button trigger. This trigger will create a button that reacts on clicks. This means it will call the
set action when it gets a touch released event. The ClickButtonTrigger can be combined with one or
more of the ButtonStyle classes to create a fully functional button.

See: TouchButtonTrigger

Inherits from: AbstractButtonContainer, Container, Drawable

Public Functions
virtual void handleClickEvent(const ClickEvent & event)

Handles a ClickAvent.

Additional inherited members
Public Functions inherited from AbstractButtonContainer

AbstractButtonContainer()

virtual void executeAction()
Executes the previously set action.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

bool getPressed()
Gets the pressed state.

void setAction(GenericCallback< const AbstractButtonContainer & > & callback)
Sets an action callback to be executed by the subclass of AbstractContainerButton.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setPressed(bool isPressed)

Sets the pressed state to the given state.

Protected Functions inherited from AbstractButtonContainer
virtual void handleAlphaUpdated()

Handles what should happen when the alpha is updated.

virtual void handlePressedUpdated()
Handles what should happen when the pressed state is updated.

Protected Attributes inherited from AbstractButtonContainer
GenericCallback< const AbstractButtonContainer & > * action

The action to be executed.

uint8_t alpha
The current alpha value. 255 denotes
solid, 0 denotes completely invisible.

bool pressed
True if pressed.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()

Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
handleClickEvent

virtual void handleClickEvent (const ClickEvent & event)

Handles a ClickAvent.

The action callback is called when the ClickButtonTrigger receives a ClickEvent::RELEASED event
in PRESSED state. Function setPressed() will be called with the new button state.

Parameters:
event The click event.

See also:

setAction, setPressed, getPressed

Reimplements: touchgfx::Drawable::handleClickEvent

Version: 4.16

ClickEvent
A click event. The semantics of this event is slightly depending on hardware platform. ClickEvents are
generated by the HAL layer.

See: Event

Inherits from: Event

Public Types
enum ClickEventType { PRESSED, RELEASED, CANCEL }

Values that represent click event types.

Public Functions
ClickEvent(ClickEventType type, int16_t x, int16_t y, int16_t force =0)
Initializes a new instance of the ClickEvent class.

virtual Event::EventType getEventType()
Gets event type.

int16_t getForce() const
Gets the force of the click.

ClickEventType getType() const
Gets the click type of this event.

int16_t getX() const
Gets the x coordinate of this event.

int16_t getY() const
Gets the y coordinate of this event.

void setType(ClickEventType type)
Sets the click type of this event.

void setX(int16_t x)

Sets the x coordinate of this event.

void setY(int16_t y)
Sets the y coordinate of this event.

Additional inherited members
Public Types inherited from Event

enum EventType { EVENT_CLICK, EVENT_DRAG, EVENT_GESTURE }
The event types.

Public Functions inherited from Event
virtual ~Event()

Finalizes an instance of the Event class.

Public Types Documentation
ClickEventType

enum ClickEventType

Values that represent click event types.

PRESSED An enum constant representing the pressed option.
RELEASED An enum constant representing the released option.
CANCEL An enum constant representing the cancel option.

Public Functions Documentation
ClickEvent

ClickEvent (ClickEventType type ,

int16_t x ,
int16_t y ,
int16_t force =0
)

Initializes a new instance of the ClickEvent class.

Parameters:
type The type of the click event.
x The x coordinate of the click event.
y The y coordinate of the click event.
force (Optional) The force of the click. On touch displays this usually means how hard the user

pressed on the display. On the windows platform, this will always be zero.

getEventType
virtual Event::EventType getEventType ()

Gets event type.

Returns:

The type of this event.

Reimplements: touchgfx::Event::getEventType

getForce
int16_t getForce () const

Gets the force of the click.

On touch displays this usually means how hard the user pressed on the display. On the windows
platform, this will always be zero.

Returns:

The force of the click.

getType
ClickEventType getType () const

Gets the click type of this event.

Returns:

The click type of this event.

getX
int16_t getX () const

Gets the x coordinate of this event.

Returns:

The x coordinate of this event.

getY
int16_t getY () const

Gets the y coordinate of this event.

Returns:

The y coordinate of this event.

setType
void setType (ClickEventType type)

Sets the click type of this event.

Parameters:
type The type to set.

setX
void setX (int16_t x)

Sets the x coordinate of this event.

Parameters:
x The x coordinate of this event.

setY
void setY (int16_t y)

Sets the y coordinate of this event.

Parameters:
y The y coordinate of this event.

Version: 4.16

ClickListener
Mix-in class that extends a class with a click action event that is called when the class receives a click
event.

Template Parameters:

T specifies the type to extend with the ClickListener behavior.

Inherits from: T

Public Functions
ClickListener()
Initializes a new instance of the ClickListener class.

virtual void handleClickEvent(const ClickEvent & event)
Ensures that the clickEvent is propagated to the super class T and to the clickAction
listener.

void setClickAction(GenericCallback< const T <, const ClickEvent & > & callback)
Associates an action to be performed when the class T is clicked.

Protected Attributes
GenericCallback< const T <, const ClickEvent & > * clickAction

The callback to be executed when T is clicked.

Public Functions Documentation
ClickListener

ClickListener ()

Initializes a new instance of the ClickListener class.

Make the object touchable.

handleClickEvent
virtual void handleClickEvent (const ClickEvent & event)

Ensures that the clickEvent is propagated to the super class T and to the clickAction listener.

Parameters:
event Information about the click.

setClickAction
void setClickAction (GenericCallback< const T <, const ClickEvent & > & callback)

Associates an action to be performed when the class T is clicked.

Parameters:
callback The callback to be executed. The callback will be given a reference to T.

Protected Attributes Documentation
clickAction

GenericCallback< const T <, const ClickEvent & > * clickAction

The callback to be executed when T is clicked.

Version: 4.16

Color
Contains functionality for color conversion.

Public Functions
FORCE_INLINE_FUNCTION uint8_t getBlueColor(colortype color)

Gets the blue color part of a color.

colortype getColorFrom24BitHSL(uint8_t hue, uint8_t saturation, uint8_t
luminance)
Convert a given color from HSV (Hue, Saturation, Value) to
colortype.

colortype getColorFrom24BitHSV(uint8_t hue, uint8_t saturation, uint8_t
value)
Convert a given color from HSV (Hue, Saturation, Value) to
colortype.

colortype getColorFrom24BitRGB(uint8_t red, uint8_t green, uint8_t blue)
Generates a color representation to be used on the LCD, based
on 24 bit RGB values.

FORCE_INLINE_FUNCTION uint8_t getGreenColor(colortype color)
Gets the green color part of a color.

void getHSLFrom24BitRGB(uint8_t red, uint8_t green, uint8_t blue,
uint8_t & hue, uint8_t & saturation, uint8_t & luminance)
Convert a given color from RGB (Red, Green, Blue) to HSV (Hue,
Saturation, Value).

void getHSLFromColor(colortype color, uint8_t & hue, uint8_t &
saturation, uint8_t & luminance)
Convert a given colortype color to HSV (Hue, Saturation, Value).

void getHSLFromHSV(uint8_t hue, uint8_t & saturation, uint8_t value,
uint8_t & luminance)
Convert HSV (Hue, Saturation, Value) to HSL (Hue, Saturation,
Luminance).

void getHSVFrom24BitRGB(uint8_t red, uint8_t green, uint8_t blue,
uint8_t & hue, uint8_t & saturation, uint8_t & value)
Convert a given color from RGB (Red, Green, Blue) to HSV (Hue,
Saturation, Value).

void getHSVFromColor(colortype color, uint8_t & hue, uint8_t &
saturation, uint8_t & value)
Convert a given colortype color to HSV (Hue, Saturation, Value).

void getHSVFromHSL(uint8_t hue, uint8_t & saturation, uint8_t
luminance, uint8_t & value)
Convert HSL (Hue, Saturation, Luminance) to HSV (Hue,
Saturation, Value).

FORCE_INLINE_FUNCTION uint8_t getRedColor(colortype color)
Gets the red color part of a color.

void getRGBFrom24BitHSL(uint8_t hue, uint8_t saturation, uint8_t
luminance, uint8_t & red, uint8_t & green, uint8_t & blue)
Convert a given color from HSV (Hue, Saturation, Value) to RGB
(Red, Green, Blue).

void getRGBFrom24BitHSV(uint8_t hue, uint8_t saturation, uint8_t
value, uint8_t & red, uint8_t & green, uint8_t & blue)
Convert a given color from HSV (Hue, Saturation, Value) to RGB
(Red, Green, Blue).

Public Functions Documentation
getBlueColor

static FORCE_INLINE_FUNCTION uint8_t getBlueColor (colortype color)

Gets the blue color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible. If the color depth of the display is
known, consider using function getBlueFromColor() from the current LCD.

Parameters:
color The color value.

Returns:

The blue part of the color.

See also:

LCD16bpp::getBlueFromColor

getColorFrom24BitHSL
static colortype getColorFrom24BitHSL (uint8_t hue ,

uint8_t saturation ,
uint8_t luminance
)

Convert a given color from HSV (Hue, Saturation, Value) to colortype.

Parameters:
hue The input Hue (0 to 255).
saturation The input Saturation (0 to 255).
luminance The input Value (0 to 255).

Returns:

The colortype color.

NOTE

The conversion is an approximation.

getColorFrom24BitHSV
static colortype getColorFrom24BitHSV (uint8_t hue ,

uint8_t saturation ,
uint8_t value
)

Convert a given color from HSV (Hue, Saturation, Value) to colortype.

Parameters:
hue The input Hue (0 to 255).
saturation The input Saturation (0 to 255).
value The input Value (0 to 255).

Returns:

The colortype color.

NOTE

The conversion is an approximation.

getColorFrom24BitRGB
static colortype getColorFrom24BitRGB (uint8_t red ,

uint8_t green ,
uint8_t blue
)

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Depending on your display color bit depth, the color might be interpreted internally as fewer than
24 bits with a loss of color precision.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

NOTE

This function is not available to call before the LCD has been setup, because the color depth is required.
Consider using the function getColorFromRGB for a specific class, e.g. LCD16::getColorFromRGB().

See also:

LCD::getColorFrom24BitRGB, LCD16bpp::getColorFromRGB

getGreenColor
static FORCE_INLINE_FUNCTION uint8_t getGreenColor (colortype color)

Gets the green color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible. If the color depth of the display is
known, consider using function getGreenFromColor() from the current LCD.

Parameters:

color The color value.

Returns:

The green part of the color.

See also:

LCD16bpp::getGreenFromColor

getHSLFrom24BitRGB
static void getHSLFrom24BitRGB (uint8_t red ,

uint8_t green ,
uint8_t blue ,
uint8_t & hue ,
uint8_t & saturation ,
uint8_t & luminance
)

Convert a given color from RGB (Red, Green, Blue) to HSV (Hue, Saturation, Value).

Parameters:
red The input Red (0 to 255).
green The input Green (0 to 255).
blue The input Blue (0 to 255).
hue The output Hue (0 to 255).
saturation The output Saturation (0 to 255).
luminance The output Value (0 to 255).

NOTE

The conversion is an approximation.

getHSLFromColor
static void getHSLFromColor (colortype color ,

uint8_t & hue ,
uint8_t & saturation ,
uint8_t & luminance
)

Convert a given colortype color to HSV (Hue, Saturation, Value).

Parameters:

color The input color.
hue The output Hue (0 to 255).
saturation The output Saturation (0 to 255).
luminance The output Value (0 to 255).

NOTE

The conversion is an approximation.

getHSLFromHSV
static void getHSLFromHSV (uint8_t hue ,

uint8_t & saturation ,
uint8_t value ,
uint8_t & luminance
)

Convert HSV (Hue, Saturation, Value) to HSL (Hue, Saturation, Luminance).

The Hue is unaltered, the Saturation is changed and the Luminance is calculated.

Parameters:
hue The hue (0 to 255).
saturation The saturation (0 to 255).
value The value (0 to 255).
luminance The luminance (0 to 255).

getHSVFrom24BitRGB
static void getHSVFrom24BitRGB (uint8_t red ,

uint8_t green ,
uint8_t blue ,
uint8_t & hue ,
uint8_t & saturation ,
uint8_t & value
)

Convert a given color from RGB (Red, Green, Blue) to HSV (Hue, Saturation, Value).

Parameters:
red The input Red.
green The input Green.
blue The input Blue.

hue The output Hue.
saturation The output Saturation.
value The output Value.

NOTE

The conversion is an approximation.

getHSVFromColor
static void getHSVFromColor (colortype color ,

uint8_t & hue ,
uint8_t & saturation ,
uint8_t & value
)

Convert a given colortype color to HSV (Hue, Saturation, Value).

Parameters:
color The input color.
hue The output Hue (0 to 255).
saturation The output Saturation (0 to 255).
value The output Value (0 to 255).

NOTE

The conversion is an approximation.

getHSVFromHSL
static void getHSVFromHSL (uint8_t hue ,

uint8_t & saturation ,
uint8_t luminance ,
uint8_t & value
)

Convert HSL (Hue, Saturation, Luminance) to HSV (Hue, Saturation, Value).

The Hue is unaltered, the Saturation is changed and the Value is calculated.

Parameters:
hue The hue (0 to 255).
saturation The saturation (0 to 255).

luminance The luminance (0 to 255).
value The value (0 to 255).

getRedColor
static FORCE_INLINE_FUNCTION uint8_t getRedColor (colortype color)

Gets the red color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible. If the color depth of the display is
known, consider using function getRedFromColor() from the current LCD.

Parameters:
color The color value.

Returns:

The red part of the color.

See also:

LCD16bpp::getRedFromColor

getRGBFrom24BitHSL
static void getRGBFrom24BitHSL (uint8_t hue ,

uint8_t saturation ,
uint8_t luminance ,
uint8_t & red ,
uint8_t & green ,
uint8_t & blue
)

Convert a given color from HSV (Hue, Saturation, Value) to RGB (Red, Green, Blue).

Parameters:
hue The input Hue (0 to 255).
saturation The input Saturation (0 to 255).
luminance The input Value (0 to 255).
red The output Red (0 to 255).
green The output Green (0 to 255).
blue The output Blue (0 to 255).

NOTE

The conversion is an approximation.

getRGBFrom24BitHSV
static void getRGBFrom24BitHSV (uint8_t hue ,

uint8_t saturation ,
uint8_t value ,
uint8_t & red ,
uint8_t & green ,
uint8_t & blue
)

Convert a given color from HSV (Hue, Saturation, Value) to RGB (Red, Green, Blue).

Parameters:
hue The input Hue (0 to 255).
saturation The input Saturation (0 to 255).
value The input Value (0 to 255).
red The output Red (0 to 255).
green The output Green (0 to 255).
blue The output Blue (0 to 255).

NOTE

The conversion is an approximation.

Version: 4.16

colortype
This type can contain a color value. Note that in order to maintain backwards compatibility, casting
this type to an integral value will yield a 16-bit value. To extract a 24/32-bit color from this type, use
the getColor32 function.

Public Functions
colortype()
Default constructor.

colortype(uint32_t col)
Constructor which creates a colortype with the given color.

FORCE_INLINE_FUNCTION uint32_t getColor32() const
Gets color as a 32bit value suitable for passing to
Color::getRedColor(), Color::getGreenColor() and
Color::getBlueColor() which will handle all bitdeptchs.

operator uint32_t() const
Cast that converts the given colortype to an uint32_t.

Public Attributes
uint32_t color

The color.

Public Functions Documentation
colortype

colortype ()

Default constructor.

Creates a black (0) color.

colortype
colortype (uint32_t col)

Constructor which creates a colortype with the given color.

Use Color::getColorFrom24BitRGB() to create a color that will work on your selected LCD type.

Parameters:
col The color.

See also:

Color::getColorFrom24BitRGB

getColor32
FORCE_INLINE_FUNCTION uint32_t getColor32 () const

Gets color as a 32bit value suitable for passing to Color::getRedColor(), Color::getGreenColor()
and Color::getBlueColor() which will handle all bitdeptchs.

Returns:

The color 32.

See also:

Color::getRedColor, Color::getGreenColor, Color::getBlueColor

operator uint32_t
operator uint32_t () const

Cast that converts the given colortype to an uint32_t.

Returns:

The result of the operation.

Public Attributes Documentation
color

uint32_t color

The color.

Version: 4.16

ConstFont
A ConstFont is a Font implementation that has its contents defined at compile-time and usually placed
in read-only memory.

See: Font

Note: Pure virtual class. Create an application-specific implementation of getPixelData().

Inherits from: Font

Inherited by: InternalFlashFont

Public Functions
ConstFont(const GlyphNode * list, uint16_t size, uint16_t height, uint8_t
pixBelowBase, uint8_t bitsPerPixel, uint8_t byteAlignRow, uint8_t maxLeft,
uint8_t maxRight, const Unicode::UnicodeChar fallbackChar, const
Unicode::UnicodeChar ellipsisChar)
Initializes a new instance of the ConstFont class.

const GlyphNode * find(Unicode::UnicodeChar unicode) const
Finds the glyph data associated with the specified unicode.

const GlyphNode * getGlyph(Unicode::UnicodeChar unicode)
Gets the glyph data associated with the specified Unicode.

virtual const GlyphNode * getGlyph(Unicode::UnicodeChar unicode, const uint8_t *& pixelData,
uint8_t & bitsPerPixel) const
Gets the glyph data associated with the specified Unicode.

const GlyphNode * getGlyph(Unicode::UnicodeChar unicode, const uint8_t *& pixelData,
uint8_t & bitsPerPixel)
Gets the glyph data associated with the specified Unicode.

virtual int8_t getKerning(Unicode::UnicodeChar prevChar, const GlyphNode *
glyph) const =0
Gets the kerning distance between two characters.

virtual const uint8_t * getPixelData(const GlyphNode * glyph) const =0
Gets the pixel date associated with this glyph.

Protected Attributes
const GlyphNode * glyphList

The list of glyphs.

uint16_t listSize
The size of the list of glyphs.

Additional inherited members
Public Functions inherited from Font

virtual FORCE_INLINE_FUNCTION uint8_t getBitsPerPixel() const
Gets bits per pixel for this font.

virtual FORCE_INLINE_FUNCTION uint8_t getByteAlignRow() const
Are the glyphs saved with each glyph row byte aligned?

virtual uint16_t getCharWidth(const Unicode::UnicodeChar c) const
Gets the width in pixels of the specified character.

virtual Unicode::UnicodeChar getEllipsisChar() const
Gets ellipsis character for the given font.

virtual Unicode::UnicodeChar getFallbackChar() const
Gets fallback character for the given font.

virtual FORCE_INLINE_FUNCTION uint16_t getFontHeight() const
Returns the height in pixels of this font.

virtual const uint16_t * getGSUBTable() const
Gets GSUB table.

FORCE_INLINE_FUNCTION uint8_t getMaxPixelsLeft() const
Gets maximum pixels left of any glyph in the font.

FORCE_INLINE_FUNCTION uint8_t getMaxPixelsRight() const
Gets maximum pixels right of any glyph in the font.

virtual uint16_t getMaxTextHeight(const Unicode::UnicodeChar * text,
...) const
Gets the height of the highest character in a given string.

virtual FORCE_INLINE_FUNCTION uint16_t getMinimumTextHeight() const
Returns the minimum height needed for a text field that
uses this font.

virtual uint16_t getNumberOfLines(const Unicode::UnicodeChar * text,
...) const
Count the number of lines in a given text.

virtual uint8_t getSpacingAbove(const Unicode::UnicodeChar * text, ...
) const
Gets the number of blank pixels at the top of the given
text.

virtual uint16_t getStringWidth(const Unicode::UnicodeChar * text, ...)
const
Gets the width in pixels of the specified string.

virtual uint16_t getStringWidth(TextDirection textDirection, const
Unicode::UnicodeChar * text, ...) const
Gets the width in pixels of the specified string.

virtual ~Font()
Finalizes an instance of the Font class.

FORCE_INLINE_FUNCTION bool isInvisibleZeroWidth(Unicode::UnicodeChar character)
Query if 'character' is invisible, zero width.

Protected Functions inherited from Font
Font(uint16_t height, uint8_t pixBelowBase, uint8_t bitsPerPixel, uint8_t byteAlignRow,
uint8_t maxLeft, uint8_t maxRight, const Unicode::UnicodeChar fallbackChar, const
Unicode::UnicodeChar ellipsisChar)
Initializes a new instance of the Font class.

uint16_t getStringWidthLTR(TextDirection textDirection, const Unicode::UnicodeChar * text,
va_list pArg) const
Gets the width in pixels of the specified string.

uint16_t getStringWidthRTL(TextDirection textDirection, const Unicode::UnicodeChar * text,
va_list pArg) const

Gets the width in pixels of the specified string.

Protected Attributes inherited from Font
uint8_t bAlignRow

The glyphs are saved with each row byte aligned.

uint8_t bPerPixel
The number of bits per pixel.

Unicode::UnicodeChar ellipsisCharacter
The ellipsis character used for truncating long texts.

Unicode::UnicodeChar fallbackCharacter
The fallback character to use when no glyph exists for the wanted character.

uint16_t fontHeight
The font height in pixels.

uint8_t maxPixelsLeft
The maximum number of pixels a glyph extends to the left.

uint8_t maxPixelsRight
The maximum number of pixels a glyph extends to the right.

uint8_t pixelsBelowBaseline
The number of pixels below the base line.

Public Functions Documentation
ConstFont

ConstFont (const GlyphNode * list ,
uint16_t size ,
uint16_t height ,
uint8_t pixBelowBase ,
uint8_t bitsPerPixel ,
uint8_t byteAlignRow ,
uint8_t maxLeft ,
uint8_t maxRight ,

const Unicode::UnicodeChar fallbackChar ,
const Unicode::UnicodeChar ellipsisChar
)

Initializes a new instance of the ConstFont class.

Parameters:
list The array of glyphs known to this font.
size The number of glyphs in list.
height The height in pixels of the highest character in this font.
pixBelowBase The maximum number of pixels that can be drawn below the baseline in this

font.
bitsPerPixel The number of bits per pixel in this font.
byteAlignRow The glyphs are saved with each row byte aligned.
maxLeft The maximum a character extends to the left.
maxRight The maximum a character extends to the right.
fallbackChar The fallback character for the typography in case no glyph is available.
ellipsisChar The ellipsis character used for truncating long texts.

find
const GlyphNode * find (Unicode::UnicodeChar unicode)

Finds the glyph data associated with the specified unicode.

Parameters:
unicode The character to look up.

Returns:

A pointer to the glyph node or null if the glyph was not found.

getGlyph
const GlyphNode * getGlyph (Unicode::UnicodeChar unicode)

Gets the glyph data associated with the specified Unicode.

Please note that in case of Thai letters and Arabic letters where diacritics can be placed relative to
the previous character(s), please use TextProvider::getNextLigature() instead as it will create a
temporary GlyphNode that will be adjusted with respect to X/Y position.

Parameters:
unicode The character to look up.

Returns:

A pointer to the glyph node or null if the glyph was not found.

See also:

TextProvider::getNextLigature

getGlyph
virtual const GlyphNode * getGlyph (Unicode::UnicodeChar unicode , const

const uint8_t *& pixelData , const
uint8_t & bitsPerPixel const
) const

Gets the glyph data associated with the specified Unicode.

Please note that in case of Thai letters and Arabic letters where diacritics can be placed relative to
the previous character(s), please use TextProvider::getNextLigature() instead as it will create a
temporary GlyphNode that will be adjusted with respect to X/Y position.

Parameters:
unicode The character to look up.
pixelData Pointer to the pixel data for the glyph if the glyph is found. This is set by this

method.
bitsPerPixel Reference where to place the number of bits per pixel.

Returns:

A pointer to the glyph node or null if the glyph was not found.

Reimplements: touchgfx::Font::getGlyph

getGlyph
const GlyphNode * getGlyph (Unicode::UnicodeChar unicode ,

const uint8_t *& pixelData ,
uint8_t & bitsPerPixel
)

Gets the glyph data associated with the specified Unicode.

Please note that in case of Thai letters and Arabic letters where diacritics can be placed relative to
the previous character(s), please use TextProvider::getNextLigature() instead as it will create a
temporary GlyphNode that will be adjusted with respect to X/Y position.

Parameters:
unicode The character to look up.
pixelData Pointer to the pixel data for the glyph if the glyph is found. This is set by this

method.
bitsPerPixel Reference where to place the number of bits per pixel.

Returns:

A pointer to the glyph node or null if the glyph was not found.

getKerning
virtual int8_t getKerning (Unicode::UnicodeChar prevChar , const =0

const GlyphNode * glyph const =0
) const =0

Gets the kerning distance between two characters.

Parameters:
prevChar The Unicode value of the previous character.
glyph the glyph object for the current character.

Returns:

The kerning distance between prevChar and glyph char.

Reimplements: touchgfx::Font::getKerning

Reimplemented by: touchgfx::InternalFlashFont::getKerning

getPixelData
virtual const uint8_t * getPixelData (const GlyphNode * glyph)

Gets the pixel date associated with this glyph.

Parameters:
glyph The glyph to get the pixels data from.

Returns:

Pointer to the pixel data of this glyph.

Reimplemented by: touchgfx::InternalFlashFont::getPixelData

Protected Attributes Documentation
glyphList

const GlyphNode * glyphList

The list of glyphs.

listSize
uint16_t listSize

The size of the list of glyphs.

Version: 4.16

Container
A Container is a Drawable that can have child nodes. The z-order of children is determined by the
order in which Drawables are added to the container - the Drawable added last will be front-most on
the screen.

This class overrides a few functions in Drawable in order to traverse child nodes.

Note that containers act as view ports - that is, only the parts of children that intersect with the
geometry of the container will be visible (e.g. setting a container's width to 0 will render all children
invisible).

See: Drawable

Inherits from: Drawable

Inherited by: MoveAnimator< touchgfx::Container >, AbstractButtonContainer, AbstractClock,
AbstractDataGraph, AbstractProgressIndicator, CacheableContainer, DrawableList, Keyboard,
ListLayout, ModalWindow, ScrollableContainer, ScrollBase, SlideMenu, Slider, SwipeContainer,
ZoomAnimationImage

Public Functions
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Additional inherited members
Public Functions inherited from Drawable

virtual void childGeometryChanged()
This function can be called on parent nodes to signal that the size or position of one
or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

int16_t getHeight() const
Gets the height of this Drawable.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to timer
ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)

Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
add

virtual void add (Drawable & d)

Adds a Drawable instance as child to this Container.

The Drawable added will be placed as the element to be drawn last, and thus appear on top of all
previously added drawables in the Container.

Parameters:
d The Drawable to add.

NOTE

Never add a drawable more than once!

Reimplemented by: touchgfx::ListLayout::add, touchgfx::ModalWindow::add,
touchgfx::ScrollableContainer::add, touchgfx::SlideMenu::add,
touchgfx::SwipeContainer::add

Container
Container ()

contains

virtual bool contains (const Drawable & d)

Query if a given Drawable has been added directly to this Container.

The search is not done recursively.

Parameters:
d The Drawable to look for.

Returns:

True if the specified Drawable instance is direct child of this container, false otherwise.

draw
virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Drawable::draw

Reimplemented by: touchgfx::Keyboard::draw

forEachChild
virtual void forEachChild (GenericCallback< Drawable & > * function)

Executes the specified callback function for each child in the Container.

The callback to execute must have the following prototype: void T::func(Drawable&)

Parameters:
function The function to be executed for each child.

getFirstChild

virtual Drawable * getFirstChild ()

Obtain a pointer to the first child of this container.

The first child is the Drawable drawn first, and therefore the Drawablebehind all other children of
this Container. Useful if you want to manually iterate the children added to this container.

Returns:

Pointer to the first drawable added to this container. If nothing has been added return zero.

See also:

getNextSibling

Reimplements: touchgfx::Drawable::getFirstChild

getLastChild
virtual void getLastChild (int16_t x ,

int16_t y ,
Drawable ** last
)

Gets the last child in the list of children in this Container.

If this Container is touchable (isTouchable()), it will be passed back as the result. Otherwise all
visible children are traversed recursively to find the Drawable that intersects with the given
coordinate.

Parameters:
x The x coordinate of the intersection.
y The y coordinate of the intersection.
last out parameter in which the result is placed.

See also:

isVisible, isTouchable

Reimplements: touchgfx::Drawable::getLastChild

Reimplemented by: touchgfx::ScrollableContainer::getLastChild

getSolidRect
virtual Rect getSolidRect () const

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

This information is important, as any Drawable underneath the solid area does not need to be
drawn.

Returns:

The solid rectangle part of the Drawable.

NOTE

The rectangle returned must be relative to upper left corner of the Drawable, meaning that a completely
solid widget should return the full size Rect(0, 0, getWidth(), getHeight()). If no area can be guaranteed to
be solid, an empty Rect(0, 0, 0, 0) must be returned. Failing to return the correct rectangle may result in
errors on the display.

Reimplements: touchgfx::Drawable::getSolidRect

insert
virtual void insert (Drawable * previous ,

Drawable & d
)

Inserts a Drawable after a specific child node.

If previous child node is 0, the drawable will be inserted as the first element in the list. The first
element in the list of children is the element drawn first, so this makes it possible to insert a
Drawablebehind all previously added children.

Parameters:
previous The Drawable to insert after. If null, insert as header.
d The Drawable to insert.

NOTE

As with add, do not add the same drawable twice.

Reimplemented by: touchgfx::ListLayout::insert

remove
virtual void remove (Drawable & d)

Removes a Drawable from the container by removing it from the linked list of children.

If the Drawable is not in the list of children, nothing happens. It is possible to remove an element
from whichever Container it is a member of using:

The Drawable will have the parent and next sibling cleared, but is otherwise left unaltered.

Parameters:
d The Drawable to remove.

NOTE

This is safe to call even if d is not a child of this Container (in which case nothing happens).

Reimplemented by: touchgfx::ListLayout::remove, touchgfx::ModalWindow::remove,
touchgfx::SlideMenu::remove, touchgfx::SwipeContainer::remove

removeAll
virtual void removeAll ()

Removes all children in the Container by resetting their parent and sibling pointers.

Please note that this is not done recursively, so any child which is itself a Container is not emptied.

Reimplemented by: touchgfx::ListLayout::removeAll

unlink
virtual void unlink ()

Removes all children by unlinking the first child.

The parent and sibling pointers of the children are not reset.

See also:

getFirstChild

if (d.getParent()) d.getParent()->remove(d);

Protected Functions Documentation
getContainedArea

virtual Rect getContainedArea () const

Gets a rectangle describing the total area covered by the children of this container.

Returns:

Rectangle covering all children.

Reimplemented by: touchgfx::ScrollableContainer::getContainedArea

moveChildrenRelative
virtual void moveChildrenRelative (int16_t deltaX ,

int16_t deltaY
)

Calls moveRelative on all children.

Parameters:
deltaX Horizontal displacement.
deltaY Vertical displacement.

Reimplemented by: touchgfx::ScrollableContainer::moveChildrenRelative

Protected Attributes Documentation
firstChild

Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through firstChild's
nextSibling.

Version: 4.16

CoverTransition
A Transition that slides the new screen over the previous from the given direction.

Inherits from: Transition

Public Functions
CoverTransition(const uint8_t transitionSteps =20)
Initializes a new instance of the CoverTransition class.

virtual void handleTickEvent()
Handles the tick event when transitioning.

virtual void init()
Initializes the transition.

virtual void tearDown()
Tears down the Animation.

Protected Functions
virtual void initMoveDrawable(Drawable & d)

Moves the Drawable to its initial position just outside of the visible area of the display.

virtual void tickMoveDrawable(Drawable & d)
Moves the Drawable to the new position as calculated in handleTickEvent().

Additional inherited members
Public Functions inherited from Transition

virtual void invalidate()
Invalidates the screen when starting the Transition.

bool isDone() const
Query if the transition is done transitioning.

virtual void setScreenContainer(Container & cont)
Sets the ScreenContainer.

Transition()
Initializes a new instance of the Transition class.

virtual ~Transition()
Finalizes an instance of the Transition class.

Protected Attributes inherited from Transition
bool done

Flag that indicates when the transition is done. This should be set by implementing
classes.

Container * screenContainer
The screen Container of the Screen transitioning to.

Public Functions Documentation
CoverTransition

CoverTransition (const uint8_t transitionSteps =20)

Initializes a new instance of the CoverTransition class.

Parameters:
transitionSteps (Optional) Number of steps in the transition animation.

handleTickEvent
virtual void handleTickEvent ()

Handles the tick event when transitioning.

It moves the contents of the Screen's container. The direction of the transition determines the
direction the contents of the container moves.

Reimplements: touchgfx::Transition::handleTickEvent

init
virtual void init ()

Initializes the transition.

Called after the constructor is called, when the application changes the transition.

Reimplements: touchgfx::Transition::init

tearDown
virtual void tearDown ()

Tears down the Animation.

Called before the destructor is called, when the application changes the transition.

Reimplements: touchgfx::Transition::tearDown

Protected Functions Documentation
initMoveDrawable

virtual void initMoveDrawable (Drawable & d)

Moves the Drawable to its initial position just outside of the visible area of the display.

Parameters:
d The Drawable to move.

tickMoveDrawable
virtual void tickMoveDrawable (Drawable & d)

Moves the Drawable to the new position as calculated in handleTickEvent().

Parameters:

d The Drawable to move.

Version: 4.16

CWRUtil
Helper classes and functions for CanvasWidget. A handful of utility functions can be found here. These
include helper functions for converting between float, int and Q5/Q10/Q15 formats. There are also
functions for calculating sin() and cos() in integers with a high number of bits (15) reserved for fraction.
Having sin() and cos() pre-calculated in this way allows very fast drawing of circles without the need
for floating point arithmetic.

Using Q5, which uses 32 bit value internally, numbers from -67108865 to +67108864.96875 with a
precision of 1/32 = 0.03125 can be represented, as described in
http://en.wikipedia.org/wiki/Q_%28number_format%29.

Doing arithmetic operations on Q5, Q10 and Q15 numbers is described in detail on
http://en.wikipedia.org/wiki/Fixed-point_arithmetic.

Public Classes
class Q10

Defines a "floating point number" with 10 bits reserved for the fractional part of the decimal
number.

class Q15
Defines a "floating point number" with 15 bits reserved for the fractional part of the decimal
number.

class Q5
Defines a "floating point number" with 5 bits reserved for the fractional part of the decimal
number.

Public Functions
int angle(Q5 x, Q5 y)

Find angle of a coordinate relative to (0,0).

int angle(Q5 x, Q5 y, Q5 & d)
Find the angle of the coordinate (x, y) relative to (0, 0).

template \<typename T \>
int angle(T x, T y)

Find angle of a coordinate relative to (0,0).

template \<typename T \>
int angle(T x, T y, T & d)

Find angle of a coordinate relative to (0,0).

int8_t arcsine(Q10 q10)
Gets the arcsine of the given fraction (given as Q10).

Q15 cosine(int i)
Find the value of cos(i) with 15 bits precision using the fact that
cos(i)=sin(90-i).

Q15 cosine(Q5 i)
Find the value of cos(i) with 15 bits precision using the fact that
cos(i)=sin(90-i).

Q5 muldiv_toQ5(int32_t factor1, int32_t factor2, int32_t divisor)
Multiply two integers and divide by an integer without overflowing
the multiplication.

Q5 muldivQ10(Q10 factor1, Q10 factor2, Q10 divisor)
Multiply two Q5's and divide by a Q5 without overflowing the
multiplication (assuming that the final result can be stored in a Q5).

Q5 muldivQ5(Q5 factor1, Q5 factor2, Q5 divisor)
Multiply two Q5's and divide by a Q5 without overflowing the
multiplication (assuming that the final result can be stored in a Q5).

Q5 mulQ5(Q5 factor1, Q10 factor2)
Multiply one Q5 by a Q10 returning a new Q5 without overflowing.

Q5 mulQ5(Q5 factor1, Q5 factor2)
Multiply two Q5's returning a new Q5 without overflowing.

Q15 sine(int i)
Find the value of sin(i) with 15 bits precision.

Q15 sine(Q5 i)
Find the value of sin(i) with 15 bits precision.

Q5 sqrtQ10(Q10 value)

Find the square root of the given value.

template \<typename T \>
FORCE_INLINE_FUNCTION Q10 toQ10(T value)

Convert an integer to a fixed point number.

FORCE_INLINE_FUNCTION Q5 toQ5(Q5 value)
Convert a Q5 to itself.

template \<typename T \>
FORCE_INLINE_FUNCTION Q5 toQ5(T value)

Convert an integer to a fixed point number.

Public Functions Documentation
angle

static int angle (Q5 x ,
Q5 y
)

Find angle of a coordinate relative to (0,0).

Parameters:
x The x coordinate.
y The y coordinate.

Returns:

The angle of the coordinate.

angle
static int angle (Q5 x ,

Q5 y ,
Q5 & d
)

Find the angle of the coordinate (x, y) relative to (0, 0).

Parameters:
x The x coordinate.
y The y coordinate.

d The distance from (0,0) to (x,y).

Returns:

The angle.

angle
static int angle (T x ,

T y
)

Find angle of a coordinate relative to (0,0).

Template Parameters:
T Generic type parameter (int or float).

Parameters:
x The x coordinate.
y The y coordinate.

Returns:

The angle of the coordinate.

angle
static int angle (T x ,

T y ,
T & d
)

Find angle of a coordinate relative to (0,0).

Template Parameters:
T Generic type parameter (int or float).

Parameters:
x The x coordinate.
y The y coordinate.
d The distance from (0,0) to (x,y).

Returns:

The angle of the coordinate.

arcsine
static int8_t arcsine (Q10 q10)

Gets the arcsine of the given fraction (given as Q10).

The function is most precise for angles 0-45. To limit memory requirements, values above sqrt(1/2)
is calculated as 90-arcsine(sqrt(1-q10^2)). Internally.

Parameters:
q10 The 10.

Returns:

An int8_t.

cosine
static Q15 cosine (int i)

Find the value of cos(i) with 15 bits precision using the fact that cos(i)=sin(90-i).

Parameters:
i the angle in degrees. The angle follows the angles of the clock, 0 being straight up and 90

being 3 o'clock.

Returns:

the value of cos(i) with 15 bits precision on the fractional part.

See also:

sine

cosine
static Q15 cosine (Q5 i)

Find the value of cos(i) with 15 bits precision using the fact that cos(i)=sin(90-i).

Parameters:
i the angle in degrees. The angle follows the angles of the clock, 0 being straight up and 90

being 3 o'clock.

Returns:

the value of cos(i) with 15 bits precision on the fractional part.

See also:

sine

muldiv_toQ5
static Q5 muldiv_toQ5 (int32_t factor1 ,

int32_t factor2 ,
int32_t divisor
)

Multiply two integers and divide by an integer without overflowing the multiplication.

The result is returned in a Q5 thus allowing a more precise calculation to be performed.

Parameters:
factor1 The first factor.
factor2 The second factor.
divisor The divisor.

Returns:

factor1 * factor2 / divisor as a Q5

muldivQ10
static Q5 muldivQ10 (Q10 factor1 ,

Q10 factor2 ,
Q10 divisor
)

Multiply two Q5's and divide by a Q5 without overflowing the multiplication (assuming that the
final result can be stored in a Q5).

Parameters:
factor1 The first factor.
factor2 The second factor.
divisor The divisor.

Returns:

factor1 * factor2 / divisor.

muldivQ5

static Q5 muldivQ5 (Q5 factor1 ,
Q5 factor2 ,
Q5 divisor
)

Multiply two Q5's and divide by a Q5 without overflowing the multiplication (assuming that the
final result can be stored in a Q5).

Parameters:
factor1 The first factor.
factor2 The second factor.
divisor The divisor.

Returns:

factor1 * factor2 / divisor.

mulQ5
static Q5 mulQ5 (Q5 factor1 ,

Q10 factor2
)

Multiply one Q5 by a Q10 returning a new Q5 without overflowing.

Parameters:
factor1 The first factor.
factor2 The second factor.

Returns:

factor1 * factor2.

mulQ5
static Q5 mulQ5 (Q5 factor1 ,

Q5 factor2
)

Multiply two Q5's returning a new Q5 without overflowing.

Parameters:
factor1 The first factor.
factor2 The second factor.

Returns:

factor1 * factor2.

sine
static Q15 sine (int i)

Find the value of sin(i) with 15 bits precision.

The returned value can be converted to a floating point number and divided by (1<<15) to get the
rounded value of sin(i). By using this function, a complete circle can be drawn without the need for
using floating point math.

Parameters:
i the angle in degrees. The angle follows the angles of the clock, 0 being straight up and 90

being 3 o'clock.

Returns:

the value of sin(i) with 15 bits precision on the fractional part.

sine
static Q15 sine (Q5 i)

Find the value of sin(i) with 15 bits precision.

The returned value can be converted to a floating point number and divided by (1<<15) to get the
rounded value of sin(i). By using this function, a complete circle can be drawn without the need for
using floating point math.

If the given degree is not an integer, the value is approximated by interpolation between
sin(floor(i)) and sin(ceil(i)).

Parameters:
i the angle in degrees. The angle follows the angles of the clock, 0 being straight up and 90

being 3 o'clock.

Returns:

the value of sin(i) with 15 bits precision on the fractional part.

sqrtQ10

static Q5 sqrtQ10 (Q10 value)

Find the square root of the given value.

Parameters:
value The value to find the square root of.

Returns:

The square root of the given value.

toQ10
static FORCE_INLINE_FUNCTION Q10 toQ10 (T value)

Convert an integer to a fixed point number.

This is done by multiplying the floating point value by (1 << 10).

Template Parameters:
T Should be either int or float.

Parameters:
value the integer to convert.

Returns:

the converted integer.

toQ5
static FORCE_INLINE_FUNCTION Q5 toQ5 (Q5 value)

Convert a Q5 to itself.

Allows toQ5 to be called with a variable that is already Q5.

Parameters:
value the Q5.

Returns:

the value passed.

toQ5

static FORCE_INLINE_FUNCTION Q5 toQ5 (T value)

Convert an integer to a fixed point number.

This is done by multiplying the floating point value by (1 << 5)

Template Parameters:
T Should be either int or float.

Parameters:
value the integer to convert.

Returns:

the converted integer.

Version: 4.16

DataGraphScroll
DataGraphScroll is used to display a graph that continuously scrolls to the left every time a new value
is added to the graph. Because the graph is scrolled every time a new value is added, the graph has to
be re-drawn which can be quite demanding for the hardware depending on the graph elements used
in the graph.

Inherits from: AbstractDataGraphWithY, AbstractDataGraph, Container, Drawable

Inherited by: GraphScroll< CAPACITY >

Public Functions
virtual void clear()

Clears the graph to its blank/initial state.

DataGraphScroll(int16_t capacity, int * values)
Initializes a new instance of the DataGraphScroll class.

virtual int32_t indexToGlobalIndex(int16_t index) const
Convert an index to global index.

Protected Functions
virtual int16_t addValue(int value)

Adds a value to the internal data array and keeps track of when graph points, graph
axis and the entire graph needs to be redrawn (invalidated).

virtual void beforeAddValue()
This function is called before a new value (data point) is added.

virtual int16_t realIndex(int16_t index) const
Get the real index in the yValues array of the given index.

Protected Attributes

int16_t current
The current position used for inserting new elements.

Additional inherited members
Public Functions inherited from AbstractDataGraphWithY

AbstractDataGraphWithY(int16_t capacity, int * values)
Initializes a new instance of the AbstractDataGraphWithY class.

int16_t addDataPoint(float y)
Adds a new data point to the end of the graph.

int16_t addDataPoint(int y)
Adds a new data point to the end of the graph.

virtual int getGraphRangeXMax() const
Gets the maximum x coordinate for the graph.

virtual int getGraphRangeXMin() const
Gets the minimum x coordinate for the graph.

virtual float getGraphRangeYMaxAsFloat() const
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMaxAsInt() const
Gets maximum y coordinate for the graph.

virtual float getGraphRangeYMinAsFloat() const
Gets minimum y coordinate for the graph.

virtual int getGraphRangeYMinAsInt() const
Gets minimum y coordinate for the graph.

virtual float getXAxisOffsetAsFloat() const
Get x coordinate axis offset value.

virtual int getXAxisOffsetAsInt() const
Get x coordinate axis offset value.

virtual float getXAxisScaleAsFloat() const

Get x coordinate axis scale value.

virtual int getXAxisScaleAsInt() const
Get x coordinate axis scale value.

virtual void setGraphRangeX(int min, int max)
Sets minimum and maximum x coordinates for the graph.

virtual void setGraphRangeY(float min, float max)
Sets minimum and maximum y coordinates for the graph.

virtual void setGraphRangeY(int min, int max)
Sets minimum and maximum y coordinates for the graph.

void setGraphRangeYAuto(bool showXaxis =true, int margin =0)
Automatic adjust min and max y coordinate to show entire graph.

virtual void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

virtual void setXAxisOffset(float offset)
Set x coordinate axis offset value.

virtual void setXAxisOffset(int offset)
Set x coordinate axis offset value.

virtual void setXAxisScale(float scale)
Set x coordinate axis scale value.

virtual void setXAxisScale(int scale)
Set x coordinate axis scale value.

Protected Functions inherited from AbstractDataGraphWithY
int16_t addDataPointScaled(int y)

Same as addDataPoint(int) except the passed argument is assumed scaled.

virtual int getGraphRangeYMaxScaled() const
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMinScaled() const
Gets minimum y coordinate for the graph.

virtual int getXAxisOffsetScaled() const
Get x axis offset as a scaled value.

virtual int getXAxisScaleScaled() const
Get x axis scale as a scaled value.

virtual int indexToDataPointXScaled(int16_t index) const
Same as indexToDataPointXAsInt(int16_t) except the returned value is left
scaled.

virtual int indexToDataPointYScaled(int16_t index) const
Same as indexToDataPointYAsInt(int16_t) except the returned value is left
scaled.

virtual CWRUtil::Q5 indexToScreenXQ5(int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

virtual CWRUtil::Q5 indexToScreenYQ5(int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

virtual void setGraphRangeYScaled(int min, int max)
Same as setGraphRangeY(int,int) except the passed arguments are assumed
scaled.

virtual void setXAxisOffsetScaled(int offset)
Set x coordinate axis offset value with a pre-scaled offset value.

virtual void setXAxisScaleScaled(int scale)
Set x coordinate axis scale value using a pre-scaled value.

virtual CWRUtil::Q5 valueToScreenXQ5(int x) const
Gets screen x coordinate for an absolute value.

virtual CWRUtil::Q5 valueToScreenYQ5(int y) const
Gets screen y coordinate for an absolute value.

virtual bool xScreenRangeToIndexRange(int16_t xLo, int16_t xHi, int16_t & indexLow,
int16_t & indexHigh) const
Gets index range for screen x coordinate range taking the current graph range
into account.

Protected Attributes inherited from AbstractDataGraphWithY

uint32_t dataCounter
The data counter of how many times addDataPoint() has been called.

int xOffset
The x axis offset (real value of data point at index 0)

int xScale
The x axis scale (increment between two data points)

int * yValues
The values of the graph.

Public Classes inherited from AbstractDataGraph
class GraphClickEvent

An object of this type is passed with each callback that is sent when the graph is clicked.

class GraphDragEvent
An object of this type is passed with each callback that is sent when the graph is dragged.

Public Functions inherited from AbstractDataGraph
AbstractDataGraph(int16_t capacity)
Initializes a new instance of the AbstractDataGraph class.

void addBottomElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area below the graph.

void addGraphElement(AbstractGraphElement & d)
Adds a graph element which will display the graph.

void addLeftElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the left of the graph.

void addRightElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the right of the graph.

void addTopElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area above the graph.

uint8_t getAlpha() const

Gets the current alpha value of the widget.

int16_t getGapBeforeIndex() const
Gets gap before index as set using setGapBeforeIndex().

int16_t getGraphAreaHeight() const
Gets graph area height.

int16_t getGraphAreaHeightIncludingPadding() const
Gets graph area height including padding (but not margin).

int16_t getGraphAreaMarginBottom() const
Gets graph margin bottom.

int16_t getGraphAreaMarginLeft() const
Gets graph margin left.

int16_t getGraphAreaMarginRight() const
Gets graph margin right.

int16_t getGraphAreaMarginTop() const
Gets graph margin top.

int16_t getGraphAreaPaddingBottom() const
Gets graph area padding bottom.

int16_t getGraphAreaPaddingLeft() const
Gets graph area padding left.

int16_t getGraphAreaPaddingRight() const
Gets graph area padding right.

int16_t getGraphAreaPaddingTop() const
Gets graph area padding top.

int16_t getGraphAreaWidth() const
Gets graph area width.

int16_t getGraphAreaWidthIncludingPadding() const
Gets graph area width including padding (but not margin).

virtual int getGraphRangeXMax() const =0
Gets the maximum x coordinate for the graph.

virtual int getGraphRangeXMin() const =0
Gets the minimum x coordinate for the graph.

virtual float getGraphRangeYMaxAsFloat() const =0
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMaxAsInt() const =0
Gets maximum y coordinate for the graph.

virtual float getGraphRangeYMinAsFloat() const =0
Gets minimum y coordinate for the graph.

virtual int getGraphRangeYMinAsInt() const =0
Gets minimum y coordinate for the graph.

int16_t getMaxCapacity() const
Gets the capacity (max number of points) of the graph.

virtual bool getNearestIndexForScreenX(int16_t x, int16_t & index) const
Gets graph index nearest to the given screen x coordinate.

virtual bool getNearestIndexForScreenXY(int16_t x, int16_t y, int16_t & index)
Gets graph index nearest to the given screen position.

int getScale() const
Gets the scaling factor previously set using setScale().

int16_t getUsedCapacity() const
Gets the number of point used by the graph.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

float indexToDataPointXAsFloat(int16_t index) const
Get the data point x value for the given graph point index.

int indexToDataPointXAsInt(int16_t index) const
Get the data point x value for the given graph point index.

float indexToDataPointYAsFloat(int16_t index) const

Get the data point y value for the given graph point index.

int indexToDataPointYAsInt(int16_t index) const
Get the data point y value for the given graph point index.

int16_t indexToScreenX(int16_t index) const
Get the screen x coordinate for the given graph point index.

int16_t indexToScreenY(int16_t index) const
Get the screen y coordinate for the given graph point index.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setClickAction(GenericCallback< const AbstractDataGraph &, const
GraphClickEvent & > & callback)
Sets an action to be executed when the graph is clicked.

void setDragAction(GenericCallback< const AbstractDataGraph &, const
GraphDragEvent & > & callback)
Sets an action to be executed when the graph is dragged.

void setGapBeforeIndex(int16_t index)
Makes gap before the specified index.

void setGraphAreaMargin(int16_t top, int16_t left, int16_t right, int16_t bottom)
Sets graph position inside the widget by reserving a margin around the graph.

void setGraphAreaPadding(int16_t top, int16_t left, int16_t right, int16_t bottom)
Adds some padding around the graph that will not be drawn in (apart from dots, boxes
etc.

void setGraphRange(int xMin, int xMax, float yMin, float yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

void setGraphRange(int xMin, int xMax, int yMin, int yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

virtual void setGraphRangeX(int min, int max) =0
Sets minimum and maximum x coordinates for the graph.

virtual void setGraphRangeY(float min, float max) =0
Sets minimum and maximum y coordinates for the graph.

virtual void setGraphRangeY(int min, int max) =0
Sets minimum and maximum y coordinates for the graph.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

int float2scaled(float f, int scale)
Multiply a floating point value with a constant and round the result.

int int2scaled(int i, int scale)
Multiply an integer value with a constant.

float scaled2float(int i, int scale)
Divide a floating point number with a constant.

int scaled2int(int i, int scale)
Divide an integer with a constant and round the result.

Protected Functions inherited from AbstractDataGraph
int convertToGraphScale(int value, int scale) const

Converts a number with one scale to a number that has the same scale as the
graph.

int float2scaled(float f) const
Same as float2scaled(float,int) using the graph's scale.

virtual int getGraphRangeYMaxScaled() const =0
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMinScaled() const =0
Gets minimum y coordinate for the graph.

virtual int getXAxisOffsetScaled() const
Get x axis offset as a scaled value.

virtual int getXAxisScaleScaled() const
Get x axis scale as a scaled value.

virtual int indexToDataPointXScaled(int16_t index) const =0
Same as indexToDataPointXAsInt(int16_t) except the returned value is left
scaled.

virtual int indexToDataPointYScaled(int16_t index) const =0
Same as indexToDataPointYAsInt(int16_t) except the returned value is left
scaled.

virtual CWRUtil::Q5 indexToScreenXQ5(int16_t index) const =0
Gets screen x coordinate for a specific data point added to the graph.

virtual CWRUtil::Q5 indexToScreenYQ5(int16_t index) const =0
Gets screen y coordinate for a specific data point added to the graph.

int int2scaled(int i) const
Same as int2scaled(int,int) using the graph's scale.

void invalidateAllXAxisPoints()
Invalidate all x axis points.

void invalidateGraphArea()
Invalidate entire graph area (the center of the graph).

void invalidateGraphPointAt(int16_t index)
Invalidate point at a given index.

void invalidateXAxisPointAt(int16_t index)
Invalidate x axis point at the given index.

float scaled2float(int i) const
Same as scaled2float(int,int) using the graph's scale.

int scaled2int(int i) const
Same as scaled2int(int,int) using the graph's scale.

void setGraphRangeScaled(int xMin, int xMax, int yMin, int yMax)
Same as setGraphRange(int,int,int,int) except the passed arguments are
assumed scaled.

virtual void setGraphRangeYScaled(int min, int max) =0

Same as setGraphRangeY(int,int) except the passed arguments are assumed
scaled.

void updateAreasPosition()
Updates the position of all elements in all area after a change in size of the
graph area and/or label padding.

virtual CWRUtil::Q5 valueToScreenXQ5(int x) const =0
Gets screen x coordinate for an absolute value.

virtual CWRUtil::Q5 valueToScreenYQ5(int y) const =0
Gets screen y coordinate for an absolute value.

virtual bool xScreenRangeToIndexRange(int16_t xLo, int16_t xHi, int16_t & indexLow,
int16_t & indexHigh) const =0
Gets index range for screen x coordinate range taking the current graph range
into account.

Protected Attributes inherited from AbstractDataGraph
uint8_t alpha

The alpha of the
entire graph.

Container bottomArea
The area below the
graph.

int16_t bottomPadding
The graph area
bottom padding.

GenericCallback< const AbstractDataGraph &, const GraphClickEvent & > * clickAction
The callback to be
executed when this
Graph is clicked.

int dataScale
The data scale
applied to all values.

GenericCallback< const AbstractDataGraph &, const GraphDragEvent & > * dragAction

The callback to be
executed when this
Graph is dragged.

int16_t gapBeforeIndex
The graph is
disconnected (there
is a gap) before this
element index.

Container graphArea
The graph area (the
center area)

Container leftArea
The area to the left
of the graph.

int16_t leftPadding
The graph area left
padding.

int16_t maxCapacity
Maximum number
of points in the
graph.

Container rightArea
The area to the right
of the graph.

int16_t rightPadding
The graph area right
padding.

Container topArea
The area above the
graph.

int16_t topPadding
The graph area top
padding.

int16_t usedCapacity

The number of used
points in the graph.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0

Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible

True if this drawable should be drawn.

Public Functions Documentation
clear

virtual void clear ()

Clears the graph to its blank/initial state.

Reimplements: touchgfx::AbstractDataGraph::clear

DataGraphScroll
DataGraphScroll (int16_t capacity ,

int * values
)

Initializes a new instance of the DataGraphScroll class.

Parameters:
capacity The capacity.
values Pointer to memory with room for capacity elements of type T.

indexToGlobalIndex
virtual int32_t indexToGlobalIndex (int16_t index)

Convert an index to global index.

The index is the index of any data point, The global index is a value that keeps growing whenever a
new data point is added the the graph.

Parameters:
index Zero-based index of the point.

Returns:

The global index.

Reimplements: touchgfx::AbstractDataGraph::indexToGlobalIndex

Protected Functions Documentation
addValue

virtual int16_t addValue (int value)

Adds a value to the internal data array and keeps track of when graph points, graph axis and the
entire graph needs to be redrawn (invalidated).

Parameters:
value The value to add to the array.

Returns:

The index of the newly added value.

Reimplements: touchgfx::AbstractDataGraphWithY::addValue

beforeAddValue
virtual void beforeAddValue ()

This function is called before a new value (data point) is added.

This allows for invalidation to be calculated based on the global data counter before it is increased
as a result of adding the new point.

Reimplements: touchgfx::AbstractDataGraphWithY::beforeAddValue

realIndex
virtual int16_t realIndex (int16_t index)

Get the real index in the yValues array of the given index.

Normally this is just the 'i' but e.g. DataGraphScroll does not, for performance reasons.

Parameters:
index Zero-based index.

Returns:

The index in the yValues array.

Reimplements: touchgfx::AbstractDataGraphWithY::realIndex

Protected Attributes Documentation
current

int16_t current

The current position used for inserting new elements.

Version: 4.16

DataGraphWrapAndClear
The DataGraphWrapAndClear will show new points progressing across the graph. Once the graph is
filled, the next point added will cause the graph to be cleared and a new graph will slowly be created
as new values are added.

Inherits from: AbstractDataGraphWithY, AbstractDataGraph, Container, Drawable

Inherited by: GraphWrapAndClear< CAPACITY >

Public Functions
DataGraphWrapAndClear(int16_t capacity, int * values)
Initializes a new instance of the DataGraphWrapAndOverwrite class.

virtual int32_t indexToGlobalIndex(int16_t index) const
Convert an index to global index.

Protected Functions
virtual int16_t addValue(int value)

Adds a value to the internal data array and keeps track of when graph points, graph
axis and the entire graph needs to be redrawn (invalidated).

virtual void beforeAddValue()
This function is called before a new value (data point) is added.

Additional inherited members
Public Functions inherited from AbstractDataGraphWithY

AbstractDataGraphWithY(int16_t capacity, int * values)
Initializes a new instance of the AbstractDataGraphWithY class.

int16_t addDataPoint(float y)

Adds a new data point to the end of the graph.

int16_t addDataPoint(int y)
Adds a new data point to the end of the graph.

virtual int getGraphRangeXMax() const
Gets the maximum x coordinate for the graph.

virtual int getGraphRangeXMin() const
Gets the minimum x coordinate for the graph.

virtual float getGraphRangeYMaxAsFloat() const
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMaxAsInt() const
Gets maximum y coordinate for the graph.

virtual float getGraphRangeYMinAsFloat() const
Gets minimum y coordinate for the graph.

virtual int getGraphRangeYMinAsInt() const
Gets minimum y coordinate for the graph.

virtual float getXAxisOffsetAsFloat() const
Get x coordinate axis offset value.

virtual int getXAxisOffsetAsInt() const
Get x coordinate axis offset value.

virtual float getXAxisScaleAsFloat() const
Get x coordinate axis scale value.

virtual int getXAxisScaleAsInt() const
Get x coordinate axis scale value.

virtual void setGraphRangeX(int min, int max)
Sets minimum and maximum x coordinates for the graph.

virtual void setGraphRangeY(float min, float max)
Sets minimum and maximum y coordinates for the graph.

virtual void setGraphRangeY(int min, int max)
Sets minimum and maximum y coordinates for the graph.

void setGraphRangeYAuto(bool showXaxis =true, int margin =0)
Automatic adjust min and max y coordinate to show entire graph.

virtual void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

virtual void setXAxisOffset(float offset)
Set x coordinate axis offset value.

virtual void setXAxisOffset(int offset)
Set x coordinate axis offset value.

virtual void setXAxisScale(float scale)
Set x coordinate axis scale value.

virtual void setXAxisScale(int scale)
Set x coordinate axis scale value.

Protected Functions inherited from AbstractDataGraphWithY
int16_t addDataPointScaled(int y)

Same as addDataPoint(int) except the passed argument is assumed scaled.

virtual int getGraphRangeYMaxScaled() const
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMinScaled() const
Gets minimum y coordinate for the graph.

virtual int getXAxisOffsetScaled() const
Get x axis offset as a scaled value.

virtual int getXAxisScaleScaled() const
Get x axis scale as a scaled value.

virtual int indexToDataPointXScaled(int16_t index) const
Same as indexToDataPointXAsInt(int16_t) except the returned value is left
scaled.

virtual int indexToDataPointYScaled(int16_t index) const
Same as indexToDataPointYAsInt(int16_t) except the returned value is left
scaled.

virtual CWRUtil::Q5 indexToScreenXQ5(int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

virtual CWRUtil::Q5 indexToScreenYQ5(int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

virtual int16_t realIndex(int16_t index) const
Get the real index in the yValues array of the given index.

virtual void setGraphRangeYScaled(int min, int max)
Same as setGraphRangeY(int,int) except the passed arguments are assumed
scaled.

virtual void setXAxisOffsetScaled(int offset)
Set x coordinate axis offset value with a pre-scaled offset value.

virtual void setXAxisScaleScaled(int scale)
Set x coordinate axis scale value using a pre-scaled value.

virtual CWRUtil::Q5 valueToScreenXQ5(int x) const
Gets screen x coordinate for an absolute value.

virtual CWRUtil::Q5 valueToScreenYQ5(int y) const
Gets screen y coordinate for an absolute value.

virtual bool xScreenRangeToIndexRange(int16_t xLo, int16_t xHi, int16_t & indexLow,
int16_t & indexHigh) const
Gets index range for screen x coordinate range taking the current graph range
into account.

Protected Attributes inherited from AbstractDataGraphWithY
uint32_t dataCounter

The data counter of how many times addDataPoint() has been called.

int xOffset
The x axis offset (real value of data point at index 0)

int xScale
The x axis scale (increment between two data points)

int * yValues

The values of the graph.

Public Classes inherited from AbstractDataGraph
class GraphClickEvent

An object of this type is passed with each callback that is sent when the graph is clicked.

class GraphDragEvent
An object of this type is passed with each callback that is sent when the graph is dragged.

Public Functions inherited from AbstractDataGraph
AbstractDataGraph(int16_t capacity)
Initializes a new instance of the AbstractDataGraph class.

void addBottomElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area below the graph.

void addGraphElement(AbstractGraphElement & d)
Adds a graph element which will display the graph.

void addLeftElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the left of the graph.

void addRightElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the right of the graph.

void addTopElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area above the graph.

virtual void clear()
Clears the graph to its blank/initial state.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

int16_t getGapBeforeIndex() const
Gets gap before index as set using setGapBeforeIndex().

int16_t getGraphAreaHeight() const
Gets graph area height.

int16_t getGraphAreaHeightIncludingPadding() const
Gets graph area height including padding (but not margin).

int16_t getGraphAreaMarginBottom() const
Gets graph margin bottom.

int16_t getGraphAreaMarginLeft() const
Gets graph margin left.

int16_t getGraphAreaMarginRight() const
Gets graph margin right.

int16_t getGraphAreaMarginTop() const
Gets graph margin top.

int16_t getGraphAreaPaddingBottom() const
Gets graph area padding bottom.

int16_t getGraphAreaPaddingLeft() const
Gets graph area padding left.

int16_t getGraphAreaPaddingRight() const
Gets graph area padding right.

int16_t getGraphAreaPaddingTop() const
Gets graph area padding top.

int16_t getGraphAreaWidth() const
Gets graph area width.

int16_t getGraphAreaWidthIncludingPadding() const
Gets graph area width including padding (but not margin).

virtual int getGraphRangeXMax() const =0
Gets the maximum x coordinate for the graph.

virtual int getGraphRangeXMin() const =0
Gets the minimum x coordinate for the graph.

virtual float getGraphRangeYMaxAsFloat() const =0
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMaxAsInt() const =0

Gets maximum y coordinate for the graph.

virtual float getGraphRangeYMinAsFloat() const =0
Gets minimum y coordinate for the graph.

virtual int getGraphRangeYMinAsInt() const =0
Gets minimum y coordinate for the graph.

int16_t getMaxCapacity() const
Gets the capacity (max number of points) of the graph.

virtual bool getNearestIndexForScreenX(int16_t x, int16_t & index) const
Gets graph index nearest to the given screen x coordinate.

virtual bool getNearestIndexForScreenXY(int16_t x, int16_t y, int16_t & index)
Gets graph index nearest to the given screen position.

int getScale() const
Gets the scaling factor previously set using setScale().

int16_t getUsedCapacity() const
Gets the number of point used by the graph.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

float indexToDataPointXAsFloat(int16_t index) const
Get the data point x value for the given graph point index.

int indexToDataPointXAsInt(int16_t index) const
Get the data point x value for the given graph point index.

float indexToDataPointYAsFloat(int16_t index) const
Get the data point y value for the given graph point index.

int indexToDataPointYAsInt(int16_t index) const
Get the data point y value for the given graph point index.

int16_t indexToScreenX(int16_t index) const
Get the screen x coordinate for the given graph point index.

int16_t indexToScreenY(int16_t index) const
Get the screen y coordinate for the given graph point index.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setClickAction(GenericCallback< const AbstractDataGraph &, const
GraphClickEvent & > & callback)
Sets an action to be executed when the graph is clicked.

void setDragAction(GenericCallback< const AbstractDataGraph &, const
GraphDragEvent & > & callback)
Sets an action to be executed when the graph is dragged.

void setGapBeforeIndex(int16_t index)
Makes gap before the specified index.

void setGraphAreaMargin(int16_t top, int16_t left, int16_t right, int16_t bottom)
Sets graph position inside the widget by reserving a margin around the graph.

void setGraphAreaPadding(int16_t top, int16_t left, int16_t right, int16_t bottom)
Adds some padding around the graph that will not be drawn in (apart from dots, boxes
etc.

void setGraphRange(int xMin, int xMax, float yMin, float yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

void setGraphRange(int xMin, int xMax, int yMin, int yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

virtual void setGraphRangeX(int min, int max) =0
Sets minimum and maximum x coordinates for the graph.

virtual void setGraphRangeY(float min, float max) =0
Sets minimum and maximum y coordinates for the graph.

virtual void setGraphRangeY(int min, int max) =0
Sets minimum and maximum y coordinates for the graph.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setScale(int scale)

Sets a scaling factor to be multiplied on each added element.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

int float2scaled(float f, int scale)
Multiply a floating point value with a constant and round the result.

int int2scaled(int i, int scale)
Multiply an integer value with a constant.

float scaled2float(int i, int scale)
Divide a floating point number with a constant.

int scaled2int(int i, int scale)
Divide an integer with a constant and round the result.

Protected Functions inherited from AbstractDataGraph
int convertToGraphScale(int value, int scale) const

Converts a number with one scale to a number that has the same scale as the
graph.

int float2scaled(float f) const
Same as float2scaled(float,int) using the graph's scale.

virtual int getGraphRangeYMaxScaled() const =0
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMinScaled() const =0
Gets minimum y coordinate for the graph.

virtual int getXAxisOffsetScaled() const
Get x axis offset as a scaled value.

virtual int getXAxisScaleScaled() const
Get x axis scale as a scaled value.

virtual int indexToDataPointXScaled(int16_t index) const =0
Same as indexToDataPointXAsInt(int16_t) except the returned value is left
scaled.

virtual int indexToDataPointYScaled(int16_t index) const =0

Same as indexToDataPointYAsInt(int16_t) except the returned value is left
scaled.

virtual CWRUtil::Q5 indexToScreenXQ5(int16_t index) const =0
Gets screen x coordinate for a specific data point added to the graph.

virtual CWRUtil::Q5 indexToScreenYQ5(int16_t index) const =0
Gets screen y coordinate for a specific data point added to the graph.

int int2scaled(int i) const
Same as int2scaled(int,int) using the graph's scale.

void invalidateAllXAxisPoints()
Invalidate all x axis points.

void invalidateGraphArea()
Invalidate entire graph area (the center of the graph).

void invalidateGraphPointAt(int16_t index)
Invalidate point at a given index.

void invalidateXAxisPointAt(int16_t index)
Invalidate x axis point at the given index.

float scaled2float(int i) const
Same as scaled2float(int,int) using the graph's scale.

int scaled2int(int i) const
Same as scaled2int(int,int) using the graph's scale.

void setGraphRangeScaled(int xMin, int xMax, int yMin, int yMax)
Same as setGraphRange(int,int,int,int) except the passed arguments are
assumed scaled.

virtual void setGraphRangeYScaled(int min, int max) =0
Same as setGraphRangeY(int,int) except the passed arguments are assumed
scaled.

void updateAreasPosition()
Updates the position of all elements in all area after a change in size of the
graph area and/or label padding.

virtual CWRUtil::Q5 valueToScreenXQ5(int x) const =0
Gets screen x coordinate for an absolute value.

virtual CWRUtil::Q5 valueToScreenYQ5(int y) const =0
Gets screen y coordinate for an absolute value.

virtual bool xScreenRangeToIndexRange(int16_t xLo, int16_t xHi, int16_t & indexLow,
int16_t & indexHigh) const =0
Gets index range for screen x coordinate range taking the current graph range
into account.

Protected Attributes inherited from AbstractDataGraph
uint8_t alpha

The alpha of the
entire graph.

Container bottomArea
The area below the
graph.

int16_t bottomPadding
The graph area
bottom padding.

GenericCallback< const AbstractDataGraph &, const GraphClickEvent & > * clickAction
The callback to be
executed when this
Graph is clicked.

int dataScale
The data scale
applied to all values.

GenericCallback< const AbstractDataGraph &, const GraphDragEvent & > * dragAction
The callback to be
executed when this
Graph is dragged.

int16_t gapBeforeIndex
The graph is
disconnected (there
is a gap) before this
element index.

Container graphArea

The graph area (the
center area)

Container leftArea
The area to the left
of the graph.

int16_t leftPadding
The graph area left
padding.

int16_t maxCapacity
Maximum number
of points in the
graph.

Container rightArea
The area to the right
of the graph.

int16_t rightPadding
The graph area right
padding.

Container topArea
The area above the
graph.

int16_t topPadding
The graph area top
padding.

int16_t usedCapacity
The number of used
points in the graph.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)

Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container

Drawable * firstChild
Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)

Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
DataGraphWrapAndClear

DataGraphWrapAndClear (int16_t capacity ,
int * values
)

Initializes a new instance of the DataGraphWrapAndOverwrite class.

Parameters:
capacity The capacity.
values Pointer to memory with room for capacity elements of type T.

indexToGlobalIndex
virtual int32_t indexToGlobalIndex (int16_t index)

Convert an index to global index.

The index is the index of any data point, The global index is a value that keeps growing whenever a
new data point is added the the graph.

Parameters:
index Zero-based index of the point.

Returns:

The global index.

Reimplements: touchgfx::AbstractDataGraph::indexToGlobalIndex

Protected Functions Documentation
addValue

virtual int16_t addValue (int value)

Adds a value to the internal data array and keeps track of when graph points, graph axis and the
entire graph needs to be redrawn (invalidated).

Parameters:
value The value to add to the array.

Returns:

The index of the newly added value.

Reimplements: touchgfx::AbstractDataGraphWithY::addValue

beforeAddValue

virtual void beforeAddValue ()

This function is called before a new value (data point) is added.

This allows for invalidation to be calculated based on the global data counter before it is increased
as a result of adding the new point.

Reimplements: touchgfx::AbstractDataGraphWithY::beforeAddValue

Version: 4.16

DataGraphWrapAndOverwrite
A continuous data graph which will fill the graph with elements, and overwrite the first elements with
new values after the graph has filled. There will be a gap between the newly inserted element and the
element after. This similar behavior to a heart beat monitor.

Inherits from: AbstractDataGraphWithY, AbstractDataGraph, Container, Drawable

Inherited by: GraphWrapAndOverwrite< CAPACITY >

Public Functions
virtual void clear()

Clears the graph to its blank/initial state.

DataGraphWrapAndOverwrite(int16_t capacity, int * values)
Initializes a new instance of the DataGraphWrapAndOverwrite class.

virtual int32_t indexToGlobalIndex(int16_t index) const
Convert an index to global index.

Protected Functions
virtual int16_t addValue(int value)

Adds a value to the internal data array and keeps track of when graph points, graph
axis and the entire graph needs to be redrawn (invalidated).

virtual void beforeAddValue()
This function is called before a new value (data point) is added.

Protected Attributes
int16_t current

The current index (used to keep track of where to insert new data point in value array)

Additional inherited members
Public Functions inherited from AbstractDataGraphWithY

AbstractDataGraphWithY(int16_t capacity, int * values)
Initializes a new instance of the AbstractDataGraphWithY class.

int16_t addDataPoint(float y)
Adds a new data point to the end of the graph.

int16_t addDataPoint(int y)
Adds a new data point to the end of the graph.

virtual int getGraphRangeXMax() const
Gets the maximum x coordinate for the graph.

virtual int getGraphRangeXMin() const
Gets the minimum x coordinate for the graph.

virtual float getGraphRangeYMaxAsFloat() const
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMaxAsInt() const
Gets maximum y coordinate for the graph.

virtual float getGraphRangeYMinAsFloat() const
Gets minimum y coordinate for the graph.

virtual int getGraphRangeYMinAsInt() const
Gets minimum y coordinate for the graph.

virtual float getXAxisOffsetAsFloat() const
Get x coordinate axis offset value.

virtual int getXAxisOffsetAsInt() const
Get x coordinate axis offset value.

virtual float getXAxisScaleAsFloat() const
Get x coordinate axis scale value.

virtual int getXAxisScaleAsInt() const
Get x coordinate axis scale value.

virtual void setGraphRangeX(int min, int max)
Sets minimum and maximum x coordinates for the graph.

virtual void setGraphRangeY(float min, float max)
Sets minimum and maximum y coordinates for the graph.

virtual void setGraphRangeY(int min, int max)
Sets minimum and maximum y coordinates for the graph.

void setGraphRangeYAuto(bool showXaxis =true, int margin =0)
Automatic adjust min and max y coordinate to show entire graph.

virtual void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

virtual void setXAxisOffset(float offset)
Set x coordinate axis offset value.

virtual void setXAxisOffset(int offset)
Set x coordinate axis offset value.

virtual void setXAxisScale(float scale)
Set x coordinate axis scale value.

virtual void setXAxisScale(int scale)
Set x coordinate axis scale value.

Protected Functions inherited from AbstractDataGraphWithY
int16_t addDataPointScaled(int y)

Same as addDataPoint(int) except the passed argument is assumed scaled.

virtual int getGraphRangeYMaxScaled() const
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMinScaled() const
Gets minimum y coordinate for the graph.

virtual int getXAxisOffsetScaled() const
Get x axis offset as a scaled value.

virtual int getXAxisScaleScaled() const

Get x axis scale as a scaled value.

virtual int indexToDataPointXScaled(int16_t index) const
Same as indexToDataPointXAsInt(int16_t) except the returned value is left
scaled.

virtual int indexToDataPointYScaled(int16_t index) const
Same as indexToDataPointYAsInt(int16_t) except the returned value is left
scaled.

virtual CWRUtil::Q5 indexToScreenXQ5(int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

virtual CWRUtil::Q5 indexToScreenYQ5(int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

virtual int16_t realIndex(int16_t index) const
Get the real index in the yValues array of the given index.

virtual void setGraphRangeYScaled(int min, int max)
Same as setGraphRangeY(int,int) except the passed arguments are assumed
scaled.

virtual void setXAxisOffsetScaled(int offset)
Set x coordinate axis offset value with a pre-scaled offset value.

virtual void setXAxisScaleScaled(int scale)
Set x coordinate axis scale value using a pre-scaled value.

virtual CWRUtil::Q5 valueToScreenXQ5(int x) const
Gets screen x coordinate for an absolute value.

virtual CWRUtil::Q5 valueToScreenYQ5(int y) const
Gets screen y coordinate for an absolute value.

virtual bool xScreenRangeToIndexRange(int16_t xLo, int16_t xHi, int16_t & indexLow,
int16_t & indexHigh) const
Gets index range for screen x coordinate range taking the current graph range
into account.

Protected Attributes inherited from AbstractDataGraphWithY
uint32_t dataCounter

The data counter of how many times addDataPoint() has been called.

int xOffset
The x axis offset (real value of data point at index 0)

int xScale
The x axis scale (increment between two data points)

int * yValues
The values of the graph.

Public Classes inherited from AbstractDataGraph
class GraphClickEvent

An object of this type is passed with each callback that is sent when the graph is clicked.

class GraphDragEvent
An object of this type is passed with each callback that is sent when the graph is dragged.

Public Functions inherited from AbstractDataGraph
AbstractDataGraph(int16_t capacity)
Initializes a new instance of the AbstractDataGraph class.

void addBottomElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area below the graph.

void addGraphElement(AbstractGraphElement & d)
Adds a graph element which will display the graph.

void addLeftElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the left of the graph.

void addRightElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the right of the graph.

void addTopElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area above the graph.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

int16_t getGapBeforeIndex() const
Gets gap before index as set using setGapBeforeIndex().

int16_t getGraphAreaHeight() const
Gets graph area height.

int16_t getGraphAreaHeightIncludingPadding() const
Gets graph area height including padding (but not margin).

int16_t getGraphAreaMarginBottom() const
Gets graph margin bottom.

int16_t getGraphAreaMarginLeft() const
Gets graph margin left.

int16_t getGraphAreaMarginRight() const
Gets graph margin right.

int16_t getGraphAreaMarginTop() const
Gets graph margin top.

int16_t getGraphAreaPaddingBottom() const
Gets graph area padding bottom.

int16_t getGraphAreaPaddingLeft() const
Gets graph area padding left.

int16_t getGraphAreaPaddingRight() const
Gets graph area padding right.

int16_t getGraphAreaPaddingTop() const
Gets graph area padding top.

int16_t getGraphAreaWidth() const
Gets graph area width.

int16_t getGraphAreaWidthIncludingPadding() const
Gets graph area width including padding (but not margin).

virtual int getGraphRangeXMax() const =0
Gets the maximum x coordinate for the graph.

virtual int getGraphRangeXMin() const =0

Gets the minimum x coordinate for the graph.

virtual float getGraphRangeYMaxAsFloat() const =0
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMaxAsInt() const =0
Gets maximum y coordinate for the graph.

virtual float getGraphRangeYMinAsFloat() const =0
Gets minimum y coordinate for the graph.

virtual int getGraphRangeYMinAsInt() const =0
Gets minimum y coordinate for the graph.

int16_t getMaxCapacity() const
Gets the capacity (max number of points) of the graph.

virtual bool getNearestIndexForScreenX(int16_t x, int16_t & index) const
Gets graph index nearest to the given screen x coordinate.

virtual bool getNearestIndexForScreenXY(int16_t x, int16_t y, int16_t & index)
Gets graph index nearest to the given screen position.

int getScale() const
Gets the scaling factor previously set using setScale().

int16_t getUsedCapacity() const
Gets the number of point used by the graph.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

float indexToDataPointXAsFloat(int16_t index) const
Get the data point x value for the given graph point index.

int indexToDataPointXAsInt(int16_t index) const
Get the data point x value for the given graph point index.

float indexToDataPointYAsFloat(int16_t index) const
Get the data point y value for the given graph point index.

int indexToDataPointYAsInt(int16_t index) const
Get the data point y value for the given graph point index.

int16_t indexToScreenX(int16_t index) const
Get the screen x coordinate for the given graph point index.

int16_t indexToScreenY(int16_t index) const
Get the screen y coordinate for the given graph point index.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setClickAction(GenericCallback< const AbstractDataGraph &, const
GraphClickEvent & > & callback)
Sets an action to be executed when the graph is clicked.

void setDragAction(GenericCallback< const AbstractDataGraph &, const
GraphDragEvent & > & callback)
Sets an action to be executed when the graph is dragged.

void setGapBeforeIndex(int16_t index)
Makes gap before the specified index.

void setGraphAreaMargin(int16_t top, int16_t left, int16_t right, int16_t bottom)
Sets graph position inside the widget by reserving a margin around the graph.

void setGraphAreaPadding(int16_t top, int16_t left, int16_t right, int16_t bottom)
Adds some padding around the graph that will not be drawn in (apart from dots, boxes
etc.

void setGraphRange(int xMin, int xMax, float yMin, float yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

void setGraphRange(int xMin, int xMax, int yMin, int yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

virtual void setGraphRangeX(int min, int max) =0
Sets minimum and maximum x coordinates for the graph.

virtual void setGraphRangeY(float min, float max) =0
Sets minimum and maximum y coordinates for the graph.

virtual void setGraphRangeY(int min, int max) =0

Sets minimum and maximum y coordinates for the graph.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

int float2scaled(float f, int scale)
Multiply a floating point value with a constant and round the result.

int int2scaled(int i, int scale)
Multiply an integer value with a constant.

float scaled2float(int i, int scale)
Divide a floating point number with a constant.

int scaled2int(int i, int scale)
Divide an integer with a constant and round the result.

Protected Functions inherited from AbstractDataGraph
int convertToGraphScale(int value, int scale) const

Converts a number with one scale to a number that has the same scale as the
graph.

int float2scaled(float f) const
Same as float2scaled(float,int) using the graph's scale.

virtual int getGraphRangeYMaxScaled() const =0
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMinScaled() const =0
Gets minimum y coordinate for the graph.

virtual int getXAxisOffsetScaled() const
Get x axis offset as a scaled value.

virtual int getXAxisScaleScaled() const

Get x axis scale as a scaled value.

virtual int indexToDataPointXScaled(int16_t index) const =0
Same as indexToDataPointXAsInt(int16_t) except the returned value is left
scaled.

virtual int indexToDataPointYScaled(int16_t index) const =0
Same as indexToDataPointYAsInt(int16_t) except the returned value is left
scaled.

virtual CWRUtil::Q5 indexToScreenXQ5(int16_t index) const =0
Gets screen x coordinate for a specific data point added to the graph.

virtual CWRUtil::Q5 indexToScreenYQ5(int16_t index) const =0
Gets screen y coordinate for a specific data point added to the graph.

int int2scaled(int i) const
Same as int2scaled(int,int) using the graph's scale.

void invalidateAllXAxisPoints()
Invalidate all x axis points.

void invalidateGraphArea()
Invalidate entire graph area (the center of the graph).

void invalidateGraphPointAt(int16_t index)
Invalidate point at a given index.

void invalidateXAxisPointAt(int16_t index)
Invalidate x axis point at the given index.

float scaled2float(int i) const
Same as scaled2float(int,int) using the graph's scale.

int scaled2int(int i) const
Same as scaled2int(int,int) using the graph's scale.

void setGraphRangeScaled(int xMin, int xMax, int yMin, int yMax)
Same as setGraphRange(int,int,int,int) except the passed arguments are
assumed scaled.

virtual void setGraphRangeYScaled(int min, int max) =0
Same as setGraphRangeY(int,int) except the passed arguments are assumed
scaled.

void updateAreasPosition()
Updates the position of all elements in all area after a change in size of the
graph area and/or label padding.

virtual CWRUtil::Q5 valueToScreenXQ5(int x) const =0
Gets screen x coordinate for an absolute value.

virtual CWRUtil::Q5 valueToScreenYQ5(int y) const =0
Gets screen y coordinate for an absolute value.

virtual bool xScreenRangeToIndexRange(int16_t xLo, int16_t xHi, int16_t & indexLow,
int16_t & indexHigh) const =0
Gets index range for screen x coordinate range taking the current graph range
into account.

Protected Attributes inherited from AbstractDataGraph
uint8_t alpha

The alpha of the
entire graph.

Container bottomArea
The area below the
graph.

int16_t bottomPadding
The graph area
bottom padding.

GenericCallback< const AbstractDataGraph &, const GraphClickEvent & > * clickAction
The callback to be
executed when this
Graph is clicked.

int dataScale
The data scale
applied to all values.

GenericCallback< const AbstractDataGraph &, const GraphDragEvent & > * dragAction
The callback to be
executed when this
Graph is dragged.

int16_t gapBeforeIndex
The graph is
disconnected (there
is a gap) before this
element index.

Container graphArea
The graph area (the
center area)

Container leftArea
The area to the left
of the graph.

int16_t leftPadding
The graph area left
padding.

int16_t maxCapacity
Maximum number
of points in the
graph.

Container rightArea
The area to the right
of the graph.

int16_t rightPadding
The graph area right
padding.

Container topArea
The area above the
graph.

int16_t topPadding
The graph area top
padding.

int16_t usedCapacity
The number of used
points in the graph.

Public Functions inherited from Container

virtual void add(Drawable & d)
Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation

clear
virtual void clear ()

Clears the graph to its blank/initial state.

Reimplements: touchgfx::AbstractDataGraph::clear

DataGraphWrapAndOverwrite
DataGraphWrapAndOverwrite (int16_t capacity ,

int * values
)

Initializes a new instance of the DataGraphWrapAndOverwrite class.

Parameters:
capacity The capacity.
values Pointer to memory with room for capacity elements of type T.

indexToGlobalIndex
virtual int32_t indexToGlobalIndex (int16_t index)

Convert an index to global index.

The index is the index of any data point, The global index is a value that keeps growing whenever a
new data point is added the the graph.

Parameters:
index Zero-based index of the point.

Returns:

The global index.

Reimplements: touchgfx::AbstractDataGraph::indexToGlobalIndex

Protected Functions Documentation
addValue

virtual int16_t addValue (int value)

Adds a value to the internal data array and keeps track of when graph points, graph axis and the
entire graph needs to be redrawn (invalidated).

Parameters:
value The value to add to the array.

Returns:

The index of the newly added value.

Reimplements: touchgfx::AbstractDataGraphWithY::addValue

beforeAddValue
virtual void beforeAddValue ()

This function is called before a new value (data point) is added.

This allows for invalidation to be calculated based on the global data counter before it is increased
as a result of adding the new point.

Reimplements: touchgfx::AbstractDataGraphWithY::beforeAddValue

Protected Attributes Documentation
current

int16_t current

The current index (used to keep track of where to insert new data point in value array)

Version: 4.16

DebugPrinter
The class DebugPrinter defines the interface for printing debug messages on top of the framebuffer.

Inherited by: LCD16DebugPrinter, LCD1DebugPrinter, LCD24DebugPrinter, LCD2DebugPrinter,
LCD32DebugPrinter, LCD4DebugPrinter, LCD8ABGR2222DebugPrinter, LCD8ARGB2222DebugPrinter,
LCD8BGRA2222DebugPrinter, LCD8RGBA2222DebugPrinter

Public Functions
DebugPrinter()
Initializes a new instance of the DebugPrinter class.

virtual void draw(const Rect & rect) const =0
Draws the debug string on top of the framebuffer content.

const Rect & getRegion() const
Returns the region where the debug string is displayed.

void setColor(colortype fg)
Sets the foreground color of the debug string.

void setPosition(uint16_t x, uint16_t y, uint16_t w, uint16_t h)
Sets the position onscreen where the debug string will be displayed.

void setScale(uint8_t scale)
Sets the font scale of the debug string.

void setString(const char * string)
Sets the debug string to be displayed on top of the framebuffer.

virtual ~DebugPrinter()
Finalizes an instance of the DebugPrinter class.

Protected Functions
uint16_t getGlyph(uint8_t c) const

Gets a glyph (15 bits) arranged with 3 bits wide, 5 bits high in a single uint16_t value.

Protected Attributes
colortype debugForegroundColor

Font color to use when displaying the debug string.

Rect debugRegion
Region onscreen where the debug message is displayed.

uint8_t debugScale
Font scaling factor to use when displaying the debug string.

const char * debugString
Debug string to be displayed onscreen.

Public Functions Documentation
DebugPrinter

DebugPrinter ()

Initializes a new instance of the DebugPrinter class.

draw
virtual void draw (const Rect & rect)

Draws the debug string on top of the framebuffer content.

Parameters:
rect The rect to draw inside.

Reimplemented by: touchgfx::LCD16DebugPrinter::draw, touchgfx::LCD1DebugPrinter::draw,
touchgfx::LCD24DebugPrinter::draw, touchgfx::LCD2DebugPrinter::draw,
touchgfx::LCD32DebugPrinter::draw, touchgfx::LCD4DebugPrinter::draw,
touchgfx::LCD8ABGR2222DebugPrinter::draw, touchgfx::LCD8ARGB2222DebugPrinter::draw,
touchgfx::LCD8BGRA2222DebugPrinter::draw, touchgfx::LCD8RGBA2222DebugPrinter::draw

getRegion
const Rect & getRegion () const

Returns the region where the debug string is displayed.

Returns:

Rect The debug string region.

setColor
void setColor (colortype fg)

Sets the foreground color of the debug string.

Parameters:
fg The foreground color of the debug string.

setPosition
void setPosition (uint16_t x ,

uint16_t y ,
uint16_t w ,
uint16_t h
)

Sets the position onscreen where the debug string will be displayed.

Parameters:
x The coordinate of the region where the debug string is displayed.
y The coordinate of the region where the debug string is displayed.
w The width of the region where the debug string is displayed.
h The height of the region where the debug string is displayed.

setScale
void setScale (uint8_t scale)

Sets the font scale of the debug string.

Parameters:
scale The font scale of the debug string.

setString
void setString (const char * string)

Sets the debug string to be displayed on top of the framebuffer.

Parameters:
string The string to be displayed.

~DebugPrinter
virtual ~DebugPrinter ()

Finalizes an instance of the DebugPrinter class.

Protected Functions Documentation
getGlyph

uint16_t getGlyph (uint8_t c)

Gets a glyph (15 bits) arranged with 3 bits wide, 5 bits high in a single uint16_t value.

Parameters:
c The character to get a glyph for.

Returns:

The glyph.

Protected Attributes Documentation
debugForegroundColor

colortype debugForegroundColor

Font color to use when displaying the debug string.

debugRegion
Rect debugRegion

Region onscreen where the debug message is displayed.

debugScale
uint8_t debugScale

Font scaling factor to use when displaying the debug string.

debugString
const char * debugString

Debug string to be displayed onscreen.

Version: 4.16

DigitalClock
A digital clock. Can be set in either 12 or 24 hour mode. Seconds are optional. Width and height must
be set manually to match the typography and alignment specified in the text database. The Digital
Clock requires a typedText with one wildcard and uses the following characters (not including quotes)
"AMP :0123456789" These must be present in the text database with the same typography as the
wildcard text. Leading zero for the hour indicator can be enabled/disable by the
displayLeadingZeroForHourIndicator method.

Inherits from: AbstractClock, Container, Drawable

Public Types
enum DisplayMode { DISPLAY_12_HOUR_NO_SECONDS, DISPLAY_24_HOUR_NO_SECONDS,

DISPLAY_12_HOUR, DISPLAY_24_HOUR }
Values that represent different display modes.

Public Functions
DigitalClock()

void displayLeadingZeroForHourIndicator(bool displayLeadingZero)
Sets whether to display a leading zero for the hour indicator or not, when the
hour value only has one digit.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual colortype getColor() const
Gets the color of the text.

virtual DisplayMode getDisplayMode() const
Gets the current display mode.

virtual uint16_t getTextWidth() const
Gets text width of the currently displayed DigitalClock.

virtual void setAlpha(uint8_t newAlpha)

Sets the opacity (alpha value).

virtual void setBaselineY(int16_t baselineY)
Adjusts the DigitalClock y coordinate so the text will have its baseline at the
specified value.

virtual void setColor(colortype color)
Sets the color of the text.

virtual void setDisplayMode(DisplayMode dm)
Sets the display mode to 12/24 hour clock with or without seconds.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setTypedText(TypedText typedText)
Sets the typed text of the DigitalClock.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

Protected Functions
virtual void updateClock()

Update the visual representation of the clock on the display.

Protected Attributes
const int BUFFER_SIZE

Buffer size of the wild card, worst case is "12:59:59 AM" (12 chars)

Unicode::UnicodeChar buffer
Wild card buffer for the clock text.

DisplayMode displayMode
The current display mode.

TextAreaWithOneWildcard text
The clock text.

bool useLeadingZeroForHourIndicator
Print a leading zero if the hour is less than 10.

Additional inherited members
Public Functions inherited from AbstractClock

AbstractClock()

bool getCurrentAM() const
Is the current time a.m.

uint8_t getCurrentHour() const
Gets the current hour.

uint8_t getCurrentHour12() const
Gets current hour 12, i.e.

uint8_t getCurrentHour24() const
Gets current hour 24, i.e.

uint8_t getCurrentMinute() const
Gets the current minute.

uint8_t getCurrentSecond() const
Gets the current second.

virtual void setTime12Hour(uint8_t hour, uint8_t minute, uint8_t second, bool am)
Sets the time with input format as 12H.

virtual void setTime24Hour(uint8_t hour, uint8_t minute, uint8_t second)
Sets the time with input format as 24H.

Protected Attributes inherited from AbstractClock
uint8_t currentHour

Local copy of the current hour.

uint8_t currentMinute

Local copy of the current minute.

uint8_t currentSecond
Local copy of the current second.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()

Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()

Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Types Documentation
DisplayMode

enum DisplayMode

Values that represent different display modes.

DISPLAY_12_HOUR_NO_SECONDS 12 Hour clock. Seconds are not displayed
DISPLAY_24_HOUR_NO_SECONDS 24 Hour clock. Seconds are not displayed
DISPLAY_12_HOUR 12 Hour clock. Seconds are displayed
DISPLAY_24_HOUR 24 Hour clock. Seconds are displayed

Public Functions Documentation
DigitalClock

DigitalClock ()

displayLeadingZeroForHourIndicator
void displayLeadingZeroForHourIndicator (bool displayLeadingZero)

Sets whether to display a leading zero for the hour indicator or not, when the hour value only has
one digit.

For example 8 can be displayed as "8:" (displayLeadingZero=false) or "08:"
(displayLeadingZero=true).

Default value for this setting is false.

Parameters:
displayLeadingZero true = show leading zero. false = do not show leading zero.

NOTE

This does not affect the display of minutes or seconds.

getAlpha
virtual uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getColor
virtual colortype getColor () const

Gets the color of the text.

Returns:

The color.

getDisplayMode
virtual DisplayMode getDisplayMode () const

Gets the current display mode.

Returns:

The display mode.

See also:

DisplayMode, setDisplayMode

getTextWidth
virtual uint16_t getTextWidth () const

Gets text width of the currently displayed DigitalClock.

Returns:

The text width of the currently displayed DigitalClock.

setAlpha
virtual void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setBaselineY
virtual void setBaselineY (int16_t baselineY)

Adjusts the DigitalClock y coordinate so the text will have its baseline at the specified value.

The placements is relative to the specified TypedText so if the TypedText is changed, you have to
set the baseline again.

Parameters:
baselineY The y coordinate of the baseline of the text.

NOTE

that setTypedText must be called prior to setting the baseline.

setColor
virtual void setColor (colortype color)

Sets the color of the text.

Parameters:
color The new text color.

NOTE

Automatically invalidates the DigitalClock.

setDisplayMode
virtual void setDisplayMode (DisplayMode dm)

Sets the display mode to 12/24 hour clock with or without seconds.

Parameters:
dm The new display mode.

See also:

DisplayMode, getDisplayMode

setHeight
virtual void setHeight (int16_t height)

Sets the height of this drawable.

Parameters:
height The new height.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.

Reimplements: touchgfx::Drawable::setHeight

setTypedText
virtual void setTypedText (TypedText typedText)

Sets the typed text of the DigitalClock.

Expects a TypedText with one wildcard and that the following characters are defined for the
typography of the TypedText:

12 hour clock: "AMP :0123456789"
24 hour clock: ":0123456789"

Parameters:
typedText Describes the typed text to use.

NOTE

Automatically invalidates the DigitalClock.

setWidth
virtual void setWidth (int16_t width)

Sets the width of this drawable.

Parameters:
width The new width.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.

Reimplements: touchgfx::Drawable::setWidth

Protected Functions Documentation
updateClock

virtual void updateClock ()

Update the visual representation of the clock on the display.

Reimplements: touchgfx::AbstractClock::updateClock

Protected Attributes Documentation

BUFFER_SIZE
const int BUFFER_SIZE = 12

Buffer size of the wild card, worst case is "12:59:59 AM" (12 chars)

buffer
Unicode::UnicodeChar buffer

Wild card buffer for the clock text.

displayMode
DisplayMode displayMode

The current display mode.

text
TextAreaWithOneWildcard text

The clock text.

useLeadingZeroForHourIndicator
bool useLeadingZeroForHourIndicator

Print a leading zero if the hour is less than 10.

Version: 4.16

DisplayTransformation
Defines transformations from display space to framebuffer space. The display might be (considered) in
portrait mode from 0,0 to 272,480, while the actual framebuffer is from 0,0 to 480,272. This class
handles the transformations.

Public Functions
void transformDisplayToFrameBuffer(float & x, float & y)

Transform x,y from display to framebuffer coordinates.

void transformDisplayToFrameBuffer(float & x, float & y, const Rect & in)
Transform x,y from coordinates relative to the in rect to framebuffer coordinates.

void transformDisplayToFrameBuffer(int16_t & x, int16_t & y)
Transform x,y from display to framebuffer coordinates.

void transformDisplayToFrameBuffer(int16_t & x, int16_t & y, const Rect & in)
Transform x,y from coordinates relative to the in rect to framebuffer coordinates.

void transformDisplayToFrameBuffer(Rect & r)
Transform rectangle from display to framebuffer coordinates.

void transformDisplayToFrameBuffer(Rect & r, const Rect & in)
Transform rectangle r from coordinates relative to the in rect to framebuffer coordinates.

void transformFrameBufferToDisplay(int16_t & x, int16_t & y)
Transform x,y from framebuffer to display coordinates.

void transformFrameBufferToDisplay(Rect & r)
Transform rectangle from framebuffer to display coordinates.

Public Functions Documentation
transformDisplayToFrameBuffer

static void transformDisplayToFrameBuffer (float & x ,

float & y
)

Transform x,y from display to framebuffer coordinates.

Parameters:
x the x part to translate.
y the y part to translate.

transformDisplayToFrameBuffer
static void transformDisplayToFrameBuffer (float & x ,

float & y ,
const Rect & in
)

Transform x,y from coordinates relative to the in rect to framebuffer coordinates.

Transform x,y from coordinates relative to the in rect to framebuffer coordinates.

Parameters:
x the x part to translate.
y the y part to translate.
in the rectangle defining the coordinate space.

transformDisplayToFrameBuffer
static void transformDisplayToFrameBuffer (int16_t & x ,

int16_t & y
)

Transform x,y from display to framebuffer coordinates.

Parameters:
x the x part to translate.
y the y part to translate.

transformDisplayToFrameBuffer
static void transformDisplayToFrameBuffer (int16_t & x ,

int16_t & y ,
const Rect & in

)

Transform x,y from coordinates relative to the in rect to framebuffer coordinates.

Transform x,y from coordinates relative to the in rect to framebuffer coordinates.

Parameters:
x the x part to translate.
y the y part to translate.
in the rectangle defining the coordinate space.

transformDisplayToFrameBuffer
static void transformDisplayToFrameBuffer (Rect & r)

Transform rectangle from display to framebuffer coordinates.

Parameters:
r the rectangle to translate.

transformDisplayToFrameBuffer
static void transformDisplayToFrameBuffer (Rect & r ,

const Rect & in
)

Transform rectangle r from coordinates relative to the in rect to framebuffer coordinates.

Transform rectangle r from coordinates relative to the in rect to framebuffer coordinates.

Parameters:
r the rectangle to translate.
in the rectangle defining the coordinate space.

transformFrameBufferToDisplay
static void transformFrameBufferToDisplay (int16_t & x ,

int16_t & y
)

Transform x,y from framebuffer to display coordinates.

Parameters:

x the x part to translate.
y the y part to translate.

transformFrameBufferToDisplay
static void transformFrameBufferToDisplay (Rect & r)

Transform rectangle from framebuffer to display coordinates.

Parameters:
r the rectangle to translate.

Version: 4.16

DMA_Interface
DMA_Interface provides basic functionality and structure for processing "blit" operations using DMA.

Inherited by: NoDMA

Public Functions
virtual void addToQueue(const BlitOp & op)

Inserts a BlitOp for processing.

virtual void flush()
This function blocks until all DMA transfers in the queue have been
completed.

bool getAllowed() const
Gets whether a DMA operation is allowed to begin.

virtual BlitOperations getBlitCaps() =0
Gets the blit capabilities of this DMA.

virtual DMAType getDMAType(void)
Function for obtaining the DMA type of the concrete DMA_Interface
implementation.

virtual void initialize()
Perform initialization.

uint8_t isDmaQueueEmpty()
Query if the DMA queue is empty.

uint8_t isDmaQueueFull()
Query if the DMA queue is full.

bool isDMARunning()
Query if the DMA is running.

void setAllowed(bool allowed)
Sets whether or not a DMA operation is allowed to begin.

virtual void signalDMAInterrupt() =0
This function is called automatically by the framework when a DMA interrupt
has been received.

virtual void start()
Signals that DMA transfers can start.

virtual ~DMA_Interface()
Finalizes an instance of the DMA_Interface class.

Protected Functions
virtual void disableAlpha()

Configures blit-op hardware for solid operation (no alpha-blending)

DMA_Interface(DMA_Queue & dmaQueue)
Constructs a DMA Interface object.

virtual void enableAlpha(uint8_t alpha)
Configures blit-op hardware for alpha-blending.

virtual void enableCopyWithTransparentPixels(uint8_t alpha)
Configures blit-op hardware for alpha-blending while simultaneously skipping
transparent pixels.

virtual void execute()
Performs a queued blit-op.

virtual void executeCompleted()
To be called when blit-op has been performed.

virtual void seedExecution()
Called when elements are added to the DMA-queue.

virtual void setupDataCopy(const BlitOp & blitOp) =0
Configures blit-op hardware for a 2D copy as specified by blitOp.

virtual void setupDataFill(const BlitOp & blitOp) =0
Configures blit-op hardware for a 2D fill as specified by blitOp.

virtual void waitForFrameBufferSemaphore()

Waits until framebuffer semaphore is available (i.e.

Protected Attributes
bool isAllowed

true if DMA transfers are currently allowed.

bool isRunning
true if a DMA transfer is currently ongoing.

DMA_Queue & queue
Reference to the DMA queue.

Public Functions Documentation
addToQueue

virtual void addToQueue (const BlitOp & op)

Inserts a BlitOp for processing.

This also potentially starts the DMA controller, if not already running.

Parameters:
op The operation to add.

flush
virtual void flush ()

This function blocks until all DMA transfers in the queue have been completed.

Reimplemented by: touchgfx::NoDMA::flush

getAllowed
bool getAllowed () const

Gets whether a DMA operation is allowed to begin.

Used in single-buffering to avoid changing the framebuffer while display is being updated.

Returns:

true if DMA is allowed to start, false if not.

getBlitCaps
virtual BlitOperations getBlitCaps () =0

Gets the blit capabilities of this DMA.

Returns:

The blit operations supported by this DMA implementation.

Reimplemented by: touchgfx::NoDMA::getBlitCaps

getDMAType
virtual DMAType getDMAType (void)

Function for obtaining the DMA type of the concrete DMA_Interface implementation.

As default, will return DMA_TYPE_GENERIC type value.

Returns:

a DMAType value of the concrete DMA_Interface implementation.

initialize
virtual void initialize ()

Perform initialization.

Does nothing in this base class.

isDmaQueueEmpty
uint8_t isDmaQueueEmpty ()

Query if the DMA queue is empty.

Returns:

1 if DMA queue is empty, else 0.

isDmaQueueFull
uint8_t isDmaQueueFull ()

Query if the DMA queue is full.

Returns:

1 if DMA queue is full, else 0.

isDMARunning
bool isDMARunning ()

Query if the DMA is running.

Returns:

true if a DMA operation is currently in progress.

setAllowed
void setAllowed (bool allowed)

Sets whether or not a DMA operation is allowed to begin.

Used in single-buffering to avoid changing the framebuffer while display is being updated.

Parameters:
allowed true if DMA transfers are allowed.

signalDMAInterrupt
virtual void signalDMAInterrupt () =0

This function is called automatically by the framework when a DMA interrupt has been received.

This function is called automatically by the framework when a DMA interrupt has been received.

Reimplemented by: touchgfx::NoDMA::signalDMAInterrupt

start
virtual void start ()

Signals that DMA transfers can start.

If any elements are in the queue, start it.

~DMA_Interface
virtual ~DMA_Interface ()

Finalizes an instance of the DMA_Interface class.

Protected Functions Documentation
disableAlpha

virtual void disableAlpha ()

Configures blit-op hardware for solid operation (no alpha-blending)

DMA_Interface
DMA_Interface (DMA_Queue & dmaQueue)

Constructs a DMA Interface object.

Parameters:
dmaQueue Reference to the queue of DMA operations.

enableAlpha
virtual void enableAlpha (uint8_t alpha)

Configures blit-op hardware for alpha-blending.

Parameters:

alpha The alpha-blending value to apply.

enableCopyWithTransparentPixels
virtual void enableCopyWithTransparentPixels (uint8_t alpha)

Configures blit-op hardware for alpha-blending while simultaneously skipping transparent pixels.

Parameters:
alpha The alpha-blending value to apply.

execute
virtual void execute ()

Performs a queued blit-op.

executeCompleted
virtual void executeCompleted ()

To be called when blit-op has been performed.

seedExecution
virtual void seedExecution ()

Called when elements are added to the DMA-queue.

NOTE

The framebuffer must be locked before this method returns if the DMA-queue is non- empty.

setupDataCopy
virtual void setupDataCopy (const BlitOp & blitOp)

Configures blit-op hardware for a 2D copy as specified by blitOp.

Parameters:

blitOp The operation to execute.

Reimplemented by: touchgfx::NoDMA::setupDataCopy

setupDataFill
virtual void setupDataFill (const BlitOp & blitOp)

Configures blit-op hardware for a 2D fill as specified by blitOp.

Parameters:
blitOp The operation to execute.

Reimplemented by: touchgfx::NoDMA::setupDataFill

waitForFrameBufferSemaphore
virtual void waitForFrameBufferSemaphore ()

Waits until framebuffer semaphore is available (i.e.

neither DMA or application is accessing the framebuffer).

Protected Attributes Documentation
isAllowed

bool isAllowed

true if DMA transfers are currently allowed.

isRunning
bool isRunning

true if a DMA transfer is currently ongoing.

queue

DMA_Queue & queue

Reference to the DMA queue.

Version: 4.16

DMA_Queue
This class provides an interface for a FIFO (circular) list used by DMA_Interface and descendants for
storing BlitOp's.

Inherited by: LockFreeDMA_Queue

Public Functions
virtual bool isEmpty() =0

Query if this object is empty.

virtual bool isFull() =0
Query if this object is full.

virtual void pushCopyOf(const BlitOp & op) =0
Adds the specified blitop to the queue.

virtual ~DMA_Queue()
Finalizes an instance of the DMA_Queue class.

Protected Functions
DMA_Queue()
Initializes a new instance of the DMA_Queue class.

virtual const BlitOp * first() =0
Gets the first element in the queue.

virtual void pop() =0
Pops an element from the queue.

Public Functions Documentation
isEmpty

virtual bool isEmpty () =0

Query if this object is empty.

Returns:

true if the queue is empty.

Reimplemented by: touchgfx::LockFreeDMA_Queue::isEmpty

isFull
virtual bool isFull () =0

Query if this object is full.

Returns:

true if the queue is full.

Reimplemented by: touchgfx::LockFreeDMA_Queue::isFull

pushCopyOf
virtual void pushCopyOf (const BlitOp & op)

Adds the specified blitop to the queue.

Parameters:
op The blitop to add.

Reimplemented by: touchgfx::LockFreeDMA_Queue::pushCopyOf

~DMA_Queue
virtual ~DMA_Queue ()

Finalizes an instance of the DMA_Queue class.

Protected Functions Documentation
DMA_Queue

DMA_Queue ()

Initializes a new instance of the DMA_Queue class.

first
virtual const BlitOp * first () =0

Gets the first element in the queue.

Returns:

The first element in the queue.

Reimplemented by: touchgfx::LockFreeDMA_Queue::first

pop
virtual void pop () =0

Pops an element from the queue.

Reimplemented by: touchgfx::LockFreeDMA_Queue::pop

Version: 4.16

DragEvent
A drag event. The only drag event currently supported is DRAGGED, which will be issued every time
the input system detects a drag.

See: Event

Inherits from: Event

Public Types
enum DragEventType { DRAGGED }

Values that represent drag event types.

Public Functions
DragEvent(DragEventType type, int16_t fromX, int16_t fromY, int16_t toX,
int16_t toY)
Initializes a new instance of the DragEvent class.

int16_t getDeltaX() const
Gets the distance in x coordinates (how long was the drag).

int16_t getDeltaY() const
Gets the distance in y coordinates (how long was the drag).

virtual Event::EventType getEventType()
Gets event type.

int16_t getNewX() const
Gets the new x coordinate (dragged to).

int16_t getNewY() const
Gets the new x coordinate (dragged to).

int16_t getOldX() const
Gets the x coordinate where the drag operation was started (dragged
from).

int16_t getOldY() const
Gets the y coordinate where the drag operation was started (dragged
from).

DragEventType getType() const
Gets the type of this drag event.

Additional inherited members
Public Types inherited from Event

enum EventType { EVENT_CLICK, EVENT_DRAG, EVENT_GESTURE }
The event types.

Public Functions inherited from Event
virtual ~Event()

Finalizes an instance of the Event class.

Public Types Documentation
DragEventType

enum DragEventType

Values that represent drag event types.

DRAGGED An enum constant representing the dragged option.

Public Functions Documentation
DragEvent

DragEvent (DragEventType type ,

int16_t fromX ,
int16_t fromY ,
int16_t toX ,
int16_t toY
)

Initializes a new instance of the DragEvent class.

Parameters:
type The type of the drag event.
fromX The x coordinate of the drag start position (dragged from)
fromY The y coordinate of the drag start position (dragged from)
toX The x coordinate of the new position (dragged to)
toY The y coordinate of the new position (dragged to)

getDeltaX
int16_t getDeltaX () const

Gets the distance in x coordinates (how long was the drag).

Returns:

The distance of this drag event.

getDeltaY
int16_t getDeltaY () const

Gets the distance in y coordinates (how long was the drag).

Returns:

The distance of this drag event.

getEventType
virtual Event::EventType getEventType ()

Gets event type.

Returns:

The type of this event.

Reimplements: touchgfx::Event::getEventType

getNewX
int16_t getNewX () const

Gets the new x coordinate (dragged to).

Returns:

The new x coordinate (dragged to).

getNewY
int16_t getNewY () const

Gets the new x coordinate (dragged to).

Returns:

The new y coordinate (dragged to).

getOldX
int16_t getOldX () const

Gets the x coordinate where the drag operation was started (dragged from).

Returns:

The x coordinate where the drag operation was started (dragged from).

getOldY
int16_t getOldY () const

Gets the y coordinate where the drag operation was started (dragged from).

Returns:

The y coordinate where the drag operation was started (dragged from).

getType

DragEventType getType () const

Gets the type of this drag event.

Returns:

The type of this drag event.

Version: 4.16

Draggable
Mix-in class that extends a class to become Draggable, which means that the object on screen can be
freely moved around using the touch screen.

Template Parameters:

T specifies the type to extend with the Draggable behavior.

Inherits from: T

Inherited by: Snapper< T >

Public Functions
Draggable()
Initializes a new instance of the Draggable class.

virtual void handleDragEvent(const DragEvent & evt)
Called when dragging the Draggable object.

Public Functions Documentation
Draggable

Draggable ()

Initializes a new instance of the Draggable class.

Make the object touchable.

handleDragEvent
virtual void handleDragEvent (const DragEvent & evt)

Called when dragging the Draggable object.

The object is moved according to the drag event.

Parameters:
evt The drag event.

Reimplemented by: touchgfx::Snapper::handleDragEvent

Version: 4.16

Drawable
The Drawable class is an abstract definition of something that can be drawn. In the composite design
pattern, the Drawable is the component interface. Drawables can be added to a screen as a tree
structure through the leaf node class Widget and the Container class. A Drawable contains a pointer to
its next sibling and a pointer to its parent node. These are maintained by the Container to which the
Drawable is added.

The Drawable interface contains two pure virtual functions which must be implemented by widgets,
namely draw() and getSolidRect(). In addition it contains general functionality for receiving events and
navigating the tree structure.

The coordinates of a Drawable are always relative to its parent node.

See: Widget, Container

Inherited by: Container, Widget

Public Functions
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
childGeometryChanged

virtual void childGeometryChanged ()

This function can be called on parent nodes to signal that the size or position of one or more of its
children has changed.

Currently only used in ScrollableContainer to redraw scrollbars when the size of the scrolling
contents changes.

Reimplemented by: touchgfx::ScrollableContainer::childGeometryChanged

draw
virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplemented by: touchgfx::WipeTransition::FullSolidRect::draw, touchgfx::Box::draw,
touchgfx::BoxWithBorder::draw, touchgfx::ButtonWithLabel::draw, touchgfx::TextArea::draw,
touchgfx::TextAreaWithOneWildcard::draw, touchgfx::TextAreaWithTwoWildcards::draw,
touchgfx::Container::draw, touchgfx::Button::draw, touchgfx::ButtonWithIcon::draw,
touchgfx::CanvasWidget::draw, touchgfx::GraphElementGridX::draw,
touchgfx::GraphElementGridY::draw, touchgfx::GraphElementVerticalGapLine::draw,
touchgfx::GraphElementHistogram::draw, touchgfx::GraphElementBoxes::draw,

touchgfx::GraphLabelsX::draw, touchgfx::GraphLabelsY::draw, touchgfx::GraphTitle::draw,
touchgfx::Image::draw, touchgfx::Keyboard::draw, touchgfx::PixelDataWidget::draw,
touchgfx::RadioButton::draw, touchgfx::ScalableImage::draw,
touchgfx::SnapshotWidget::draw, touchgfx::TextureMapper::draw,
touchgfx::TiledImage::draw, touchgfx::TouchArea::draw

Drawable
Drawable ()

Initializes a new instance of the Drawable class.

drawToDynamicBitmap
void drawToDynamicBitmap (BitmapId id)

Render the Drawable object into a dynamic bitmap.

Parameters:
id The target dynamic bitmap to use for rendering.

getAbsoluteRect
Rect getAbsoluteRect () const

Helper function for obtaining the rectangle this Drawable covers, expressed in absolute
coordinates.

Returns:

The rectangle this Drawable covers expressed in absolute coordinates.

See also:

getRect, translateRectToAbsolute

getFirstChild
virtual Drawable * getFirstChild ()

Function for obtaining the first child of this drawable if any.

Returns:

A pointer on the first child drawable if any.

See also:

Container::getFirstChild

Reimplemented by: touchgfx::Container::getFirstChild

getHeight
int16_t getHeight () const

Gets the height of this Drawable.

Returns:

The height of this Drawable.

getLastChild
virtual void getLastChild (int16_t x , =0

int16_t y , =0
Drawable ** last =0
) =0

Function for obtaining the the last child of this drawable that intersects with the specified point.

The last child is the Drawable that is drawn last and therefore the topmost child. Used in input
event handling for obtaining the appropriate drawable that should receive the event.

Parameters:
x The point of intersection expressed in coordinates relative to the parent.
y The point of intersection expressed in coordinates relative to the parent.
last Last (topmost) Drawable on the given coordinate.

NOTE

Input events must be delegated to the last drawable of the tree (meaning highest z- order / front-most
drawable).

Reimplemented by: touchgfx::Container::getLastChild,
touchgfx::ScrollableContainer::getLastChild, touchgfx::Widget::getLastChild

getNextSibling

Drawable * getNextSibling ()

Gets the next sibling node.

This will be the next Drawable that has been added to the same Container as this Drawable.

Returns:

The next sibling. If there are no more siblings, the return value is 0.

getParent
Drawable * getParent () const

Returns the parent node.

For the root container, the return value is 0.

Returns:

The parent node. For the root container, the return value is 0.

NOTE

A disconnected Drawable also has parent 0 which may cause strange side effects.

getRect
const Rect & getRect () const

Gets the rectangle this Drawable covers, in coordinates relative to its parent.

Returns:

The rectangle this Drawable covers expressed in coordinates relative to its parent.

See also:

getAbsoluteRect

getSolidRect
virtual Rect getSolidRect () const =0

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

This information is important, as any Drawable underneath the solid area does not need to be
drawn.

Returns:

The solid rectangle part of the Drawable.

NOTE

The rectangle returned must be relative to upper left corner of the Drawable, meaning that a completely
solid widget should return the full size Rect(0, 0, getWidth(), getHeight()). If no area can be guaranteed to
be solid, an empty Rect(0, 0, 0, 0) must be returned. Failing to return the correct rectangle may result in
errors on the display.

Reimplemented by: touchgfx::Container::getSolidRect,
touchgfx::WipeTransition::FullSolidRect::getSolidRect, touchgfx::Box::getSolidRect,
touchgfx::Button::getSolidRect, touchgfx::CanvasWidget::getSolidRect,
touchgfx::Image::getSolidRect, touchgfx::PixelDataWidget::getSolidRect,
touchgfx::RadioButton::getSolidRect, touchgfx::ScalableImage::getSolidRect,
touchgfx::SnapshotWidget::getSolidRect, touchgfx::TextArea::getSolidRect,
touchgfx::TextureMapper::getSolidRect, touchgfx::TiledImage::getSolidRect,
touchgfx::TouchArea::getSolidRect

getSolidRectAbsolute
virtual Rect getSolidRectAbsolute ()

Helper function for obtaining the largest solid rect (as implemented by getSolidRect()) expressed
in absolute coordinates.

Will recursively traverse to the root of the tree to find the proper location of the rectangle on the
display.

Returns:

The (largest) solid rect (as implemented by getSolidRect()) expressed in absolute coordinates.

getVisibleRect
virtual void getVisibleRect (Rect & rect)

Function for finding the visible part of this drawable.

If the parent node has a smaller area than this Drawable, or if the Drawable is placed "over the
edge" of the parent, the parent will act as a view port, cutting off the parts of this Drawable that
are outside the region. Traverses the tree and yields a result expressed in absolute coordinates.

Parameters:
rect The region of the Drawable that is visible.

getWidth
int16_t getWidth () const

Gets the width of this Drawable.

Returns:

The width of this Drawable.

getX
int16_t getX () const

Gets the x coordinate of this Drawable, relative to its parent.

Returns:

The x value, relative to the parent.

getY
int16_t getY () const

Gets the y coordinate of this Drawable, relative to its parent.

Returns:

The y value, relative to the parent.

handleClickEvent
virtual void handleClickEvent (const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

The default implementation ignores the event. The event is only received if the Drawable is
touchable and visible.

Parameters:
evt The ClickEvent received from the HAL.

Reimplemented by: touchgfx::ClickButtonTrigger::handleClickEvent,
touchgfx::RepeatButtonTrigger::handleClickEvent,
touchgfx::ToggleButtonTrigger::handleClickEvent,
touchgfx::TouchButtonTrigger::handleClickEvent, touchgfx::Slider::handleClickEvent,
touchgfx::AbstractButton::handleClickEvent, touchgfx::AbstractDataGraph::handleClickEvent,
touchgfx::RadioButton::handleClickEvent, touchgfx::RepeatButton::handleClickEvent,
touchgfx::ToggleButton::handleClickEvent, touchgfx::TouchArea::handleClickEvent,
touchgfx::ScrollableContainer::handleClickEvent, touchgfx::ScrollList::handleClickEvent,
touchgfx::ScrollWheelBase::handleClickEvent, touchgfx::SwipeContainer::handleClickEvent,
touchgfx::Keyboard::handleClickEvent

handleDragEvent
virtual void handleDragEvent (const DragEvent & evt)

Defines the event handler interface for DragEvents.

The default implementation ignores the event. The event is only received if the drawable is
touchable and visible.

Parameters:
evt The DragEvent received from the HAL.

Reimplemented by: touchgfx::Slider::handleDragEvent,
touchgfx::AbstractDataGraph::handleDragEvent,
touchgfx::ScrollableContainer::handleDragEvent, touchgfx::ScrollBase::handleDragEvent,
touchgfx::ScrollWheelBase::handleDragEvent, touchgfx::SwipeContainer::handleDragEvent,
touchgfx::Keyboard::handleDragEvent, touchgfx::TouchArea::handleDragEvent

handleGestureEvent
virtual void handleGestureEvent (const GestureEvent & evt)

Defines the event handler interface for GestureEvents.

The default implementation ignores the event. The event is only received if the Drawable is
touchable and visible.

Parameters:
evt The GestureEvent received from the HAL.

Reimplemented by: touchgfx::ScrollableContainer::handleGestureEvent,
touchgfx::ScrollBase::handleGestureEvent, touchgfx::ScrollWheelBase::handleGestureEvent,
touchgfx::SwipeContainer::handleGestureEvent

handleTickEvent
virtual void handleTickEvent ()

Called periodically by the framework if the Drawable instance has subscribed to timer ticks.

See also:

Application::registerTimerWidget

Reimplemented by: touchgfx::RepeatButtonTrigger::handleTickEvent,
touchgfx::AbstractProgressIndicator::handleTickEvent,
touchgfx::ScrollableContainer::handleTickEvent, touchgfx::ScrollBase::handleTickEvent,
touchgfx::SlideMenu::handleTickEvent, touchgfx::SwipeContainer::handleTickEvent,
touchgfx::ZoomAnimationImage::handleTickEvent,
touchgfx::MoveAnimator::handleTickEvent, touchgfx::AnimatedImage::handleTickEvent,
touchgfx::AnimationTextureMapper::handleTickEvent,
touchgfx::RepeatButton::handleTickEvent

invalidate
virtual void invalidate () const

Tell the framework that this entire Drawable needs to be redrawn.

It is the same as calling invalidateRect() with Rect(0, 0, getWidth(), getHeight()).

See also:

invalidateRect

Reimplemented by: touchgfx::CanvasWidget::invalidate

invalidateRect
virtual void invalidateRect (Rect & invalidatedArea)

Request that a region of this drawable is redrawn.

Will recursively traverse the tree towards the root, and once reached, issue a draw operation. When
this function returns, the specified invalidated area has been redrawn for all appropriate Drawables
covering the region.

To invalidate the entire Drawable, use invalidate()

Parameters:
invalidatedArea The area of this drawable to redraw expressed in relative coordinates.

See also:

invalidate

Reimplemented by: touchgfx::CacheableContainer::invalidateRect

isTouchable
bool isTouchable () const

Gets whether this Drawable receives touch events or not.

Returns:

True if touch events are received.

See also:

setTouchable

isVisible
bool isVisible () const

Gets whether this Drawable is visible.

Returns:

true if the Drawable is visible.

See also:

setVisible

moveRelative
virtual void moveRelative (int16_t x ,

int16_t y
)

Moves the drawable.

Parameters:
x The relative position to move to.
y The relative position to move to.

NOTE

Will redraw the appropriate areas of the screen.

See also:

moveTo, setXY

moveTo
virtual void moveTo (int16_t x ,

int16_t y
)

Moves the drawable.

Parameters:
x The absolute position to move to.
y The absolute position to move to.

NOTE

Will redraw the appropriate areas of the screen.

See also:

moveRelative, setXY

setHeight
virtual void setHeight (int16_t height)

Sets the height of this drawable.

Parameters:
height The new height.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.

Reimplemented by: touchgfx::DigitalClock::setHeight, touchgfx::DrawableList::setHeight,
touchgfx::ScrollBase::setHeight, touchgfx::ScrollWheelWithSelectionStyle::setHeight,
touchgfx::ZoomAnimationImage::setHeight, touchgfx::Gauge::setHeight,
touchgfx::AbstractDataGraph::setHeight

setPosition
void setPosition (const Drawable & drawable)

Sets the position of the Drawable to the same as the given Drawable.

This will copy the x, y, width and height.

Parameters:
drawable The drawable.

See also:

setPosition(int16_t,int16_t,int16_t,int16_t)

setPosition
void setPosition (int16_t x ,

int16_t y ,
int16_t width ,
int16_t height
)

Sets the size and position of this Drawable, relative to its parent.

The same as calling setXY(), setWidth() and setHeight() in that order.

Parameters:
x The x coordinate of this Drawable relative to its parent.
y The y coordinate of this Drawable relative to its parent.
width The width of this Drawable.

height The height of this Drawable.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.

setTouchable
void setTouchable (bool touch)

Controls whether this Drawable receives touch events or not.

Parameters:
touch If true it will receive touch events, if false it will not.

setVisible
void setVisible (bool vis)

Controls whether this Drawable should be visible.

Only visible Drawables will have their draw function called. Additionally, invisible drawables will not
receive input events.

Parameters:
vis true if this Drawable should be visible. By default, drawables are visible unless this function

has been called with false as argument.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.

setWidth
virtual void setWidth (int16_t width)

Sets the width of this drawable.

Parameters:
width The new width.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.

Reimplemented by: touchgfx::DigitalClock::setWidth, touchgfx::DrawableList::setWidth,
touchgfx::ScrollBase::setWidth, touchgfx::ScrollWheelWithSelectionStyle::setWidth,
touchgfx::ZoomAnimationImage::setWidth, touchgfx::Gauge::setWidth,
touchgfx::AbstractDataGraph::setWidth

setWidthHeight
void setWidthHeight (const Bitmap & bitmap)

Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

Parameters:
bitmap The Bitmap to copy the width and height from.

See also:

setWidthHeight(int16_t,int16_t)

setWidthHeight
void setWidthHeight (const Drawable & drawable)

Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

Parameters:
drawable The Drawable to copy the width and height from.

See also:

setWidthHeight(int16_t,int16_t)

setWidthHeight
void setWidthHeight (const Rect & rect)

Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

Parameters:

rect The Rect to copy the width and height from.

See also:

setWidthHeight(int16_t,int16_t)

setWidthHeight
void setWidthHeight (int16_t width ,

int16_t height
)

Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

Parameters:
width The width.
height The height.

setX
virtual void setX (int16_t x)

Sets the x coordinate of this Drawable, relative to its parent.

Parameters:
x The new x value, relative to the parent. A negative value is allowed.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.

setXY
void setXY (const Drawable & drawable)

Sets the x and y coordinates of this Drawable.

Parameters:
drawable The Drawable to copy the x and y coordinates from.

See also:

setXY(int16_t,int16_t)

setXY
void setXY (int16_t x ,

int16_t y
)

Sets the x and y coordinates of this Drawable, relative to its parent.

The same as calling setX() followed by calling setY().

Parameters:
x The new x value, relative to the parent. A negative value is allowed.
y The new y value, relative to the parent. A negative value is allowed.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.

See also:

moveTo

setY
virtual void setY (int16_t y)

Sets the y coordinate of this Drawable, relative to its parent.

Parameters:
y The new y value, relative to the parent. A negative value is allowed.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.

translateRectToAbsolute
virtual void translateRectToAbsolute (Rect & r)

Helper function for converting a region of this Drawable to absolute coordinates.

Parameters:
r The Rect to translate.

~Drawable
virtual ~Drawable ()

Finalizes an instance of the Drawable class.

Protected Attributes Documentation
nextSibling

Drawable * nextSibling

Pointer to the next Drawable.

parent
Drawable * parent

Pointer to this drawable's parent.

rect
Rect rect

The coordinates of this Drawable, relative to its parent.

touchable
bool touchable

True if this drawable should receive touch events.

visible
bool visible

True if this drawable should be drawn.

Version: 4.16

DrawableList
A container able to display many items using only a few drawables. This is done by only having
drawables for visible items, and populating these drawables with new content when each of these
become visible.

This means that all drawables must have an identical structure in some way, for example an Image or a
Container with a button and a text.

Inherits from: Container, Drawable

Public Functions
DrawableList()

virtual bool getCircular() const
Gets the circular setting, previously set using setCircular().

int16_t getDrawableIndex(int16_t itemIndex, int16_t prevDrawableIndex =-1) const
Gets the drawable index of an item.

int16_t getDrawableIndices(int16_t itemIndex, int16_t * drawableIndexArray, int16_t
arraySize) const
Gets drawable indices.

virtual int16_t getDrawableMargin() const
Gets drawable margin.

virtual int16_t getDrawableSize() const
Gets drawable size as set by setDrawables.

virtual bool getHorizontal() const
Gets the orientation of the drawables, previously set using setHorizontal().

int16_t getItemIndex(int16_t drawableIndex) const
Gets item stored in a given Drawable.

virtual int16_t getItemSize() const
Gets size of each item.

int16_t getNumberOfDrawables() const
Gets number of drawables based on the size of each item and the size of the widget.

int16_t getNumberOfItems() const
Gets number of items in the DrawableList, as previously set using
setNumberOfItems().

int32_t getOffset() const
Gets offset, as previously set using setOffset().

int16_t getRequiredNumberOfDrawables() const
Gets required number of drawables.

void itemChanged(int16_t itemIndex)
Item changed.

void refreshDrawables()
Refresh drawables.

virtual void setCircular(bool circular)
Sets whether the list is circular (infinite) or not.

virtual void
setDrawables(DrawableListItemsInterface & drawableListItems, int16_t
drawableItemIndexOffset, GenericCallback< DrawableListItemsInterface *, int16_t,
int16_t > & updateDrawableCallback)
Sets the drawables parameters.

void setDrawableSize(int16_t drawableSize, int16_t drawableMargin)
Sets drawables size.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setHorizontal(bool horizontal)
Sets a horizontal or vertical layout.

void setNumberOfItems(int16_t numberOfItems)
Sets number of items in the list.

void setOffset(int32_t ofs)
Sets virtual coordinate.

virtual void setWidth(int16_t width)

Sets the width of this drawable.

Additional inherited members
Public Functions inherited from Container

virtual void add(Drawable & d)
Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()

Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()

Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
DrawableList

DrawableList ()

getCircular
virtual bool getCircular () const

Gets the circular setting, previously set using setCircular().

Returns:

True if the list is circular (infinite), false if the list is not circular (finite).

See also:

ScrollBase::getCircular, setCircular

getDrawableIndex
int16_t getDrawableIndex (int16_t itemIndex , const

int16_t prevDrawableIndex =-1 const
) const

Gets the drawable index of an item.

If the number of items is smaller than the number of drawables and the DrawableList is circular,
the same item can be in more than one drawable. In that case, calling this function again with the
previously returned index as second parameter, the index of the next drawable containing the item
will be returned.

Parameters:
itemIndex Index of the item.
prevDrawableIndex (Optional) Index of the previous drawable. If given, search starts after this

index.

Returns:

The first drawable index with the given item. Returns -1 if the item is not in a drawable.

See also:

getDrawableIndices

getDrawableIndices
int16_t getDrawableIndices (int16_t itemIndex , const

int16_t * drawableIndexArray , const
int16_t arraySize const
) const

Gets drawable indices.

Useful when the number of items is smaller than the number of drawables as the same item might
be in more than one drawable on the screen (if the DrawableList is circular). The passed array will
be filled with the drawable indices and the number of indices found is returned.

Parameters:
itemIndex Zero-based index of the item.
drawableIndexArray Array where the drawable indices are stored.
arraySize Size of drawable array.

Returns:

The number of drawable indices found.

See also:

getItemIndex, setCircular, getDrawableIndex

getDrawableMargin
virtual int16_t getDrawableMargin () const

Gets drawable margin.

Gets drawable margin as set by setDrawables.

Returns:

The drawable margin.

getDrawableSize
virtual int16_t getDrawableSize () const

Gets drawable size as set by setDrawables.

Returns:

The drawable size.

See also:

setDrawables

getHorizontal
virtual bool getHorizontal () const

Gets the orientation of the drawables, previously set using setHorizontal().

Returns:

True if it horizontal, false if it is vertical.

See also:

ScrollBase::getHorizontal, setHorizontal

getItemIndex
int16_t getItemIndex (int16_t drawableIndex)

Gets item stored in a given Drawable.

Parameters:
drawableIndex Zero-based index of the drawable.

Returns:

The item index.

getItemSize
virtual int16_t getItemSize () const

Gets size of each item.

This equals the drawable size plus the drawable margin as set in setDrawables(). Equals
getDrawableSize() + 2 * getDrawableMargin().

Returns:

The item size.

NOTE

Not the same as getDrawableSize().

See also:

setDrawables, setDrawableSize, getDrawableMargin

getNumberOfDrawables
int16_t getNumberOfDrawables () const

Gets number of drawables based on the size of each item and the size of the widget.

Returns:

The number of drawables.

See also:

setDrawables

getNumberOfItems
int16_t getNumberOfItems () const

Gets number of items in the DrawableList, as previously set using setNumberOfItems().

Returns:

The number of items.

See also:

setNumberOfItems

getOffset
int32_t getOffset () const

Gets offset, as previously set using setOffset().

Returns:

The virtual offset.

See also:

setOffset

getRequiredNumberOfDrawables
int16_t getRequiredNumberOfDrawables () const

Gets required number of drawables.

After setting up the DrawableList it is possible to request how many drawables are needed to
ensure that the list can always be drawn properly. If the DrawableList has been setup with fewer
Drawables than the required number of drawables, part of the lower part of the DrawableList will
look wrong.

The number of required drawables depend on the size of the widget and the size of the drawables
and the margin around drawables. If there are fewer drawables than required, the widget will not
display correctly. If there are more drawables than required, some will be left unused.

Returns:

The required number of drawables.

See also:

setDrawables

itemChanged
void itemChanged (int16_t itemIndex)

Item changed.

Item changed and drawables containing this item must be updated. This function can be called
when an item has changed and needs to be updated on screen. If the given item is displayed on
screen, possible more than once for cyclic lists, each drawable is request to refresh its content to
reflect the new value.

Parameters:
itemIndex Zero-based index of the item.

refreshDrawables
void refreshDrawables ()

Refresh drawables.

Useful to call if the number or items, their size or other properties have changed.

setCircular
virtual void setCircular (bool circular)

Sets whether the list is circular (infinite) or not.

A circular list is a list where the first drawable re-appears after the last item in the list - and the last
item in the list appears before the first item in the list.

Parameters:
circular True if the list should be circular, false if the list should not be circular.

See also:

ScrollBase::setCircular, getCircular

setDrawables
virtual void setDrawables (DrawableListItemsInterface & drawableListItems ,

int16_t drawableItemIndexOffset
,

GenericCallback<
DrawableListItemsInterface *, int16_t, int16_t
> &

updateDrawableCallback

)

Sets the drawables parameters.

These parameters are

The access class to the array of drawables
The offset in the drawableListItems array to start using drawable and
Callback to update the contents of a drawable.

Parameters:
drawableListItems Number of drawables allocated.
drawableItemIndexOffset The offset of the drawable item.
updateDrawableCallback A callback to update the contents of a drawable.

See also:

getRequiredNumberOfDrawables

setDrawableSize

void setDrawableSize (int16_t drawableSize ,
int16_t drawableMargin
)

Sets drawables size.

The drawable is is the size of each drawable in the list in the set direction of the list (this is enforced
by the DrawableList class). The specified margin is added above and below each item for spacing.
The entire size of an item is thus size + 2 * spacing.

For a horizontal list each element will be drawableSize high and have the same width as set using
setWidth(). For a vertical list each element will be drawableSize wide and have the same height as
set using setHeight().

Parameters:
drawableSize The size of the drawable.
drawableMargin The margin around drawables (margin before and margin after).

See also:

setWidth, setHeight, setHorizontal

setHeight
virtual void setHeight (int16_t height)

Sets the height of this drawable.

Parameters:
height The new height.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.If the list is
horizontal, the height is also propagated to all drawables in the list.

Reimplements: touchgfx::Drawable::setHeight

setHorizontal
virtual void setHorizontal (bool horizontal)

Sets a horizontal or vertical layout.

If parameter horizontal is set true, all drawables are arranged side by side. If horizontal is set false,
the drawables are arranged above and below each other (vertically).

Parameters:
horizontal True to align drawables horizontal, false to align drawables vertically.

NOTE

Default value is false, i.e. vertical layout.

See also:

ScrollBase::setHorizontal, getHorizontal

setNumberOfItems
void setNumberOfItems (int16_t numberOfItems)

Sets number of items in the list.

This forces all drawables to be updated to ensure that the content is correct.

Parameters:
numberOfItems Number of items.

NOTE

The DrawableList is refreshed to reflect the change.

setOffset
void setOffset (int32_t ofs)

Sets virtual coordinate.

Does not move to the given coordinate, but places the drawables and fill correct content into the
drawables to give the impression that everything has been scrolled to the given coordinate.

Setting a value of 0 means that item 0 is at the start of the DrawableList. Setting a value of "-
getItemSize()" places item 0 outside the start of the DrawableList and item 1 at the start of it.

Items that are completely outside of view, will be updated with new content using the provided
callback from setDrawables(). Care is taken to not fill drawables more than strictly required.

Parameters:
ofs The virtual coordinate.

See also:

getOffset, setDrawables

setWidth
virtual void setWidth (int16_t width)

Sets the width of this drawable.

Parameters:
width The new width.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.If the list is
vertical, the width is also propagated to all drawables in the list.

Reimplements: touchgfx::Drawable::setWidth

Version: 4.16

DrawableListItems
An array of drawables used by DrawableList. This class is used to ease the setup of a callback function
to get access to a specific drawable in the array.

Example usage:

Template Parameters:

TYPE Type of the drawables. Can be a simple drawable, such as Image or a more complex
container.
SIZE Size of the array. This is the number of drawables to allocate and should be all visible
drawables on the screen at any given time.

Inherits from: DrawableListItemsInterface

Public Functions
virtual Drawable * getDrawable(int16_t index)

Gets a drawable at a given index.

virtual int16_t getNumberOfDrawables()
Gets number of drawables.

TYPE & operator[](int index)
Array indexer operator.

Public Attributes
TYPE element

The array of drawables.

static const int NUMBER_OF_DRAWABLES = 5;
DrawableListItems<TextAreaWithOneWildcardContainer, NUMBER_OF_DRAWABLES> menuItems;

Additional inherited members
Public Functions inherited from DrawableListItemsInterface

virtual ~DrawableListItemsInterface()
Finalizes an instance of the DrawableListItemsInterface class.

Public Functions Documentation
getDrawable

virtual Drawable * getDrawable (int16_t index)

Gets a drawable at a given index.

Parameters:
index Zero-based index of the drawable.

Returns:

Null if it fails, else the drawable.

Reimplements: touchgfx::DrawableListItemsInterface::getDrawable

getNumberOfDrawables
virtual int16_t getNumberOfDrawables ()

Gets number of drawables.

Returns:

The number of drawables.

Reimplements: touchgfx::DrawableListItemsInterface::getNumberOfDrawables

operator[]
TYPE & operator[] (int index)

Array indexer operator.

Parameters:
index Zero-based index of elements to access.

Returns:

The indexed value.

Public Attributes Documentation
element

TYPE element

The array of drawables.

Version: 4.16

DrawableListItemsInterface
A drawable list items interface. Used to pass the allocated array of drawable elements to
ScrollList::setDrawables(), ScrollWheel::setDrawables() or
ScrollWheelWithSelectionStyle::setDrawables(). Provides easy access to each element in the array as
well as the size of the array.

See: ScrollList::setDrawables, ScrollWheel::setDrawables, ScrollWheelWithSelectionStyle::setDrawables

Inherited by: DrawableListItems< TYPE, SIZE >

Public Functions
virtual Drawable * getDrawable(int16_t index) =0

Gets a drawable at a given index.

virtual int16_t getNumberOfDrawables() =0
Gets number of drawables.

virtual ~DrawableListItemsInterface()
Finalizes an instance of the DrawableListItemsInterface class.

Public Functions Documentation
getDrawable

virtual Drawable * getDrawable (int16_t index)

Gets a drawable at a given index.

Parameters:
index Zero-based index of the drawable.

Returns:

Null if it fails, else the drawable.

Reimplemented by: touchgfx::DrawableListItems::getDrawable

getNumberOfDrawables
virtual int16_t getNumberOfDrawables () =0

Gets number of drawables.

Returns:

The number of drawables.

Reimplemented by: touchgfx::DrawableListItems::getNumberOfDrawables

~DrawableListItemsInterface
virtual ~DrawableListItemsInterface ()

Finalizes an instance of the DrawableListItemsInterface class.

Version: 4.16

DrawingSurface
The destination of a draw operation. Contains a pointer to where to draw and the stride of the drawing
surface.

Public Attributes
uint16_t * address

The bits.

int32_t stride
The stride.

Public Attributes Documentation
address

uint16_t * address

The bits.

stride
int32_t stride

The stride.

Version: 4.16

DrawTextureMapScanLineBase
Base class for drawing scanline by the texture mapper.

Public Functions

virtual void

drawTextureMapScanLineSubdivisions(int subdivisions, const int widthModLength, int
pixelsToDraw, const int affineLength, float oneOverZRight, float UOverZRight, float
VOverZRight, fixed16_16 U, fixed16_16 V, fixed16_16 deltaU, fixed16_16 deltaV, float
ULeft, float VLeft, float URight, float VRight, float ZRight, const DrawingSurface & dest,
const int destX, const int destY, const TextureSurface & texture, uint8_t alpha, const
float dOneOverZdXAff, const float dUOverZdXAff, const float dVOverZdXAff) =0
Draw texture map scan line subdivisions.

virtual ~DrawTextureMapScanLineBase()
Finalizes an instance of the DrawTextureMapScanLineBase class.

Protected Functions

FORCE_INLINE_FUNCTION void

drawTextureMapNextSubdivision(float & ULeft, float & VLeft,
float & ZRight, float & URight, float & VRight, float &
oneOverZRight, const float dOneOverZdXAff, float & UOverZRight,
const float dUOverZdXAff, float & VOverZRight, const float
dVOverZdXAff, const int affineLength, fixed16_16 & U, fixed16_16
& V, fixed16_16 & deltaU, fixed16_16 & deltaV)
Draw texture map next subdivision.

FORCE_INLINE_FUNCTION bool is1Inside(int value, int limit)
Check if value is inside [0..limit[.

FORCE_INLINE_FUNCTION bool is1x1Inside(int x, int y, int width, int height)
Check if (x,y) is inside ([0..width[, [0..height[)

FORCE_INLINE_FUNCTION bool is2Inside(int value, int limit)
Check if both value and value+1 are inside [0..limit[.

FORCE_INLINE_FUNCTION bool is2PartiallyInside(int value, int limit)
Check if either value or value+1 is inside [0..limit[.

FORCE_INLINE_FUNCTION bool is2x2Inside(int x, int y, int width, int height)
Check if both (x,y) and (x+1,y+1) are inside ([0..width[,[0..height[)

FORCE_INLINE_FUNCTION bool is2x2PartiallyInside(int x, int y, int width, int height)
Check if either (x,y) or (x+1,y+1) is inside ([0..width[,[0..height[)

Protected Attributes
const fixed16_16 half

1/2 in fixed16_16 format

Public Functions Documentation
drawTextureMapScanLineSubdivisions

virtual void drawTextureMapScanLineSubdivisions (int subdivisions , =0
const int widthModLength , =0
int pixelsToDraw , =0
const int affineLength , =0
float oneOverZRight , =0
float UOverZRight , =0
float VOverZRight , =0
fixed16_16 U , =0
fixed16_16 V , =0
fixed16_16 deltaU , =0
fixed16_16 deltaV , =0
float ULeft , =0
float VLeft , =0
float URight , =0
float VRight , =0
float ZRight , =0
const DrawingSurface & dest , =0
const int destX , =0
const int destY , =0
const TextureSurface & texture , =0
uint8_t alpha , =0
const float dOneOverZdXAff , =0
const float dUOverZdXAff , =0

const float dVOverZdXAff =0
) =0

Draw texture map scan line subdivisions.

Parameters:
subdivisions The number of subdivisions.
widthModLength Remainder of length (after subdivisions).
pixelsToDraw The pixels to draw.
affineLength Length of one subdivision.
oneOverZRight 1/Z right.
UOverZRight U/Z right.
VOverZRight V/Z right.
U U Coordinate in fixed16_16 notation.
V V Coordinate in fixed16_16 notation.
deltaU U delta to get to next pixel coordinate.
deltaV V delta to get to next pixel coordinate.
ULeft The left U.
VLeft The left V.
URight The right U.
VRight The right V.
ZRight The right Z.
dest Destination drawing surface.
destX Destination x coordinate.
destY Destination y coordinate.
texture The texture.
alpha The global alpha.
dOneOverZdXAff 1/ZdX affine.
dUOverZdXAff U/ZdX affine.
dVOverZdXAff V/ZdX affine.

~DrawTextureMapScanLineBase
virtual ~DrawTextureMapScanLineBase ()

Finalizes an instance of the DrawTextureMapScanLineBase class.

Protected Functions Documentation
drawTextureMapNextSubdivision

FORCE_INLINE_FUNCTION
void drawTextureMapNextSubdivision (float & ULeft ,

float & VLeft ,
float & ZRight ,
float & URight ,
float & VRight ,
float & oneOverZRight ,

const float dOneOverZdXAff
,

float & UOverZRight ,
const float dUOverZdXAff ,
float & VOverZRight ,
const float dVOverZdXAff ,
const int affineLength ,
fixed16_16
& U ,

fixed16_16
& V ,

fixed16_16
& deltaU ,

fixed16_16
& deltaV

)

Draw texture map next subdivision.

Parameters:
ULeft U left.
VLeft V left.
ZRight Z right.
URight U right.
VRight V right.
oneOverZRight 1/Z right.
dOneOverZdXAff d1/ZdX affine.
UOverZRight U/Z right.
dUOverZdXAff dU/ZdX affine.
VOverZRight V/Z right.
dVOverZdXAff dV/ZdX affine.
affineLength Length of the affine.
U Bitmap X in fixed16_16.
V Bitmap Y in fixed16_16.
deltaU U delta.
deltaV V delta.

is1Inside
FORCE_INLINE_FUNCTION bool is1Inside (int value ,

int limit
)

Check if value is inside [0..limit[.

Parameters:
value Value to check.
limit Upper limit.

Returns:

true if value is inside given limit.

is1x1Inside
FORCE_INLINE_FUNCTION bool is1x1Inside (int x ,

int y ,
int width ,
int height
)

Check if (x,y) is inside ([0..width[, [0..height[)

Parameters:
x X coordinate.
y Y coordinate.
width X limit.
height Y limit.

Returns:

true if (x,y) is inside given limits.

is2Inside
FORCE_INLINE_FUNCTION bool is2Inside (int value ,

int limit
)

Check if both value and value+1 are inside [0..limit[.

Parameters:

value Value to check.
limit Upper limit.

Returns:

true if value and value+1 are inside given limit.

is2PartiallyInside
FORCE_INLINE_FUNCTION bool is2PartiallyInside (int value ,

int limit
)

Check if either value or value+1 is inside [0..limit[.

Parameters:
value Value to check.
limit Upper limit.

Returns:

true if either value or value+1 is inside given limit.

is2x2Inside
FORCE_INLINE_FUNCTION bool is2x2Inside (int x ,

int y ,
int width ,
int height
)

Check if both (x,y) and (x+1,y+1) are inside ([0..width[,[0..height[)

Parameters:
x X coordinate.
y Y coordinate.
width X limit.
height Y limit.

Returns:

true if (x,y) and (x+1,y+1) are inside given limits.

is2x2PartiallyInside

FORCE_INLINE_FUNCTION bool is2x2PartiallyInside (int x ,
int y ,
int width ,
int height
)

Check if either (x,y) or (x+1,y+1) is inside ([0..width[,[0..height[)

Parameters:
x X coordinate.
y Y coordinate.
width X limit.
height Y limit.

Returns:

true if either (x,y) or (x+1,y+1) is inside given limits.

Protected Attributes Documentation
half

const fixed16_16 half = 0x8000

1/2 in fixed16_16 format

Version: 4.16

DynamicBitmapData
Data of a dynamic Bitmap.

Public Attributes
uint8_t customSubformat

Custom format specifier.

uint8_t extra
Extra data field, dependent on format.

uint8_t format
Determine the format of the data.

uint16_t height
The height of the Bitmap.

uint8_t inuse
Zero if not in use.

Rect solid
The solidRect of this Bitmap.

uint16_t width
The width of the Bitmap.

Public Attributes Documentation
customSubformat

uint8_t customSubformat

Custom format specifier.

extra

uint8_t extra

Extra data field, dependent on format.

format
uint8_t format

Determine the format of the data.

height
uint16_t height

The height of the Bitmap.

inuse
uint8_t inuse

Zero if not in use.

solid
Rect solid

The solidRect of this Bitmap.

width
uint16_t width

The width of the Bitmap.

Version: 4.16

EasingEquations
Defines the "Penner easing functions", which are a de facto standard for computing aesthetically
pleasing motion animations. See http://easings.net/ for visual illustrations of the easing equations.

Public Functions
int16_t backEaseIn(uint16_t t, int16_t b, int16_t c, uint16_t d)

Back easing in: Overshooting cubic easing: (s+1)t^3 - st^2.

int16_t backEaseInOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Back easing in/out: Overshooting cubic easing: (s+1)t^3 - st^2.

int16_t backEaseOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Back easing out: Overshooting cubic easing: (s+1)t^3 - st^2.

int16_t bounceEaseIn(uint16_t t, int16_t b, int16_t c, uint16_t d)
Bounce easing in - exponentially decaying parabolic bounce.

int16_t bounceEaseInOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Bounce easing in/out - exponentially decaying parabolic bounce.

int16_t bounceEaseOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Bounce easing out - exponentially decaying parabolic bounce.

int16_t circEaseIn(uint16_t t, int16_t b, int16_t c, uint16_t d)
Circular easing in: sqrt(1-t^2).

int16_t circEaseInOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Circular easing in/out: sqrt(1-t^2).

int16_t circEaseOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Circular easing out: sqrt(1-t^2).

int16_t cubicEaseIn(uint16_t t, int16_t b, int16_t c, uint16_t d)
Cubic easing in: t^3.

int16_t cubicEaseInOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Cubic easing in/out: t^3.

int16_t cubicEaseOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Cubic easing out: t^3.

int16_t elasticEaseIn(uint16_t t, int16_t b, int16_t c, uint16_t d)
Elastic easing in - exponentially decaying sine wave.

int16_t elasticEaseInOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Elastic easing in/out - exponentially decaying sine wave.

int16_t elasticEaseOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Elastic easing out - exponentially decaying sine wave.

int16_t expoEaseIn(uint16_t t, int16_t b, int16_t c, uint16_t d)
Exponential easing in: 2^t.

int16_t expoEaseInOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Exponential easing in/out: 2^t.

int16_t expoEaseOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Exponential easing out: 2^t.

int16_t linearEaseIn(uint16_t t, int16_t b, int16_t c, uint16_t d)
Simple linear tweening - no easing.

int16_t linearEaseInOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Simple linear tweening - no easing.

int16_t linearEaseNone(uint16_t t, int16_t b, int16_t c, uint16_t d)
Simple linear tweening - no easing.

int16_t linearEaseOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Simple linear tweening - no easing.

int16_t quadEaseIn(uint16_t t, int16_t b, int16_t c, uint16_t d)
Quadratic easing in: t^2.

int16_t quadEaseInOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Quadratic easing in/out: t^2.

int16_t quadEaseOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Quadratic easing out: t^2.

int16_t quartEaseIn(uint16_t t, int16_t b, int16_t c, uint16_t d)

Quartic easing in: t^4.

int16_t quartEaseInOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Quartic easing in/out: t^4.

int16_t quartEaseOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Quartic easing out: t^4.

int16_t quintEaseIn(uint16_t t, int16_t b, int16_t c, uint16_t d)
Quintic/strong easing in: t^5.

int16_t quintEaseInOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Quintic/strong easing in/out: t^5.

int16_t quintEaseOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Quintic/strong easing out: t^5.

int16_t sineEaseIn(uint16_t t, int16_t b, int16_t c, uint16_t d)
Sinusoidal easing in: sin(t).

int16_t sineEaseInOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Sinusoidal easing in/out: sin(t).

int16_t sineEaseOut(uint16_t t, int16_t b, int16_t c, uint16_t d)
Sinusoidal easing out: sin(t).

Public Functions Documentation
backEaseIn

static int16_t backEaseIn (uint16_t t ,
int16_t b ,
int16_t c ,
uint16_t d
)

Back easing in: Overshooting cubic easing: (s+1)t^3 - st^2.

Backtracking slightly, then reversing direction and moving to target.

Parameters:
t Time. The current time or step.

b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

backEaseInOut
static int16_t backEaseInOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Back easing in/out: Overshooting cubic easing: (s+1)t^3 - st^2.

Backtracking slightly, then reversing direction and moving to target, then overshooting target,
reversing, and finally coming back to target.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

backEaseOut
static int16_t backEaseOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Back easing out: Overshooting cubic easing: (s+1)t^3 - st^2.

Moving towards target, overshooting it slightly, then reversing and coming back to target.

Parameters:
t Time. The current time or step.

b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

bounceEaseIn
static int16_t bounceEaseIn (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Bounce easing in - exponentially decaying parabolic bounce.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

bounceEaseInOut
static int16_t bounceEaseInOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Bounce easing in/out - exponentially decaying parabolic bounce.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

bounceEaseOut
static int16_t bounceEaseOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Bounce easing out - exponentially decaying parabolic bounce.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

circEaseIn
static int16_t circEaseIn (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Circular easing in: sqrt(1-t^2).

Accelerating from zero velocity.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

circEaseInOut
static int16_t circEaseInOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Circular easing in/out: sqrt(1-t^2).

Acceleration until halfway, then deceleration.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

circEaseOut
static int16_t circEaseOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Circular easing out: sqrt(1-t^2).

Decelerating to zero velocity.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

cubicEaseIn

static int16_t cubicEaseIn (uint16_t t ,
int16_t b ,
int16_t c ,
uint16_t d
)

Cubic easing in: t^3.

Accelerating from zero velocity.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

cubicEaseInOut
static int16_t cubicEaseInOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Cubic easing in/out: t^3.

Acceleration until halfway, then deceleration.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

cubicEaseOut
static int16_t cubicEaseOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Cubic easing out: t^3.

Decelerating to zero velocity.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

elasticEaseIn
static int16_t elasticEaseIn (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Elastic easing in - exponentially decaying sine wave.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

elasticEaseInOut
static int16_t elasticEaseInOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d

)

Elastic easing in/out - exponentially decaying sine wave.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

elasticEaseOut
static int16_t elasticEaseOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Elastic easing out - exponentially decaying sine wave.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

expoEaseIn
static int16_t expoEaseIn (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Exponential easing in: 2^t.

Accelerating from zero velocity.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

expoEaseInOut
static int16_t expoEaseInOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Exponential easing in/out: 2^t.

Accelerating until halfway, then decelerating.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

expoEaseOut
static int16_t expoEaseOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Exponential easing out: 2^t.

Deceleration to zero velocity.

Parameters:

t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

linearEaseIn
static int16_t linearEaseIn (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Simple linear tweening - no easing.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

linearEaseInOut
static int16_t linearEaseInOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Simple linear tweening - no easing.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

linearEaseNone
static int16_t linearEaseNone (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Simple linear tweening - no easing.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

linearEaseOut
static int16_t linearEaseOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Simple linear tweening - no easing.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

quadEaseIn
static int16_t quadEaseIn (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Quadratic easing in: t^2.

Accelerating from zero velocity.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

quadEaseInOut
static int16_t quadEaseInOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Quadratic easing in/out: t^2.

Acceleration until halfway, then deceleration.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

quadEaseOut

static int16_t quadEaseOut (uint16_t t ,
int16_t b ,
int16_t c ,
uint16_t d
)

Quadratic easing out: t^2.

Decelerating to zero velocity.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

quartEaseIn
static int16_t quartEaseIn (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Quartic easing in: t^4.

Accelerating from zero velocity.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

quartEaseInOut
static int16_t quartEaseInOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Quartic easing in/out: t^4.

Acceleration until halfway, then deceleration.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

quartEaseOut
static int16_t quartEaseOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Quartic easing out: t^4.

Decelerating to zero velocity.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

quintEaseIn
static int16_t quintEaseIn (uint16_t t ,

int16_t b ,

int16_t c ,
uint16_t d
)

Quintic/strong easing in: t^5.

Accelerating from zero velocity.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

quintEaseInOut
static int16_t quintEaseInOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Quintic/strong easing in/out: t^5.

Acceleration until halfway, then deceleration.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

quintEaseOut
static int16_t quintEaseOut (uint16_t t ,

int16_t b ,
int16_t c ,

uint16_t d
)

Quintic/strong easing out: t^5.

Decelerating to zero velocity.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

sineEaseIn
static int16_t sineEaseIn (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Sinusoidal easing in: sin(t).

Accelerating from zero velocity.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

sineEaseInOut
static int16_t sineEaseInOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d

)

Sinusoidal easing in/out: sin(t).

Acceleration until halfway, then deceleration.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

sineEaseOut
static int16_t sineEaseOut (uint16_t t ,

int16_t b ,
int16_t c ,
uint16_t d
)

Sinusoidal easing out: sin(t).

Decelerating to zero velocity.

Parameters:
t Time. The current time or step.
b Beginning. The beginning value.
c Change. The change between the beginning value and the destination value.
d Duration. The total time or total number of steps.

Returns:

The current value as a function of the current time or step.

Version: 4.16

Edge
An edge contains information about one edge, between two points, of a triangle, as well as
information about how to interpolate values when moving in the vertical direction.

Public Functions
Edge(const Gradients & gradients, const Point3D * vertices, int top,
int bottom)
Initializes a new instance of the TextureMapTypes class.

FORCE_INLINE_FUNCTION int step()
Perform a step along the edge.

FORCE_INLINE_FUNCTION int step(int steps)
Performs a number of steps along the edge.

Public Attributes
int32_t denominator

The denominator.

int32_t errorTerm
The error term.

int height
The height.

int32_t numerator
The numerator.

float oneOverZ
The one over z coordinate.

float oneOverZStep
The one over z coordinate step.

float oneOverZStepExtra

The one over z coordinate step extra.

float UOverZ
The over z coordinate.

float UOverZStep
The over z coordinate step.

float UOverZStepExtra
The over z coordinate step extra.

float VOverZ
The over z coordinate.

float VOverZStep
The over z coordinate step.

float VOverZStepExtra
The over z coordinate step extra.

int32_t X
The X coordinate.

int32_t XStep
Amount to increment x.

int Y
The Y coordinate.

Public Functions Documentation
Edge

Edge (const Gradients & gradients ,
const Point3D * vertices ,
int top ,
int bottom
)

Initializes a new instance of the TextureMapTypes class.

Construct the edge between two vertices and uses the gradients for calculating the interpolation
values.

Parameters:
gradients The gradients for the triangle.
vertices The vertices for the triangle.
top The index in the vertices array of the top vertex of this edge.
bottom The index in the vertices array of the bottom vertex of this edge.

step
FORCE_INLINE_FUNCTION int step ()

Perform a step along the edge.

Increase the Y and decrease the height.

Returns:

The remaining height.

step
FORCE_INLINE_FUNCTION int step (int steps)

Performs a number of steps along the edge.

Parameters:
steps The number of steps the perform.

Returns:

The remaining height.

Public Attributes Documentation
denominator

int32_t denominator

The denominator.

errorTerm
int32_t errorTerm

The error term.

height
int height

The height.

numerator
int32_t numerator

The numerator.

oneOverZ
float oneOverZ

The one over z coordinate.

oneOverZStep
float oneOverZStep

The one over z coordinate step.

oneOverZStepExtra
float oneOverZStepExtra

The one over z coordinate step extra.

UOverZ

float UOverZ

The over z coordinate.

UOverZStep
float UOverZStep

The over z coordinate step.

UOverZStepExtra
float UOverZStepExtra

The over z coordinate step extra.

VOverZ
float VOverZ

The over z coordinate.

VOverZStep
float VOverZStep

The over z coordinate step.

VOverZStepExtra
float VOverZStepExtra

The over z coordinate step extra.

X

int32_t X

The X coordinate.

XStep
int32_t XStep

Amount to increment x.

Y
int Y

The Y coordinate.

Version: 4.16

Event
Simple base class for events.

Inherited by: ClickEvent, DragEvent, GestureEvent

Public Types
enum EventType { EVENT_CLICK, EVENT_DRAG, EVENT_GESTURE }

The event types.

Public Functions
virtual EventType getEventType() =0

Gets event type.

virtual ~Event()
Finalizes an instance of the Event class.

Public Types Documentation
EventType

enum EventType

The event types.

EVENT_CLICK A click.
EVENT_DRAG A drag.
EVENT_GESTURE A gesture.

Public Functions Documentation

getEventType
virtual EventType getEventType () =0

Gets event type.

Returns:

The type of this event.

Reimplemented by: touchgfx::ClickEvent::getEventType, touchgfx::DragEvent::getEventType,
touchgfx::GestureEvent::getEventType

~Event
virtual ~Event ()

Finalizes an instance of the Event class.

Version: 4.16

FadeAnimator
A FadeAnimator makes the template class T able to animate the alpha value from its current value to a
specified end value. It is possible to use a fade in effect as well as fade out effect using FadeAnimator.
The alpha progression can be described by supplying an EasingEquation. The FadeAnimator performs
a callback when the animation has finished.

This mixin can be used on any Drawable that has a 'void setAlpha(uint8_t)' and a 'uint8_t getAlpha()'
method.

Template Parameters:

T specifies the type to extend with the FadeAnimator behavior.

Inherits from: T

Public Functions
void cancelFadeAnimation()

Cancel fade animation.

void clearFadeAnimationEndedAction()
Clears the fade animation ended action previously set by
setFadeAnimationEndedAction.

FadeAnimator()

virtual uint16_t getFadeAnimationDelay() const
Gets the current animation delay.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

bool isFadeAnimationRunning() const
Gets whether or not the fade animation is running.

virtual void setFadeAnimationDelay(uint16_t delay)
Sets a delay before the actual animation starts for the animation done by the
FadeAnimator.

void setFadeAnimationEndedAction(GenericCallback< const FadeAnimator< T > & >
& callback)
Associates an action to be performed when the animation ends.

void startFadeAnimation(uint8_t endAlpha, uint16_t duration, EasingEquation
alphaProgressionEquation =&EasingEquations::linearEaseNone)
Starts the fade animation from the current alpha value to the specified end alpha
value.

Protected Functions
void nextFadeAnimationStep()

Execute next step in fade animation and stop the timer if necessary.

Protected Attributes
EasingEquation fadeAnimationAlphaEquation

EasingEquation expressing the progression of
the alpha value during the animation.

uint16_t fadeAnimationCounter
To the current step in the animation.

uint16_t fadeAnimationDelay
A delay that is applied before animation start.
Expressed in ticks.

uint16_t fadeAnimationDuration
The complete duration of the animation.
Expressed in ticks.

int16_t fadeAnimationEndAlpha
The alpha value at the end of the animation.

GenericCallback< const FadeAnimator< T > & > * fadeAnimationEndedCallback
Animation ended Callback.

bool fadeAnimationRunning
True if the animation is running.

int16_t fadeAnimationStartAlpha
The alpha value at the beginning of the
animation.

Public Functions Documentation
cancelFadeAnimation

void cancelFadeAnimation ()

Cancel fade animation.

The animation is stopped and the alpha value is left where it currently is.

clearFadeAnimationEndedAction
void clearFadeAnimationEndedAction ()

Clears the fade animation ended action previously set by setFadeAnimationEndedAction.

Clears the fade animation ended action previously set by setFadeAnimationEndedAction.

See also:

setFadeAnimationEndedAction

FadeAnimator
FadeAnimator ()

getFadeAnimationDelay
virtual uint16_t getFadeAnimationDelay () const

Gets the current animation delay.

Returns:

The current animation delay.

See also:

setFadeAnimationDelay

handleTickEvent
virtual void handleTickEvent ()

Called periodically by the framework if the Drawable instance has subscribed to timer ticks.

See also:

Application::registerTimerWidget

isFadeAnimationRunning
bool isFadeAnimationRunning () const

Gets whether or not the fade animation is running.

Returns:

true if the fade animation is running.

setFadeAnimationDelay
virtual void setFadeAnimationDelay (uint16_t delay)

Sets a delay before the actual animation starts for the animation done by the FadeAnimator.

Parameters:
delay The delay in ticks.

See also:

getFadeAnimationDelay

setFadeAnimationEndedAction

void setFadeAnimationEndedAction (GenericCallback< const FadeAnimator< T > & >
& callback)

Associates an action to be performed when the animation ends.

Parameters:
callback The callback to be executed. The callback will be given a reference to the

FadeAnimator.

startFadeAnimation
void startFadeAnimation (uint8_t endAlpha ,

uint16_t duration ,

EasingEquation alphaProgressionEquation
=&EasingEquations::linearEaseNone

)

Starts the fade animation from the current alpha value to the specified end alpha value.

The progression of the alpha value during the animation is described by the supplied
EasingEquation.

Parameters:
endAlpha The alpha value of T at animation end.
duration The duration of the animation measured in ticks.
alphaProgressionEquation (Optional) The equation that describes the development of the

alpha value during the animation. Default is
EasingEquations::linearEaseNone.

Protected Functions Documentation
nextFadeAnimationStep

void nextFadeAnimationStep ()

Execute next step in fade animation and stop the timer if necessary.

Protected Attributes Documentation
fadeAnimationAlphaEquation

EasingEquation fadeAnimationAlphaEquation

EasingEquation expressing the progression of the alpha value during the animation.

fadeAnimationCounter

uint16_t fadeAnimationCounter

To the current step in the animation.

fadeAnimationDelay
uint16_t fadeAnimationDelay

A delay that is applied before animation start. Expressed in ticks.

fadeAnimationDuration
uint16_t fadeAnimationDuration

The complete duration of the animation. Expressed in ticks.

fadeAnimationEndAlpha
int16_t fadeAnimationEndAlpha

The alpha value at the end of the animation.

fadeAnimationEndedCallback
GenericCallback< const FadeAnimator< T > & > * fadeAnimationEndedCallback

Animation ended Callback.

fadeAnimationRunning
bool fadeAnimationRunning

True if the animation is running.

fadeAnimationStartAlpha

int16_t fadeAnimationStartAlpha

The alpha value at the beginning of the animation.

Version: 4.16

FlashDataReader
This class is an abstract interface for a class reading data from a flash. The flash can be any type, but is
mostly used for flashes that are not memory mapped. Applications must implement access to the flash
through this interface.

Public Functions
virtual bool addressIsAddressable(const void * address) =0

Compute if an address is directly addressable by the MCU.

virtual void copyData(const void src, void dst, uint32_t bytes) =0
Copy data from flash to a buffer.

virtual void startFlashLineRead(const void * src, uint32_t bytes) =0
Initiate a read operation from flash to a buffer.

virtual const uint8_t * waitFlashReadComplete() =0
Waits until the previous startFlashLineRead operation is complete.

virtual ~FlashDataReader()
Finalizes an instance of the FlashDataReader class.

Public Functions Documentation
addressIsAddressable

virtual bool addressIsAddressable (const void * address)

Compute if an address is directly addressable by the MCU.

Compute if an address is directly addressable by the MCU. The data is addressable it should be
read direct through a pointer and not through this interface.

Parameters:
address The address in the flash.

Returns:

True if the address is addressable by the MCU.

copyData
virtual void copyData (const void * src , =0

void * dst , =0
uint32_t bytes =0
) =0

Copy data from flash to a buffer.

This must be a synchrony method that does not return until the copy is done.

Parameters:
src Address of source data in the flash.
dst Address of destination buffer in RAM.
bytes Number of bytes to copy.

startFlashLineRead
virtual void startFlashLineRead (const void * src , =0

uint32_t bytes =0
) =0

Initiate a read operation from flash to a buffer.

This can be an asynchrony operation that is still running after this function returns. Buffers must be
handled by the subclass. LCD16bppSerialFlash will at most copy 4 bytes times the width of the
display.

Parameters:
src Address of source data in the flash.
bytes Number of bytes to copy.

waitFlashReadComplete
virtual const uint8_t * waitFlashReadComplete () =0

Waits until the previous startFlashLineRead operation is complete.

Waits until the previous startFlashLineRead operation is complete. If the startFlashLineRead method
is asynchrony, this method must wait until the previous operation has completed.

Returns:

The address of a buffer containing the read data.

~FlashDataReader
virtual ~FlashDataReader ()

Finalizes an instance of the FlashDataReader class.

Version: 4.16

Font
The font base class. This class is abstract and requires the implementation of getGlyph. It provides
utility functions such as obtaining string width and font height.

Inherited by: ConstFont

Public Functions
virtual FORCE_INLINE_FUNCTION uint8_t getBitsPerPixel() const

Gets bits per pixel for this font.

virtual FORCE_INLINE_FUNCTION uint8_t getByteAlignRow() const
Are the glyphs saved with each glyph row byte aligned?

virtual uint16_t getCharWidth(const Unicode::UnicodeChar c) const
Gets the width in pixels of the specified character.

virtual Unicode::UnicodeChar getEllipsisChar() const
Gets ellipsis character for the given font.

virtual Unicode::UnicodeChar getFallbackChar() const
Gets fallback character for the given font.

virtual FORCE_INLINE_FUNCTION uint16_t getFontHeight() const
Returns the height in pixels of this font.

virtual const GlyphNode * getGlyph(Unicode::UnicodeChar unicode) const
Gets the glyph data associated with the specified
Unicode.

virtual const GlyphNode * getGlyph(Unicode::UnicodeChar unicode, const uint8_t
*& pixelData, uint8_t & bitsPerPixel) const =0
Gets the glyph data associated with the specified
Unicode.

virtual const uint16_t * getGSUBTable() const
Gets GSUB table.

virtual int8_t getKerning(Unicode::UnicodeChar prevChar, const
GlyphNode * glyph) const
Gets the kerning distance between two characters.

FORCE_INLINE_FUNCTION uint8_t getMaxPixelsLeft() const
Gets maximum pixels left of any glyph in the font.

FORCE_INLINE_FUNCTION uint8_t getMaxPixelsRight() const
Gets maximum pixels right of any glyph in the font.

virtual uint16_t getMaxTextHeight(const Unicode::UnicodeChar * text,
...) const
Gets the height of the highest character in a given string.

virtual FORCE_INLINE_FUNCTION uint16_t getMinimumTextHeight() const
Returns the minimum height needed for a text field that
uses this font.

virtual uint16_t getNumberOfLines(const Unicode::UnicodeChar * text,
...) const
Count the number of lines in a given text.

virtual uint8_t getSpacingAbove(const Unicode::UnicodeChar * text, ...
) const
Gets the number of blank pixels at the top of the given
text.

virtual uint16_t getStringWidth(const Unicode::UnicodeChar * text, ...)
const
Gets the width in pixels of the specified string.

virtual uint16_t getStringWidth(TextDirection textDirection, const
Unicode::UnicodeChar * text, ...) const
Gets the width in pixels of the specified string.

virtual ~Font()
Finalizes an instance of the Font class.

FORCE_INLINE_FUNCTION bool isInvisibleZeroWidth(Unicode::UnicodeChar character)
Query if 'character' is invisible, zero width.

Protected Functions

Font(uint16_t height, uint8_t pixBelowBase, uint8_t bitsPerPixel, uint8_t byteAlignRow,
uint8_t maxLeft, uint8_t maxRight, const Unicode::UnicodeChar fallbackChar, const
Unicode::UnicodeChar ellipsisChar)
Initializes a new instance of the Font class.

uint16_t getStringWidthLTR(TextDirection textDirection, const Unicode::UnicodeChar * text,
va_list pArg) const
Gets the width in pixels of the specified string.

uint16_t getStringWidthRTL(TextDirection textDirection, const Unicode::UnicodeChar * text,
va_list pArg) const
Gets the width in pixels of the specified string.

Protected Attributes
uint8_t bAlignRow

The glyphs are saved with each row byte aligned.

uint8_t bPerPixel
The number of bits per pixel.

Unicode::UnicodeChar ellipsisCharacter
The ellipsis character used for truncating long texts.

Unicode::UnicodeChar fallbackCharacter
The fallback character to use when no glyph exists for the wanted character.

uint16_t fontHeight
The font height in pixels.

uint8_t maxPixelsLeft
The maximum number of pixels a glyph extends to the left.

uint8_t maxPixelsRight
The maximum number of pixels a glyph extends to the right.

uint8_t pixelsBelowBaseline
The number of pixels below the base line.

Public Functions Documentation

getBitsPerPixel
virtual FORCE_INLINE_FUNCTION uint8_t getBitsPerPixel () const

Gets bits per pixel for this font.

Returns:

The number of bits used per pixel in this font.

getByteAlignRow
virtual FORCE_INLINE_FUNCTION uint8_t getByteAlignRow () const

Are the glyphs saved with each glyph row byte aligned?

Returns:

True if each glyph row is stored byte aligned, false otherwise.

getCharWidth
virtual uint16_t getCharWidth (const Unicode::UnicodeChar c)

Gets the width in pixels of the specified character.

Parameters:
c The Unicode character.

Returns:

The width in pixels of the specified character.

getEllipsisChar
virtual Unicode::UnicodeChar getEllipsisChar () const

Gets ellipsis character for the given font.

This is the character which is used when truncating long lines.

Returns:

The ellipsis character for the typography.

See also:

TextArea::setWideTextAction

getFallbackChar
virtual Unicode::UnicodeChar getFallbackChar () const

Gets fallback character for the given font.

The fallback character is the character used when no glyph is available for some character. If 0
(zero) is returned, there is no default character.

Returns:

The default character for the typography in case no glyph is available.

getFontHeight
virtual FORCE_INLINE_FUNCTION uint16_t getFontHeight () const

Returns the height in pixels of this font.

The returned value corresponds to the maximum height occupied by a character in the font.

Returns:

The height in pixels of this font.

NOTE

It is not sufficient to allocate text areas with this height. Use getMinimumTextHeight for this.

getGlyph
virtual const GlyphNode * getGlyph (Unicode::UnicodeChar unicode)

Gets the glyph data associated with the specified Unicode.

Please note that in case of Thai letters and Arabic letters where diacritics can be placed relative to
the previous character(s), please use TextProvider::getNextLigature() instead as it will create a
temporary GlyphNode that will be adjusted with respect to X/Y position.

Parameters:
unicode The character to look up.

Returns:

A pointer to the glyph node or null if the glyph was not found.

See also:

TextProvider::getNextLigature

getGlyph
virtual const GlyphNode * getGlyph (Unicode::UnicodeChar unicode , const =0

const uint8_t *& pixelData , const =0
uint8_t & bitsPerPixel const =0
) const =0

Gets the glyph data associated with the specified Unicode.

Please note that in case of Thai letters and Arabic letters where diacritics can be placed relative to
the previous character(s), please use TextProvider::getNextLigature() instead as it will create a
temporary GlyphNode that will be adjusted with respect to X/Y position.

Parameters:
unicode The character to look up.
pixelData Pointer to the pixel data for the glyph if the glyph is found. This is set by this

method.
bitsPerPixel Reference where to place the number of bits per pixel.

Returns:

A pointer to the glyph node or null if the glyph was not found.

Reimplemented by: touchgfx::ConstFont::getGlyph

getGSUBTable
virtual const uint16_t * getGSUBTable () const

Gets GSUB table.

Currently only used for Devanagari fonts.

Returns:

The GSUB table or null if font has GSUB no table.

getKerning
virtual int8_t getKerning (Unicode::UnicodeChar prevChar , const

const GlyphNode * glyph const
) const

Gets the kerning distance between two characters.

Parameters:
prevChar The Unicode value of the previous character.
glyph the glyph object for the current character.

Returns:

The kerning distance between prevChar and glyph char.

Reimplemented by: touchgfx::InternalFlashFont::getKerning,
touchgfx::ConstFont::getKerning

getMaxPixelsLeft
FORCE_INLINE_FUNCTION uint8_t getMaxPixelsLeft () const

Gets maximum pixels left of any glyph in the font.

This is the max value of "left" for all glyphs. The value is negated so if a "g" has left=-6
maxPixelsLeft is 6. This value is calculated by the font converter.

Returns:

The maximum pixels left.

getMaxPixelsRight
FORCE_INLINE_FUNCTION uint8_t getMaxPixelsRight () const

Gets maximum pixels right of any glyph in the font.

This is the max value of "width+left-advance" for all glyphs. The is the number of pixels a glyph
reaches to the right of its normal area. This value is calculated by the font converter.

Returns:

The maximum pixels right.

getMaxTextHeight
virtual uint16_t getMaxTextHeight (const Unicode::UnicodeChar * text , const

... const
) const

Gets the height of the highest character in a given string.

The height includes the spacing above the text which is included in the font.

Parameters:
text A null-terminated Unicode string.
... Variable arguments providing additional information inserted at wildcard placeholders.

Returns:

The height if the given text.

getMinimumTextHeight
virtual FORCE_INLINE_FUNCTION uint16_t getMinimumTextHeight () const

Returns the minimum height needed for a text field that uses this font.

Takes into account that certain characters (eg 'g') have pixels below the baseline, thus making the
text height larger than the font height.

Returns:

The minimum height needed for a text field that uses this font.

getNumberOfLines
virtual uint16_t getNumberOfLines (const Unicode::UnicodeChar * text , const

... const
) const

Count the number of lines in a given text.

Parameters:
text The text.
... Variable arguments providing additional information.

Returns:

The number of lines.

getSpacingAbove
virtual uint8_t getSpacingAbove (const Unicode::UnicodeChar * text , const

... const
) const

Gets the number of blank pixels at the top of the given text.

Parameters:
text A null-terminated Unicode string.
... Variable arguments providing additional information inserted at wildcard placeholders.

Returns:

The number of blank pixels above the text.

getStringWidth
virtual uint16_t getStringWidth (const Unicode::UnicodeChar * text , const

... const
) const

Gets the width in pixels of the specified string.

If the string contains multiple lines, the width of the widest line is found. Please note that the
correct number of arguments must be given if the text contains wildcards.

It is recommended to use the getStringWidth() implementation with the TextDirection parameter
to ensure correct calculation of the width. Kerning could result in different results depending on the
TextDirection. This method assumes TextDirection to be TEXT_DIRECTION_LTR.

Parameters:
text A null-terminated Unicode string with arguments to insert if the text contains wildcards.
... Variable arguments providing additional information inserted at wildcard placeholders.

Returns:

The width in pixels of the longest line of the specified string.

getStringWidth
virtual uint16_t getStringWidth (TextDirection textDirection , const

const Unicode::UnicodeChar * text , const

... const
) const

Gets the width in pixels of the specified string.

If the string contains multiple lines, the width of the widest line is found. Please note that the
correct number of arguments must be given if the text contains wildcards.

The TextDirection should be set correctly for the text supplied. For example the string "10 20 30"
will be calculated differently depending on the TextDirection. If TextDirection is
TEXT_DIRECTION_LTR the width is calculated as the with of "10 20 30" (with kerning between all
characters) but for TEXT_DIRECTION_RTL it is calculated as "10"+" "+"20"+" "+"30" (with kerning
only between characters in the substrings and not between substrings). For most fonts there might
not be a difference between the two calculations, but some fonts might cause slightly different
results.

Parameters:
textDirection The text direction.
text A null-terminated Unicode string with arguments to insert if the text contains

wildcards.
... Variable arguments providing additional information inserted at wildcard

placeholders.

Returns:

The width in pixels of the longest line of the specified string.

~Font
virtual ~Font ()

Finalizes an instance of the Font class.

isInvisibleZeroWidth
static FORCE_INLINE_FUNCTION bool isInvisibleZeroWidth (Unicode::UnicodeChar character)

Query if 'character' is invisible, zero width.

Parameters:
character The character.

Returns:

True if invisible, zero width, false if not.

Protected Functions Documentation
Font

Font (uint16_t height ,
uint8_t pixBelowBase ,
uint8_t bitsPerPixel ,
uint8_t byteAlignRow ,
uint8_t maxLeft ,
uint8_t maxRight ,
const Unicode::UnicodeChar fallbackChar ,
const Unicode::UnicodeChar ellipsisChar
)

Initializes a new instance of the Font class.

The protected constructor of a Font.

Parameters:
height The font height in pixels.
pixBelowBase The number of pixels below the base line.
bitsPerPixel The number of bits per pixel.
byteAlignRow The glyphs are saved with each row byte aligned.
maxLeft The maximum left extend for a glyph in the font.
maxRight The maximum right extend for a glyph in the font.
fallbackChar The fallback character for the typography in case no glyph is available.
ellipsisChar The ellipsis character used for truncating long texts.

getStringWidthLTR
uint16_t getStringWidthLTR (TextDirection textDirection , const

const Unicode::UnicodeChar * text , const
va_list pArg const
) const

Gets the width in pixels of the specified string.

If the string contains multiple lines, the width of the widest line is found. Please note that the
correct number of arguments must be given if the text contains wildcards.

Parameters:
textDirection The text direction.

text A null-terminated Unicode string with arguments to insert if the text contains
wildcards.

pArg Variable arguments providing additional information inserted at wildcard
placeholders.

Returns:

The width in pixels of the longest line of the specified string.

NOTE

The string is assumed to be purely left-to-right.

getStringWidthRTL
uint16_t getStringWidthRTL (TextDirection textDirection , const

const Unicode::UnicodeChar * text , const
va_list pArg const
) const

Gets the width in pixels of the specified string.

If the string contains multiple lines, the width of the widest line is found. Please note that the
correct number of arguments must be given if the text contains wildcards.

The string is handled as a right-to-left string and subdivided into smaller text strings to correctly
handle mixing of left-to-right and right-to-left strings.

Parameters:
textDirection The text direction.
text A null-terminated Unicode string with arguments to insert if the text contains

wildcards.
pArg Variable arguments providing additional information inserted at wildcard

placeholders.

Returns:

The string width RTL.

Protected Attributes Documentation
bAlignRow

uint8_t bAlignRow

The glyphs are saved with each row byte aligned.

bPerPixel
uint8_t bPerPixel

The number of bits per pixel.

ellipsisCharacter
Unicode::UnicodeChar ellipsisCharacter

The ellipsis character used for truncating long texts.

fallbackCharacter
Unicode::UnicodeChar fallbackCharacter

The fallback character to use when no glyph exists for the wanted character.

fontHeight
uint16_t fontHeight

The font height in pixels.

maxPixelsLeft
uint8_t maxPixelsLeft

The maximum number of pixels a glyph extends to the left.

maxPixelsRight

uint8_t maxPixelsRight

The maximum number of pixels a glyph extends to the right.

pixelsBelowBaseline
uint8_t pixelsBelowBaseline

The number of pixels below the base line.

Version: 4.16

FontManager
This class is the entry point for looking up a font based on a font id. Must be initialized with the
appropriate FontProvider by the application.

Public Functions
Font * getFont(FontId fontId)

Gets a font.

void setFontProvider(FontProvider * fontProvider)
Sets the font provider.

Public Functions Documentation
getFont

static Font * getFont (FontId fontId)

Gets a font.

Parameters:
fontId The FontId of the font to get.

Returns:

The font with a FontId of fontId.

setFontProvider
static void setFontProvider (FontProvider * fontProvider)

Sets the font provider.

Must be initialized with the appropriate FontProvider by the application.

Parameters:
fontProvider Sets the font provider. Must be initialized with the appropriate FontProvider by

the application.

Version: 4.16

FontProvider
A generic pure virtual definition of a FontProvider, which is a class capable of returning a Font based
on a FontId. An application-specific derivation of this class must be implemented.

Public Functions
virtual Font * getFont(FontId fontId) =0

Gets a Font.

virtual ~FontProvider()
Finalizes an instance of the FontProvider class.

Public Functions Documentation
getFont

virtual Font * getFont (FontId fontId)

Gets a Font.

Parameters:
fontId The FontId of the font to get.

Returns:

The font with a font id of fontId.

~FontProvider
virtual ~FontProvider ()

Finalizes an instance of the FontProvider class.

Version: 4.16

FrameBufferAllocator
This class is an abstract interface for a class allocating partial framebuffer blocks. The interface must be
implemented by a subclass.

See: ManyBlockAllocator

Inherited by: ManyBlockAllocator< block_size, blocks, bytes_pr_pixel >

Protected Types
enum BlockState { EMPTY, ALLOCATED, DRAWN, SENDING }

BlockState is used for internal state of each block.

Public Functions
virtual uint16_t allocateBlock(const uint16_t x, const uint16_t y, const uint16_t width, const

uint16_t height, uint8_t ** block) =0
Allocates a framebuffer block.

virtual void freeBlockAfterTransfer() =0
Free a block after transfer to the LCD.

virtual const uint8_t * getBlockForTransfer(Rect & rect) =0
Get the block ready for transfer.

virtual bool hasBlockReadyForTransfer() =0
Check if a block is ready for transfer to the LCD.

virtual bool hasEmptyBlock() =0
Check if a block is ready for drawing (the block is empty).

virtual void markBlockReadyForTransfer() =0
Marks a previously allocated block as ready to be transferred to the LCD.

virtual const Rect & peekBlockForTransfer() =0
Get the Rect of the next block to transfer.

virtual ~FrameBufferAllocator()
Finalizes an instance of the FrameBufferAllocator class.

Protected Types Documentation
BlockState

enum BlockState

BlockState is used for internal state of each block.

EMPTY Block is empty, can be allocated.
ALLOCATED Block is allocated for drawing.
DRAWN Block has been drawn to, can be send.
SENDING Block is being transmitted to the display.

Public Functions Documentation
allocateBlock

virtual uint16_t allocateBlock (const uint16_t x , =0
const uint16_t y , =0
const uint16_t width , =0
const uint16_t height , =0
uint8_t ** block =0
) =0

Allocates a framebuffer block.

The block will have at least the width requested. The height of the allocated block can be lower
than requested if not enough memory is available.

Parameters:
x The absolute x coordinate of the block on the screen.
y The absolute y coordinate of the block on the screen.
width The width of the block.
height The height of the block.
block Pointer to pointer to return the block address in.

Returns:

The height of the allocated block.

Reimplemented by: touchgfx::ManyBlockAllocator::allocateBlock

freeBlockAfterTransfer
virtual void freeBlockAfterTransfer () =0

Free a block after transfer to the LCD.

Marks a previously allocated block as transferred and ready to reuse.

Reimplemented by: touchgfx::ManyBlockAllocator::freeBlockAfterTransfer

getBlockForTransfer
virtual const uint8_t * getBlockForTransfer (Rect & rect)

Get the block ready for transfer.

Parameters:
rect Reference to rect to write block x, y, width, and height.

Returns:

Returns the address of the block ready for transfer.

Reimplemented by: touchgfx::ManyBlockAllocator::getBlockForTransfer

hasBlockReadyForTransfer
virtual bool hasBlockReadyForTransfer () =0

Check if a block is ready for transfer to the LCD.

Returns:

True if a block is ready for transfer.

Reimplemented by: touchgfx::ManyBlockAllocator::hasBlockReadyForTransfer

hasEmptyBlock

virtual bool hasEmptyBlock () =0

Check if a block is ready for drawing (the block is empty).

Returns:

True if a block is empty.

Reimplemented by: touchgfx::ManyBlockAllocator::hasEmptyBlock

markBlockReadyForTransfer
virtual void markBlockReadyForTransfer () =0

Marks a previously allocated block as ready to be transferred to the LCD.

Reimplemented by: touchgfx::ManyBlockAllocator::markBlockReadyForTransfer

peekBlockForTransfer
virtual const Rect & peekBlockForTransfer () =0

Get the Rect of the next block to transfer.

Returns:

Rect ready for transfer.

NOTE

This function should only be called when the allocator has a block ready for transfer.

See also:

hasBlockReadyForTransfer

Reimplemented by: touchgfx::ManyBlockAllocator::peekBlockForTransfer

~FrameBufferAllocator
virtual ~FrameBufferAllocator ()

Finalizes an instance of the FrameBufferAllocator class.

Version: 4.16

FullSolidRect
A Widget that reports solid and but does not draw anything.

Inherits from: Widget, Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

Additional inherited members
Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const

Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect

The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Drawable::draw

getSolidRect
virtual Rect getSolidRect () const

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

This information is important, as any Drawable underneath the solid area does not need to be
drawn.

Returns:

The solid rectangle part of the Drawable.

NOTE

The rectangle returned must be relative to upper left corner of the Drawable, meaning that a completely
solid widget should return the full size Rect(0, 0, getWidth(), getHeight()). If no area can be guaranteed to

be solid, an empty Rect(0, 0, 0, 0) must be returned. Failing to return the correct rectangle may result in
errors on the display.

Reimplements: touchgfx::Drawable::getSolidRect

Version: 4.16

Gauge
A gauge is a graphical element that shows a needle on a dial, often a speedometer or similar. Much
like a progress indicator, the minimum and maximum value of the Gauge, as well as steps can be set.
For more information on this, consult the documentation on ProgressIndicators.

A Gauge has a needle and optionally an arc that follows the needle.

Inherits from: AbstractProgressIndicator, Container, Drawable

Public Functions
Gauge()
Initializes a new instance of the Gauge class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

Circle & getArc()
Gets a reference to the arc (Circle).

virtual void getCenter(int & x, int & y) const
Gets the texture mapper center coordinates.

virtual int getEndAngle() const
Gets end angle.

virtual int getStartAngle() const
Gets start angle for the needle (and arc).

void putArcOnTop(bool arcOnTop =true)
Shows the arc on top of the needle.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setArcPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets arc position inside the Gauge.

void setArcVisible(bool show =true)

Allow the arc to be shown or hidden.

void setBackgroundOffset(int16_t offsetX, int16_t offsetY)
Sets background offset inside the Gauge.

virtual void setCenter(int x, int y)
Sets the center of the texture mapper and the arc inside the Gauge.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setMovingNeedleRenderingAlgorithm(TextureMapper::RenderingAlgorithm
algorithm)
Sets rendering algorithm used when the needle is moving during an animation.

void setNeedle(const BitmapId bitmapId, int16_t rotationCenterX, int16_t
rotationCenterY)
Sets a bitmap for the needle and the rotation point in the needle bitmap.

virtual void setStartEndAngle(int startAngle, int endAngle)
Sets start and end angle for the needle and arc.

void setSteadyNeedleRenderingAlgorithm(TextureMapper::RenderingAlgorithm
algorithm)
Sets rendering algorithm used when the needle is steady (after an animation).

virtual void setValue(int value)
Sets the current value in the range (min..max) set by setRange().

virtual void setWidth(int16_t width)
Sets the width of this drawable.

Protected Functions
virtual void setProgressIndicatorPosition(int16_t x, int16_t y, int16_t width, int16_t height)

This function has no effect on a Gauge.

void setupNeedleTextureMapper()
Sets up the needle texture mapper.

Protected Attributes
TextureMapper::RenderingAlgorithm algorithmMoving

The algorithm used when the needle is moving.

TextureMapper::RenderingAlgorithm algorithmSteady
The algorithm used when the needle is steady.

Circle arc
The arc.

int16_t gaugeCenterX
The x coordinate of the rotation point of the hands.

int16_t gaugeCenterY
The y coordinate of the rotation point of the hands.

TextureMapper needle
The textureMapper.

int16_t needleCenterX
The x coordinate of the rotation point of the hands.

int16_t needleCenterY
The y coordinate of the rotation point of the hands.

int needleEndAngle
The end angle.

int needleStartAngle
The start angle.

Additional inherited members
Public Functions inherited from AbstractProgressIndicator

AbstractProgressIndicator()
Initializes a new instance of the AbstractProgressIndicator class with a default
range 0-100.

virtual uint16_t getProgress(uint16_t range =100) const
Gets the current progress based on the range set by setRange() and the value set by
setValue().

virtual int16_t getProgressIndicatorHeight() const
Gets progress indicator height.

virtual int16_t getProgressIndicatorWidth() const
Gets progress indicator width.

virtual int16_t getProgressIndicatorX() const
Gets progress indicator x coordinate.

virtual int16_t getProgressIndicatorY() const
Gets progress indicator y coordinate.

virtual void getRange(int & min, int & max) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps, uint16_t & minStep) const
Gets the range set by setRange().

virtual int getValue() const
Gets the current value set by setValue().

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void setBackground(const Bitmap & bitmapBackground)
Sets the background image.

virtual void setEasingEquation(EasingEquation easingEquation)
Sets easing equation to be used in updateValue.

virtual void setRange(int min, int max, uint16_t steps =0, uint16_t minStep =0)
Sets the range for the progress indicator.

void setValueSetAction(GenericCallback< const AbstractProgressIndicator & > &
callback)

Sets callback that will be triggered every time a new value is assigned to the
progress indicator.

void setValueUpdatedAction(GenericCallback< const AbstractProgressIndicator & >
& callback)
Sets callback that will be triggered when updateValue has finished animating to the
final value.

virtual void updateValue(int value, uint16_t duration)
Update the current value in the range (min..max) set by setRange().

Protected Attributes inherited from AbstractProgressIndicator
int animationDuration

Duration of the animation.

int animationEndValue
The animation end value.

int animationStartValue
The animation start value.

int animationStep
The current animation step.

Image background
The background image.

int currentValue
The current value.

EasingEquation equation
The equation used in updateValue()

Container progressIndicatorContainer
The container that holds the actual
progress indicator.

int rangeMax
The range maximum.

int rangeMin
The range minimum.

uint16_t rangeSteps
The range steps.

uint16_t rangeStepsMin
The range steps minimum.

GenericCallback< const AbstractProgressIndicator & > * valueSetCallback
New value assigned Callback.

GenericCallback< const AbstractProgressIndicator & > * valueUpdatedCallback
Animation ended Callback.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)

Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const

Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable

True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
Gauge

Gauge ()

Initializes a new instance of the Gauge class.

getAlpha
virtual uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getArc
Circle & getArc ()

Gets a reference to the arc (Circle).

This allows for setting radius, line width, painter, etc. on the arc (Circle).

Returns:

The arc (Circle).

getCenter

virtual void getCenter (int & x , const
int & y const
) const

Gets the texture mapper center coordinates.

Parameters:
x The x coordinate of the center of the texture mapper.
y The y coordinate of the center of the texture mapper.

See also:

setCenter

getEndAngle
virtual int getEndAngle () const

Gets end angle.

Beware that the value returned is not related to the current progress of the texture mapper but
rather the end point of the Gauge when it is at max value.

Returns:

The end angle.

See also:

setStartEndAngle

getStartAngle
virtual int getStartAngle () const

Gets start angle for the needle (and arc).

Returns:

The start angle.

See also:

setStartEndAngle, getEndAngle

putArcOnTop

void putArcOnTop (bool arcOnTop =true)

Shows the arc on top of the needle.

By default the needle is drawn on top of the arc.

Parameters:
arcOnTop (Optional) True to put the arc on top of the needle (default), false to put the needle

on top of the arc.

setAlpha
virtual void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setArcPosition
void setArcPosition (int16_t x ,

int16_t y ,
int16_t width ,
int16_t height
)

Sets arc position inside the Gauge.

This is especially useful if the arc is using a bitmap painter. If the center has previously been set, the
arc center will be updated to be at the same offset relative to the top left corner of the Gauge.

Parameters:
x The x coordinate.

y The y coordinate.
width The width.
height The height.

See also:

setCenter, getArc

setArcVisible
void setArcVisible (bool show =true)

Allow the arc to be shown or hidden.

Parameters:
show (Optional) True to show, false to hide. Default is to show the arc.

setBackgroundOffset
void setBackgroundOffset (int16_t offsetX ,

int16_t offsetY
)

Sets background offset inside the Gauge.

If the dial is smaller than the size needed for the Gauge to show the needle, the background image
can be moved inside the Gauge.

Parameters:
offsetX The offset x coordinate.
offsetY The offset y coordinate.

See also:

setBackground

setCenter
virtual void setCenter (int x ,

int y
)

Sets the center of the texture mapper and the arc inside the Gauge.

Parameters:
x The x coordinate of the center of the texture mapper.
y The y coordinate of the center of the texture mapper.

See also:

getCenter

setHeight
virtual void setHeight (int16_t height)

Sets the height of this drawable.

Parameters:
height The new height.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.

Reimplements: touchgfx::Drawable::setHeight

setMovingNeedleRenderingAlgorithm
void setMovingNeedleRenderingAlgorithm (TextureMapper::RenderingAlgorithm algorithm)

Sets rendering algorithm used when the needle is moving during an animation.

For better performance, this can be set to TextureMapper::NEAREST_NEIGHBOR. For nicer
graphics, it should be set to TextureMapper::BILINEAR_INTERPOLATION (this is the default
behavior).

Parameters:
algorithm The algorithm.

See also:

updateValue, setSteadyNeedleRenderingAlgorithm

setNeedle
void setNeedle (const BitmapId bitmapId ,

int16_t rotationCenterX ,
int16_t rotationCenterY
)

Sets a bitmap for the needle and the rotation point in the needle bitmap.

Parameters:
bitmapId Identifier for the bitmap.
rotationCenterX The rotation center x coordinate.
rotationCenterY The rotation center y coordinate.

setStartEndAngle
virtual void setStartEndAngle (int startAngle ,

int endAngle
)

Sets start and end angle for the needle and arc.

By swapping end and start angles, these can progress backwards.

Parameters:
startAngle The start angle.
endAngle The end angle.

setSteadyNeedleRenderingAlgorithm
void setSteadyNeedleRenderingAlgorithm (TextureMapper::RenderingAlgorithm algorithm)

Sets rendering algorithm used when the needle is steady (after an animation).

For better performance, this can be set to TextureMapper::NEAREST_NEIGHBOR. For nicer
graphics, it should be set to TextureMapper::BILINEAR_INTERPOLATION (this is the default
behavior).

Parameters:
algorithm The algorithm.

See also:

updateValue, setMovingNeedleRenderingAlgorithm

setValue

virtual void setValue (int value)

Sets the current value in the range (min..max) set by setRange().

Values lower than min are mapped to min, values higher than max are mapped to max. If a callback
function has been set using setValueSetAction, that callback will be called (unless the new value is
the same as the current value).

Parameters:
value The value.

NOTE

if value is equal to the current value, nothing happens, and the callback will not be called.

See also:

getValue, updateValue, setValueSetAction

Reimplements: touchgfx::AbstractProgressIndicator::setValue

setWidth
virtual void setWidth (int16_t width)

Sets the width of this drawable.

Parameters:
width The new width.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.

Reimplements: touchgfx::Drawable::setWidth

Protected Functions Documentation
setProgressIndicatorPosition

virtual void setProgressIndicatorPosition (int16_t x ,
int16_t y ,

int16_t width ,
int16_t height
)

This function has no effect on a Gauge.

Parameters:
x unused
y unused
width unused
height unused

Reimplements: touchgfx::AbstractProgressIndicator::setProgressIndicatorPosition

setupNeedleTextureMapper
void setupNeedleTextureMapper ()

Sets up the needle texture mapper.

Protected Attributes Documentation
algorithmMoving

TextureMapper::RenderingAlgorithm algorithmMoving

The algorithm used when the needle is moving.

algorithmSteady
TextureMapper::RenderingAlgorithm algorithmSteady

The algorithm used when the needle is steady.

arc
Circle arc

The arc.

gaugeCenterX
int16_t gaugeCenterX

The x coordinate of the rotation point of the hands.

gaugeCenterY
int16_t gaugeCenterY

The y coordinate of the rotation point of the hands.

needle
TextureMapper needle

The textureMapper.

needleCenterX
int16_t needleCenterX

The x coordinate of the rotation point of the hands.

needleCenterY
int16_t needleCenterY

The y coordinate of the rotation point of the hands.

needleEndAngle
int needleEndAngle

The end angle.

needleStartAngle
int needleStartAngle

The start angle.

Version: 4.16

GenericCallback
GenericCallback is the base class for callbacks. The reason this base class exists, is that a normal
Callback requires the class type where the callback function resides to be known. This is problematic
for ie. framework widgets like AbstractButton, on which it should be possible to register a callback on
object types that are user-specific and thus unknown to AbstractButton. This is solved by having
AbstractButton contain a pointer to a GenericCallback instead. This pointer must then be initialized to
point on an instance of Callback, created by the user, which is initialized with the appropriate object
type.

Template Parameters:

T1 The type of the first argument in the member function, or void if none.
T2 The type of the second argument in the member function, or void if none.
T3 The type of the third argument in the member function, or void if none.

See: Callback

Note: As with Callback, this class exists in four versions to support callback functions taking zero, one,
two or three arguments.

Public Functions
virtual void execute(T1 val1, T2 val2, T3 val3) =0

Calls the member function.

virtual bool isValid() const =0
Function to check whether the Callback has been initialized with values.

virtual ~GenericCallback()
Finalizes an instance of the GenericCallback class.

Public Functions Documentation
execute

virtual void execute (T1 val1 , =0

T2 val2 , =0
T3 val3 =0
) =0

Calls the member function.

Do not call execute unless isValid() returns true (ie. a pointer to the object and the function has
been set).

Parameters:
val1 This value will be passed as the first argument in the function call.
val2 This value will be passed as the second argument in the function call.
val3 This value will be passed as the third argument in the function call.

Reimplemented by: touchgfx::Callback::execute, touchgfx::Callback::execute,
touchgfx::Callback::execute, touchgfx::Callback::execute, touchgfx::Callback::execute

isValid
virtual bool isValid () const =0

Function to check whether the Callback has been initialized with values.

Returns:

true If the callback is valid (i.e. safe to call execute).

Reimplemented by: touchgfx::Callback::isValid, touchgfx::Callback::isValid,
touchgfx::Callback::isValid, touchgfx::Callback::isValid, touchgfx::Callback::isValid

~GenericCallback
virtual ~GenericCallback ()

Finalizes an instance of the GenericCallback class.

Version: 4.16

GenericCallback<T1,T2,void>
GenericCallback is the base class for callbacks. The reason this base class exists, is that a normal
Callback requires the class type where the callback function resides to be known. This is problematic
for ie. framework widgets like AbstractButton, on which it should be possible to register a callback on
object types that are user-specific and thus unknown to AbstractButton. This is solved by having
AbstractButton contain a pointer to a GenericCallback instead. This pointer must then be initialized to
point on an instance of Callback, created by the user, which is initialized with the appropriate object
type.

Template Parameters:

T1 The type of the first argument in the member function, or void if none.
T2 The type of the second argument in the member function, or void if none.

See: Callback

Note: As with Callback, this class exists in four versions to support callback functions taking zero, one,
two or three arguments.

Public Functions
virtual void execute(T1 val1, T2 val2) =0

Calls the member function.

virtual bool isValid() const =0
Function to check whether the Callback has been initialized with values.

virtual ~GenericCallback()
Finalizes an instance of the void> class.

Public Functions Documentation
execute

virtual void execute (T1 val1 , =0
T2 val2 =0

) =0

Calls the member function.

Do not call execute unless isValid() returns true (ie. a pointer to the object and the function has
been set).

Parameters:
val1 This value will be passed as the first argument in the function call.
val2 This value will be passed as the second argument in the function call.

isValid
virtual bool isValid () const =0

Function to check whether the Callback has been initialized with values.

Returns:

true If the callback is valid (i.e. safe to call execute).

~GenericCallback
virtual ~GenericCallback ()

Finalizes an instance of the void> class.

Version: 4.16

GenericCallback<T1,void,void>
GenericCallback is the base class for callbacks. The reason this base class exists, is that a normal
Callback requires the class type where the callback function resides to be known. This is problematic
for ie. framework widgets like AbstractButton, on which it should be possible to register a callback on
object types that are user-specific and thus unknown to AbstractButton. This is solved by having
AbstractButton contain a pointer to a GenericCallback instead. This pointer must then be initialized to
point on an instance of Callback, created by the user, which is initialized with the appropriate object
type.

Template Parameters:

T1 The type of the first argument in the member function, or void if none.

See: Callback

Note: As with Callback, this class exists in four versions to support callback functions taking zero, one,
two or three arguments.

Public Functions
virtual void execute(T1 val1) =0

Calls the member function.

virtual bool isValid() const =0
Function to check whether the Callback has been initialized with values.

virtual ~GenericCallback()
Finalizes an instance of the void> class.

Public Functions Documentation
execute

virtual void execute (T1 val1)

Calls the member function.

Do not call execute unless isValid() returns true (ie. a pointer to the object and the function has
been set).

Parameters:
val1 This value will be passed as the first argument in the function call.

isValid
virtual bool isValid () const =0

Function to check whether the Callback has been initialized with values.

Returns:

true If the callback is valid (i.e. safe to call execute).

~GenericCallback
virtual ~GenericCallback ()

Finalizes an instance of the void> class.

Version: 4.16

GenericCallback<void>
GenericCallback is the base class for callbacks. The reason this base class exists, is that a normal
Callback requires the class type where the callback function resides to be known. This is problematic
for ie. framework widgets like AbstractButton, on which it should be possible to register a callback on
object types that are user-specific and thus unknown to AbstractButton. This is solved by having
AbstractButton contain a pointer to a GenericCallback instead. This pointer must then be initialized to
point on an instance of Callback, created by the user, which is initialized with the appropriate object
type.

See: Callback

Note: As with Callback, this class exists in four versions to support callback functions taking zero, one,
two or three arguments.

Public Functions
virtual void execute() =0

Calls the member function.

virtual bool isValid() const =0
Function to check whether the Callback has been initialized with values.

virtual ~GenericCallback()
Finalizes an instance of the GenericCallback<void> class.

Public Functions Documentation
execute

virtual void execute () =0

Calls the member function.

Do not call execute unless isValid() returns true (ie. a pointer to the object and the function has
been set).

isValid
virtual bool isValid () const =0

Function to check whether the Callback has been initialized with values.

Returns:

true If the callback is valid (i.e. safe to call execute).

~GenericCallback
virtual ~GenericCallback ()

Finalizes an instance of the GenericCallback<void> class.

Version: 4.16

GestureEvent
A gesture event. The only gesture events currently supported is SWIPE_HORIZONTAL and
SWIPE_VERTICAL, which will be issued every time the input system detects a swipe.

See: Event

Inherits from: Event

Public Types
enum GestureEventType { SWIPE_HORIZONTAL, SWIPE_VERTICAL }

Values that represent gesture types.

Public Functions
GestureEvent(GestureEventType type, int16_t velocity, int16_t x, int16_t
y)
Constructor.

virtual Event::EventType getEventType()
Gets event type.

GestureEventType getType() const
Gets the type of this gesture event.

int16_t getVelocity() const
Gets the velocity of this gesture event.

int16_t getX() const
Gets the x coordinate of this gesture event.

int16_t getY() const
Gets the y coordinate of this gesture event.

Additional inherited members

Public Types inherited from Event
enum EventType { EVENT_CLICK, EVENT_DRAG, EVENT_GESTURE }

The event types.

Public Functions inherited from Event
virtual ~Event()

Finalizes an instance of the Event class.

Public Types Documentation
GestureEventType

enum GestureEventType

Values that represent gesture types.

SWIPE_HORIZONTAL An enum constant representing a horizontal swipe.
SWIPE_VERTICAL An enum constant representing a vertical swipe.

Public Functions Documentation
GestureEvent

GestureEvent (GestureEventType type ,
int16_t velocity ,
int16_t x ,
int16_t y
)

Constructor.

Create a gesture event of the specified type with the specified coordinates.

Parameters:
type The type of the gesture event.
velocity The velocity of this gesture (swipe)

x The x coordinate of the gesture.
y The y coordinate of the gesture.

getEventType
virtual Event::EventType getEventType ()

Gets event type.

Returns:

The type of this event.

Reimplements: touchgfx::Event::getEventType

getType
GestureEventType getType () const

Gets the type of this gesture event.

Returns:

The type of this gesture event.

getVelocity
int16_t getVelocity () const

Gets the velocity of this gesture event.

Returns:

The velocity of this gesture event.

getX
int16_t getX () const

Gets the x coordinate of this gesture event.

Returns:

The x coordinate of this gesture event.

getY
int16_t getY () const

Gets the y coordinate of this gesture event.

Returns:

The y coordinate of this gesture event.

Version: 4.16

Gestures
This class implements the detection of gestures.

Public Functions
Gestures()
Default constructor.

void registerClickEvent(ClickEvent::ClickEventType evt, uint16_t x, uint16_t y)
Register a click event and figure out if this is a drag event, too.

bool registerDragEvent(uint16_t oldX, uint16_t oldY, uint16_t newX, uint16_t newY)
Register a drag event.

void registerEventListener(UIEventListener & l)
Register the event listener.

void setDragThreshold(uint16_t val)
Configure the threshold for reporting drag events.

void tick()
Has to be called during the timer tick.

Public Functions Documentation
Gestures

Gestures ()

Default constructor.

Does nothing.

registerClickEvent
void registerClickEvent (ClickEvent::ClickEventType evt ,

uint16_t x ,
uint16_t y
)

Register a click event and figure out if this is a drag event, too.

Parameters:
evt The type of the click event.
x The x coordinate of the click event.
y The y coordinate of the click event.

registerDragEvent
bool registerDragEvent (uint16_t oldX ,

uint16_t oldY ,
uint16_t newX ,
uint16_t newY
)

Register a drag event.

Parameters:
oldX The x coordinate of the drag start position (dragged from)
oldY The y coordinate of the drag start position (dragged from)
newX The x coordinate of the new position (dragged to)
newY The y coordinate of the new position (dragged to)

Returns:

True if the drag exceeds threshold value (and therefore was reported as a drag), or false if the
drag did not exceed threshold (and therefore was discarded).

registerEventListener
void registerEventListener (UIEventListener & l)

Register the event listener.

Parameters:
l The EventListener to register.

setDragThreshold

void setDragThreshold (uint16_t val)

Configure the threshold for reporting drag events.

A touch input movement must exceed this value in either axis in order to report a drag. Default
value is 0.

Parameters:
val New threshold value.

tick
void tick ()

Has to be called during the timer tick.

Version: 4.16

GlyphNode
struct providing information about a glyph. Used by LCD when rendering.

Public Functions
FORCE_INLINE_FUNCTION uint16_t advance() const

Gets the "advance" value where the 9th bit is stored in flags.

FORCE_INLINE_FUNCTION uint16_t height() const
Gets the "height" value where the 9th bit is stored in flags.

FORCE_INLINE_FUNCTION uint16_t kerningTablePos() const
Gets the "kerningTablePos" value where the 8th and 9th bits are
stored in flags.

FORCE_INLINE_FUNCTION void setTop(int16_t newTop)
Sets a new value for top.

FORCE_INLINE_FUNCTION int16_t top() const
Gets the "top" value where the 9th bit and the sign bit are
stored in flags.

FORCE_INLINE_FUNCTION uint16_t width() const
Gets the "width" value where the 9th bit is stored in flags.

Public Attributes
uint8_t _advance

Width of the glyph (including space to the left and right)

uint8_t _height
Height of the actual glyph data.

uint8_t _kerningTablePos
Where are the kerning information for this glyph stored in the kerning table.

uint8_t _top

Vertical offset from baseline of the glyph.

uint8_t _width
Width of the actual glyph data.

uint32_t dataOffset
The index to the data of this glyph.

uint8_t flags
Additional glyph flags (font encoding and extra precision for
width/height/top/advance)

uint8_t kerningTableSize
How many entries are there in the kerning table (following kerningTablePos)
for this glyph.

int8_t left
Horizontal offset from the left of the glyph.

Unicode::UnicodeChar unicode
The Unicode of this glyph.

Public Functions Documentation
advance

FORCE_INLINE_FUNCTION uint16_t advance () const

Gets the "advance" value where the 9th bit is stored in flags.

Returns:

the right value of "advance".

height
FORCE_INLINE_FUNCTION uint16_t height () const

Gets the "height" value where the 9th bit is stored in flags.

Returns:

the right value of "height".

kerningTablePos
FORCE_INLINE_FUNCTION uint16_t kerningTablePos () const

Gets the "kerningTablePos" value where the 8th and 9th bits are stored in flags.

Returns:

the right value of "kerningTablePos".

setTop
FORCE_INLINE_FUNCTION void setTop (int16_t newTop)

Sets a new value for top.

Used to adjust the vertical position of a glyph - this is used when positioning some Thai glyphs and
some Arabic glyphs.

Parameters:
newTop The new top.

top
FORCE_INLINE_FUNCTION int16_t top () const

Gets the "top" value where the 9th bit and the sign bit are stored in flags.

Returns:

the right value of "top".

width
FORCE_INLINE_FUNCTION uint16_t width () const

Gets the "width" value where the 9th bit is stored in flags.

Returns:

the right value of "width".

Public Attributes Documentation
_advance

uint8_t _advance

Width of the glyph (including space to the left and right)

_height
uint8_t _height

Height of the actual glyph data.

_kerningTablePos
uint8_t _kerningTablePos

Where are the kerning information for this glyph stored in the kerning table.

_top
uint8_t _top

Vertical offset from baseline of the glyph.

_width
uint8_t _width

Width of the actual glyph data.

dataOffset
uint32_t dataOffset

The index to the data of this glyph.

flags
uint8_t flags

Additional glyph flags (font encoding and extra precision for width/height/top/advance)

kerningTableSize
uint8_t kerningTableSize

How many entries are there in the kerning table (following kerningTablePos) for this glyph.

left
int8_t left

Horizontal offset from the left of the glyph.

unicode
Unicode::UnicodeChar unicode

The Unicode of this glyph.

Version: 4.16

GPIO
Interface class for manipulating GPIOs in order to do performance measurements on target. Not used
on the PC simulator.

Public Types
enum GPIO_ID { VSYNC_FREQ, RENDER_TIME, FRAME_RATE, MCU_ACTIVE }

Enum for the GPIOs used.

Public Functions
void clear(GPIO_ID id)

Sets a pin low.

bool get(GPIO_ID id)
Gets the state of a pin.

void init()
Perform configuration of IO pins.

void set(GPIO_ID id)
Sets a pin high.

void toggle(GPIO_ID id)
Toggles a pin.

Public Types Documentation
GPIO_ID

enum GPIO_ID

Enum for the GPIOs used.

VSYNC_FREQ

RENDER_TIME Pin is toggled at each VSYNC.
FRAME_RATE Pin is high when frame rendering begins, low when finished.
MCU_ACTIVE Pin is toggled when the framebuffers are swapped. Pin is high when the MCU is

doing work (i.e. not in idle task).

Public Functions Documentation
clear

static void clear (GPIO_ID id)

Sets a pin low.

Parameters:
id the pin to set.

get
static bool get (GPIO_ID id)

Gets the state of a pin.

Parameters:
id the pin to get.

Returns:

true if the pin is high, false otherwise.

init
static void init ()

Perform configuration of IO pins.

set
static void set (GPIO_ID id)

Sets a pin high.

Parameters:
id the pin to set.

toggle
static void toggle (GPIO_ID id)

Toggles a pin.

Parameters:
id the pin to toggle.

Version: 4.16

Gradients
Gradients contains all the data to interpolate u,v texture coordinates and z coordinates across a planar
surface.

Public Functions
Gradients(const Point3D * vertices)
Initializes a new instance of the TextureMapTypes class.

Public Attributes
float dOneOverZdX

d(1/z)/dX

float dOneOverZdY
d(1/z)/dY

fixed16_16 dUdXModifier
The dUdX x coordinate modifier.

float dUOverZdX
d(u/z)/dX

float dUOverZdY
d(u/z)/dY

fixed16_16 dVdXModifier
The dVdX x coordinate modifier.

float dVOverZdX
d(v/z)/dX

float dVOverZdY
d(v/z)/dY

float oneOverZ

1/z for each vertex

float UOverZ
u/z for each vertex

float VOverZ
v/z for each vertex

Public Functions Documentation
Gradients

Gradients (const Point3D * vertices)

Initializes a new instance of the TextureMapTypes class.

Construct the gradients using three 3D vertices.

Parameters:
vertices The vertices.

See also:

Point3D

Public Attributes Documentation
dOneOverZdX

float dOneOverZdX

d(1/z)/dX

dOneOverZdY
float dOneOverZdY

d(1/z)/dY

dUdXModifier
fixed16_16 dUdXModifier

The dUdX x coordinate modifier.

dUOverZdX
float dUOverZdX

d(u/z)/dX

dUOverZdY
float dUOverZdY

d(u/z)/dY

dVdXModifier
fixed16_16 dVdXModifier

The dVdX x coordinate modifier.

dVOverZdX
float dVOverZdX

d(v/z)/dX

dVOverZdY
float dVOverZdY

d(v/z)/dY

oneOverZ

float oneOverZ

1/z for each vertex

UOverZ
float UOverZ

u/z for each vertex

VOverZ
float VOverZ

v/z for each vertex

Version: 4.16

GraphClickEvent
An object of this type is passed with each callback that is sent when the graph is clicked. The object
contains the data index that was pressed and the details of the click event, e.g. PRESSED, RELEASED
and screen coordinates.

Public Functions
GraphClickEvent(int16_t i, const ClickEvent & event)
Initializes a new instance of the GraphClickEvent class.

Public Attributes
const ClickEvent & clickEvent

The ClickEvent that caused the callback to be executed.

int16_t index
The index of the item clicked.

Public Functions Documentation
GraphClickEvent

GraphClickEvent (int16_t i ,
const ClickEvent & event
)

Initializes a new instance of the GraphClickEvent class.

Parameters:
i The index of the item clicked.
event The ClickEvent that caused the callback to be executed.

See also:

setClickAction

Public Attributes Documentation
clickEvent

const ClickEvent & clickEvent

The ClickEvent that caused the callback to be executed.

index
int16_t index

The index of the item clicked.

Version: 4.16

GraphDragEvent
An object of this type is passed with each callback that is sent when the graph is dragged. The object
contains the data index that was pressed and the details of the drag event, e.g. old and new screen
coordinates.

Public Functions
GraphDragEvent(int16_t i, const DragEvent & event)
Initializes a new instance of the GraphDragEvent class.

Public Attributes
const DragEvent & dragEvent

The DragEvent that caused the callback to be executed.

int16_t index
The index of the item where the drag has ended.

Public Functions Documentation
GraphDragEvent

GraphDragEvent (int16_t i ,
const DragEvent & event
)

Initializes a new instance of the GraphDragEvent class.

Parameters:
i The index of the item where the drag has ended.
event The DragEvent that caused the callback to be executed.

See also:

setDragAction

Public Attributes Documentation
dragEvent

const DragEvent & dragEvent

The DragEvent that caused the callback to be executed.

index
int16_t index

The index of the item where the drag has ended.

Version: 4.16

GraphElementArea
GraphElementArea will fill the area below the line connecting the data points in the graph.

Note: The Area is drawn using CanvasWidget Renderer which is slower but produces much nicer
graphics.

Inherits from: AbstractGraphElement, CanvasWidget, Widget, Drawable

Public Functions
virtual bool drawCanvasWidget(const Rect & invalidatedArea) const

Draw canvas widget for the given invalidated area.

float getBaselineAsFloat() const
Gets the base previously set using setBase.

int getBaselineAsInt() const
Gets the base previously set using setBase.

GraphElementArea()

virtual void invalidateGraphPointAt(int16_t index)
Invalidate the point at the given index.

void setBaseline(float baseline)
Sets the base of the area drawn.

void setBaseline(int baseline)
Sets the base of the area drawn.

Protected Functions
int getBaselineScaled() const

Gets the base previously set using setBase.

void setBaselineScaled(int baseline)

Sets the base of the area drawn.

Protected Attributes
int yBaseline

The base value.

Additional inherited members
Public Functions inherited from AbstractGraphElement

AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget

CanvasWidget()

virtual void draw(const Rect & invalidatedArea) const
Draws the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const

Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)

Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const

Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
drawCanvasWidget

virtual bool drawCanvasWidget (const Rect & invalidatedArea)

Draw canvas widget for the given invalidated area.

Similar to draw(), but might be invoked several times with increasingly smaller areas to due to
memory constraints from the underlying CanvasWidgetRenderer.

Parameters:
invalidatedArea The invalidated area.

Returns:

true if the widget was drawn properly, false if not.

See also:

draw

Reimplements: touchgfx::CanvasWidget::drawCanvasWidget

getBaselineAsFloat
float getBaselineAsFloat () const

Gets the base previously set using setBase.

Returns:

The base value.

See also:

setBaseline

getBaselineAsInt
int getBaselineAsInt () const

Gets the base previously set using setBase.

Returns:

The base value.

See also:

setBaseline

GraphElementArea
GraphElementArea ()

invalidateGraphPointAt
virtual void invalidateGraphPointAt (int16_t index)

Invalidate the point at the given index.

This allows a graph element to only invalidate the minimum rectangle required for the given index.
The Graph will call this function before and after changing a point to ensure that both the old and

the new area are redrawn (invalidated).

Parameters:
index Zero-based index of the point.

Reimplements: touchgfx::AbstractGraphElement::invalidateGraphPointAt

setBaseline
void setBaseline (float baseline)

Sets the base of the area drawn.

Normally, the base is 0 which means that the area is drawn below positive y values and above
negative y values. Setting the base to a very high number will cause the area above the graph to be
drawn. Setting the base to a very low number will cause the area below the graph to be drawn
(even for negative numbers, which are higher than the base value).

Parameters:
baseline The baseline value.

See also:

getBaselineAsInt, getBaselineAsFloat

setBaseline
void setBaseline (int baseline)

Sets the base of the area drawn.

Normally, the base is 0 which means that the area is drawn below positive y values and above
negative y values. Setting the base to a very high number will cause the area above the graph to be
drawn. Setting the base to a very low number will cause the area below the graph to be drawn
(even for negative numbers, which are higher than the base value).

Parameters:
baseline The baseline value.

See also:

getBaselineAsInt, getBaselineAsFloat

Protected Functions Documentation
getBaselineScaled

int getBaselineScaled () const

Gets the base previously set using setBase.

Returns:

The base value.

NOTE

The baseline returned here is left unscaled. For internal use.

See also:

setBaseline

setBaselineScaled
void setBaselineScaled (int baseline)

Sets the base of the area drawn.

Normally, the base is 0 which means that the area is drawn below positive y values and above
negative y values. Setting the base to a very high number will cause the area above the graph to be
drawn. Setting the base to a very low number will cause the area below the graph to be drawn
(even for negative numbers, which are higher than the base value).

Parameters:
baseline The baseline value.

NOTE

The baseline set here must already be scaled. For internal use.

See also:

getBaselineAsInt, getBaselineAsFloat

Protected Attributes Documentation

yBaseline
int yBaseline

The base value.

Version: 4.16

GraphElementBoxes
GraphElementBoxes will draw square box for every data point in graph.

Note: The boxes are drawn using LCD::fillRect for higher performance. This also means that boxes with
an odd width will not align properly if combined with a GraphElementLine or any other GraphElement
that uses CanvasWidget Renderer. Use an even number for box width in these cases.

Inherits from: AbstractGraphElementNoCWR, AbstractGraphElement, CanvasWidget, Widget,
Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draws the given invalidated area.

uint16_t getBoxWidth() const
Gets box width.

GraphElementBoxes()

virtual void invalidateGraphPointAt(int16_t index)
Invalidate the point at the given index.

void setBoxWidth(uint16_t width)
Sets box width.

Protected Attributes
uint16_t boxWidth

Width of the box.

Additional inherited members

Public Functions inherited from
AbstractGraphElementNoCWR

AbstractGraphElementNoCWR()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

virtual colortype getColor() const
Gets the color of the graph element.

virtual void setColor(colortype newColor)
Sets the color of the graph element.

Protected Functions inherited from
AbstractGraphElementNoCWR

void normalizeRect(Rect & rect) const
Normalize rectangle by changing a rectangle with negative width or height to a
rectangle with positive width or height at the correct position.

virtual void setPainter(AbstractPainter & painter)
Protected function to prevent users from setting a painter.

Protected Attributes inherited from
AbstractGraphElementNoCWR

colortype color
The currently assigned color.

Public Functions inherited from AbstractGraphElement
AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

void setScale(int scale)

Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const =0
Draw canvas widget for the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draws the given invalidated area.

If the underlying CanvasWidgetRenderer fail to render the widget (if the widget is too complex),
the invalidated area is cut into smaller slices (horizontally) which are then drawn separately. If
drawing a single raster line fails, that line is considered too complex and skipped (it is left
blank/transparent) and drawing continues on the next raster line.

If drawing has failed at least once, which means that the number of horizontal lines draw has been
reduced, the number of successfully drawn horizontal lines is remembered for the next invocation
of draw(). A future call to draw() would then start off with the reduced number of horizontal lines
to prevent potentially drawing the canvas widget in vain, as happened previously in draw().

Parameters:
invalidatedArea The invalidated area.

NOTE

Subclasses of CanvasWidget should implement drawCanvasWidget(), not draw(). The term "too complex"
means that the size of the buffer (assigned to CanvasWidgetRenderer using
CanvasWidgetRenderer::setupBuffer()) is too small.

See also:

drawCanvasWidget

Reimplements: touchgfx::CanvasWidget::draw

getBoxWidth
uint16_t getBoxWidth () const

Gets box width.

Returns:

The box width.

See also:

setBoxWidth

GraphElementBoxes
GraphElementBoxes ()

invalidateGraphPointAt
virtual void invalidateGraphPointAt (int16_t index)

Invalidate the point at the given index.

This allows a graph element to only invalidate the minimum rectangle required for the given index.
The Graph will call this function before and after changing a point to ensure that both the old and
the new area are redrawn (invalidated).

Parameters:
index Zero-based index of the point.

Reimplements: touchgfx::AbstractGraphElement::invalidateGraphPointAt

setBoxWidth
void setBoxWidth (uint16_t width)

Sets box width.

Parameters:
width The width.

See also:

getBoxWidth

Protected Attributes Documentation
boxWidth

uint16_t boxWidth

Width of the box.

Version: 4.16

GraphElementDiamonds
GraphElementDiamonds will draw a diamond (a square with the corners up/down/left/right) for every
data point in graph.

Note: The Diamonds are drawn using CanvasWidget Renderer which is slower but produces much
nicer graphics.

Inherits from: AbstractGraphElement, CanvasWidget, Widget, Drawable

Public Functions
virtual bool drawCanvasWidget(const Rect & invalidatedArea) const

Draw canvas widget for the given invalidated area.

uint8_t getDiamondWidth() const
Gets diamond width.

GraphElementDiamonds()

virtual void invalidateGraphPointAt(int16_t index)
Invalidate the point at the given index.

void setDiamondWidth(uint8_t width)
Sets diamond width.

Protected Attributes
uint8_t diamondWidth

Width of the diamond.

Additional inherited members
Public Functions inherited from AbstractGraphElement

AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual void draw(const Rect & invalidatedArea) const
Draws the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()

Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)

Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect

The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
drawCanvasWidget

virtual bool drawCanvasWidget (const Rect & invalidatedArea)

Draw canvas widget for the given invalidated area.

Similar to draw(), but might be invoked several times with increasingly smaller areas to due to
memory constraints from the underlying CanvasWidgetRenderer.

Parameters:
invalidatedArea The invalidated area.

Returns:

true if the widget was drawn properly, false if not.

See also:

draw

Reimplements: touchgfx::CanvasWidget::drawCanvasWidget

getDiamondWidth
uint8_t getDiamondWidth () const

Gets diamond width.

Returns:

The diamond width.

See also:

setDiamondWidth

GraphElementDiamonds
GraphElementDiamonds ()

invalidateGraphPointAt
virtual void invalidateGraphPointAt (int16_t index)

Invalidate the point at the given index.

This allows a graph element to only invalidate the minimum rectangle required for the given index.
The Graph will call this function before and after changing a point to ensure that both the old and
the new area are redrawn (invalidated).

Parameters:
index Zero-based index of the point.

Reimplements: touchgfx::AbstractGraphElement::invalidateGraphPointAt

setDiamondWidth
void setDiamondWidth (uint8_t width)

Sets diamond width.

Parameters:
width The width.

See also:

getDiamondWidth

Protected Attributes Documentation
diamondWidth

uint8_t diamondWidth

Width of the diamond.

Version: 4.16

GraphElementDots
GraphElementDots will draw a circular dot for every data point in graph.

Note: The Dots are drawn using CanvasWidget Renderer which is slower but produces much nicer
graphics.

Inherits from: AbstractGraphElement, CanvasWidget, Widget, Drawable

Public Functions
virtual bool drawCanvasWidget(const Rect & invalidatedArea) const

Draw canvas widget for the given invalidated area.

uint8_t getDotWidth() const
Gets dot width.

GraphElementDots()

virtual void invalidateGraphPointAt(int16_t index)
Invalidate the point at the given index.

void setDotWidth(uint8_t width)
Sets dot width.

Protected Attributes
uint8_t dotWidth

Width of the dot.

Additional inherited members
Public Functions inherited from AbstractGraphElement

AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual void draw(const Rect & invalidatedArea) const
Draws the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()

Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)

Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect

The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
drawCanvasWidget

virtual bool drawCanvasWidget (const Rect & invalidatedArea)

Draw canvas widget for the given invalidated area.

Similar to draw(), but might be invoked several times with increasingly smaller areas to due to
memory constraints from the underlying CanvasWidgetRenderer.

Parameters:
invalidatedArea The invalidated area.

Returns:

true if the widget was drawn properly, false if not.

See also:

draw

Reimplements: touchgfx::CanvasWidget::drawCanvasWidget

getDotWidth
uint8_t getDotWidth () const

Gets dot width.

Returns:

The dot width.

See also:

setDotWidth

GraphElementDots
GraphElementDots ()

invalidateGraphPointAt
virtual void invalidateGraphPointAt (int16_t index)

Invalidate the point at the given index.

This allows a graph element to only invalidate the minimum rectangle required for the given index.
The Graph will call this function before and after changing a point to ensure that both the old and
the new area are redrawn (invalidated).

Parameters:
index Zero-based index of the point.

Reimplements: touchgfx::AbstractGraphElement::invalidateGraphPointAt

setDotWidth
void setDotWidth (uint8_t width)

Sets dot width.

Parameters:
width The width.

See also:

getDotWidth

Protected Attributes Documentation
dotWidth

uint8_t dotWidth

Width of the dot.

Version: 4.16

GraphElementGridBase
GraphElementGridBase is a helper class used to implement classed to draw grid lines in the graph.

Inherits from: AbstractGraphElementNoCWR, AbstractGraphElement, CanvasWidget, Widget,
Drawable

Inherited by: GraphElementGridX, GraphElementGridY

Public Functions
float getIntervalAsFloat() const

Gets the interval between each grid line.

int getIntervalAsInt() const
Gets the interval between each grid line.

uint8_t getLineWidth() const
Gets line width.

GraphElementGridBase()

virtual void invalidateGraphPointAt(int16_t index)
Invalidate the point at the given index.

void setInterval(float interval)
Sets the interval between each grid line.

void setInterval(int interval)
Sets the interval between each grid line.

void setLineWidth(uint8_t width)
Sets line width of the grid lines.

void setMajorGrid(const GraphElementGridBase & major)
Sets "major" grid that will be responsible for drawing major grid lines.

Protected Functions

int getCorrectlyScaledMajorInterval(const AbstractDataGraph * graph) const
Gets correctly scaled major interval, as the major grid may have a scale that differs the scale of
the graph and this grid line.

int getIntervalScaled() const
Gets the interval between each grid line.

void setIntervalScaled(int interval)
Sets the interval between each grid line.

Protected Attributes
int gridInterval

The grid line interval.

uint8_t lineWidth
Width of the line.

const GraphElementGridBase * majorGrid
A pointer to a major grid, if any.

Additional inherited members
Public Functions inherited from
AbstractGraphElementNoCWR

AbstractGraphElementNoCWR()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

virtual colortype getColor() const
Gets the color of the graph element.

virtual void setColor(colortype newColor)
Sets the color of the graph element.

Protected Functions inherited from
AbstractGraphElementNoCWR

void normalizeRect(Rect & rect) const
Normalize rectangle by changing a rectangle with negative width or height to a
rectangle with positive width or height at the correct position.

virtual void setPainter(AbstractPainter & painter)
Protected function to prevent users from setting a painter.

Protected Attributes inherited from
AbstractGraphElementNoCWR

colortype color
The currently assigned color.

Public Functions inherited from AbstractGraphElement
AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement

int dataScale
The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual void draw(const Rect & invalidatedArea) const
Draws the given invalidated area.

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const =0
Draw canvas widget for the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)

Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
getIntervalAsFloat

float getIntervalAsFloat () const

Gets the interval between each grid line.

Returns:

The interval between each grid line.

See also:

setInterval

getIntervalAsInt
int getIntervalAsInt () const

Gets the interval between each grid line.

Returns:

The interval between each grid line.

See also:

setInterval

getLineWidth
uint8_t getLineWidth () const

Gets line width.

Returns:

The line width.

See also:

setLineWidth

GraphElementGridBase
GraphElementGridBase ()

invalidateGraphPointAt
virtual void invalidateGraphPointAt (int16_t index)

Invalidate the point at the given index.

This allows a graph element to only invalidate the minimum rectangle required for the given index.
The Graph will call this function before and after changing a point to ensure that both the old and
the new area are redrawn (invalidated).

Parameters:

index Zero-based index of the point.

Reimplements: touchgfx::AbstractGraphElement::invalidateGraphPointAt

setInterval
void setInterval (float interval)

Sets the interval between each grid line.

Parameters:
interval The interval between each grid line.

NOTE

If interval is 0 only the axis is shown.

See also:

getIntervalAsInt, getIntervalAsFloat, setMajorGrid

setInterval
void setInterval (int interval)

Sets the interval between each grid line.

Parameters:
interval The interval between each grid line.

NOTE

If interval is 0 only the axis is shown.

See also:

getIntervalAsInt, getIntervalAsFloat, setMajorGrid

setLineWidth
void setLineWidth (uint8_t width)

Sets line width of the grid lines.

Parameters:
width The width of the grid lines.

See also:

getLineWidth

setMajorGrid
void setMajorGrid (const GraphElementGridBase & major)

Sets "major" grid that will be responsible for drawing major grid lines.

If a grid line would be drawn at the same position as the major grid line, the grid line will not be
drawn.

Parameters:
major Reference to a major grid line object.

Protected Functions Documentation
getCorrectlyScaledMajorInterval

int getCorrectlyScaledMajorInterval (const AbstractDataGraph * graph)

Gets correctly scaled major interval, as the major grid may have a scale that differs the scale of the
graph and this grid line.

Parameters:
graph The graph.

Returns:

The correctly scaled major interval.

getIntervalScaled
int getIntervalScaled () const

Gets the interval between each grid line.

Returns:

The interval between each grid line.

NOTE

The interval returned here is left unscaled. For internal use.

See also:

setInterval

setIntervalScaled
void setIntervalScaled (int interval)

Sets the interval between each grid line.

Parameters:
interval The interval between each grid line.

NOTE

If interval is 0 only the axis is shown.The interval set here must already be scaled. For internal use.

See also:

getIntervalAsInt, getIntervalAsFloat, setMajorGrid

Protected Attributes Documentation
gridInterval

int gridInterval

The grid line interval.

lineWidth
uint8_t lineWidth

Width of the line.

majorGrid
const GraphElementGridBase * majorGrid

A pointer to a major grid, if any.

Version: 4.16

GraphElementGridX
GraphElementGridX draws vertical lines at selected intervals along the x axis. By combining two
GraphElementGridX instances, it is possible to have minor and major grid lines.

Note: The grid lines are drawn using LCD::fillRect for higher performance.

Inherits from: GraphElementGridBase, AbstractGraphElementNoCWR, AbstractGraphElement,
CanvasWidget, Widget, Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draws the given invalidated area.

Protected Functions
void drawLine(const Rect & invalidatedArea, int16_t xMin, int16_t yMin, int16_t width, int16_t

length, colortype color, uint8_t alpha) const
Draw vertical line using LCD::fillRect and handles negative dimensions properly.

Additional inherited members
Public Functions inherited from GraphElementGridBase

float getIntervalAsFloat() const
Gets the interval between each grid line.

int getIntervalAsInt() const
Gets the interval between each grid line.

uint8_t getLineWidth() const
Gets line width.

GraphElementGridBase()

virtual void invalidateGraphPointAt(int16_t index)
Invalidate the point at the given index.

void setInterval(float interval)
Sets the interval between each grid line.

void setInterval(int interval)
Sets the interval between each grid line.

void setLineWidth(uint8_t width)
Sets line width of the grid lines.

void setMajorGrid(const GraphElementGridBase & major)
Sets "major" grid that will be responsible for drawing major grid lines.

Protected Functions inherited from GraphElementGridBase
int getCorrectlyScaledMajorInterval(const AbstractDataGraph * graph) const

Gets correctly scaled major interval, as the major grid may have a scale that differs the scale of
the graph and this grid line.

int getIntervalScaled() const
Gets the interval between each grid line.

void setIntervalScaled(int interval)
Sets the interval between each grid line.

Protected Attributes inherited from GraphElementGridBase
int gridInterval

The grid line interval.

uint8_t lineWidth
Width of the line.

const GraphElementGridBase * majorGrid
A pointer to a major grid, if any.

Public Functions inherited from
AbstractGraphElementNoCWR

AbstractGraphElementNoCWR()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

virtual colortype getColor() const
Gets the color of the graph element.

virtual void setColor(colortype newColor)
Sets the color of the graph element.

Protected Functions inherited from
AbstractGraphElementNoCWR

void normalizeRect(Rect & rect) const
Normalize rectangle by changing a rectangle with negative width or height to a
rectangle with positive width or height at the correct position.

virtual void setPainter(AbstractPainter & painter)
Protected function to prevent users from setting a painter.

Protected Attributes inherited from
AbstractGraphElementNoCWR

colortype color
The currently assigned color.

Public Functions inherited from AbstractGraphElement
AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

virtual void invalidateGraphPointAt(int16_t index) =0

Invalidate the point at the given index.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const

Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const =0
Draw canvas widget for the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0

Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible

True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draws the given invalidated area.

If the underlying CanvasWidgetRenderer fail to render the widget (if the widget is too complex),
the invalidated area is cut into smaller slices (horizontally) which are then drawn separately. If
drawing a single raster line fails, that line is considered too complex and skipped (it is left
blank/transparent) and drawing continues on the next raster line.

If drawing has failed at least once, which means that the number of horizontal lines draw has been
reduced, the number of successfully drawn horizontal lines is remembered for the next invocation
of draw(). A future call to draw() would then start off with the reduced number of horizontal lines
to prevent potentially drawing the canvas widget in vain, as happened previously in draw().

Parameters:
invalidatedArea The invalidated area.

NOTE

Subclasses of CanvasWidget should implement drawCanvasWidget(), not draw(). The term "too complex"
means that the size of the buffer (assigned to CanvasWidgetRenderer using
CanvasWidgetRenderer::setupBuffer()) is too small.

See also:

drawCanvasWidget

Reimplements: touchgfx::CanvasWidget::draw

Protected Functions Documentation
drawLine

void drawLine (const Rect & invalidatedArea , const
int16_t xMin , const

int16_t yMin , const
int16_t width , const
int16_t length , const
colortype color , const
uint8_t alpha const
) const

Draw vertical line using LCD::fillRect and handles negative dimensions properly.

Parameters:
invalidatedArea The invalidated area to intersect the line with.
xMin The minimum x coordinate.
yMin The minimum y coordinate.
width The width of the line.
length The length of the line.
color The color of the line.
alpha The alpha of the line.

Version: 4.16

GraphElementGridY
GraphElementGridY draws horizontal lines at selected intervals along the y axis. By combining two
GraphElementGridY instances, it is possible to have minor and major grid lines.

Note: The grid lines are drawn using LCD::fillRect for higher performance.

Inherits from: GraphElementGridBase, AbstractGraphElementNoCWR, AbstractGraphElement,
CanvasWidget, Widget, Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draws the given invalidated area.

Protected Functions
void drawLine(const Rect & invalidatedArea, int16_t xMin, int16_t yMin, int16_t width, int16_t

length, colortype color, uint8_t alpha) const
Draw horizontal line using LCD::fillRect and handles negative dimensions properly.

Additional inherited members
Public Functions inherited from GraphElementGridBase

float getIntervalAsFloat() const
Gets the interval between each grid line.

int getIntervalAsInt() const
Gets the interval between each grid line.

uint8_t getLineWidth() const
Gets line width.

GraphElementGridBase()

virtual void invalidateGraphPointAt(int16_t index)
Invalidate the point at the given index.

void setInterval(float interval)
Sets the interval between each grid line.

void setInterval(int interval)
Sets the interval between each grid line.

void setLineWidth(uint8_t width)
Sets line width of the grid lines.

void setMajorGrid(const GraphElementGridBase & major)
Sets "major" grid that will be responsible for drawing major grid lines.

Protected Functions inherited from GraphElementGridBase
int getCorrectlyScaledMajorInterval(const AbstractDataGraph * graph) const

Gets correctly scaled major interval, as the major grid may have a scale that differs the scale of
the graph and this grid line.

int getIntervalScaled() const
Gets the interval between each grid line.

void setIntervalScaled(int interval)
Sets the interval between each grid line.

Protected Attributes inherited from GraphElementGridBase
int gridInterval

The grid line interval.

uint8_t lineWidth
Width of the line.

const GraphElementGridBase * majorGrid
A pointer to a major grid, if any.

Public Functions inherited from
AbstractGraphElementNoCWR

AbstractGraphElementNoCWR()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

virtual colortype getColor() const
Gets the color of the graph element.

virtual void setColor(colortype newColor)
Sets the color of the graph element.

Protected Functions inherited from
AbstractGraphElementNoCWR

void normalizeRect(Rect & rect) const
Normalize rectangle by changing a rectangle with negative width or height to a
rectangle with positive width or height at the correct position.

virtual void setPainter(AbstractPainter & painter)
Protected function to prevent users from setting a painter.

Protected Attributes inherited from
AbstractGraphElementNoCWR

colortype color
The currently assigned color.

Public Functions inherited from AbstractGraphElement
AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

virtual void invalidateGraphPointAt(int16_t index) =0

Invalidate the point at the given index.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const

Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const =0
Draw canvas widget for the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0

Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible

True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draws the given invalidated area.

If the underlying CanvasWidgetRenderer fail to render the widget (if the widget is too complex),
the invalidated area is cut into smaller slices (horizontally) which are then drawn separately. If
drawing a single raster line fails, that line is considered too complex and skipped (it is left
blank/transparent) and drawing continues on the next raster line.

If drawing has failed at least once, which means that the number of horizontal lines draw has been
reduced, the number of successfully drawn horizontal lines is remembered for the next invocation
of draw(). A future call to draw() would then start off with the reduced number of horizontal lines
to prevent potentially drawing the canvas widget in vain, as happened previously in draw().

Parameters:
invalidatedArea The invalidated area.

NOTE

Subclasses of CanvasWidget should implement drawCanvasWidget(), not draw(). The term "too complex"
means that the size of the buffer (assigned to CanvasWidgetRenderer using
CanvasWidgetRenderer::setupBuffer()) is too small.

See also:

drawCanvasWidget

Reimplements: touchgfx::CanvasWidget::draw

Protected Functions Documentation
drawLine

void drawLine (const Rect & invalidatedArea , const
int16_t xMin , const

int16_t yMin , const
int16_t width , const
int16_t length , const
colortype color , const
uint8_t alpha const
) const

Draw horizontal line using LCD::fillRect and handles negative dimensions properly.

Parameters:
invalidatedArea The invalidated area to intersect the line with.
xMin The minimum x coordinate.
yMin The minimum y coordinate.
width The width of the line.
length The length of the line.
color The color of the line.
alpha The alpha of the line.

Version: 4.16

GraphElementHistogram
The GraphElementHistogram is used to draw blocks from the x axis to the data point in the graph. If
more graphs are placed on top of each other, the histogram can be moved slightly to the left/right.

Note: Historgram boxes are drawn using LCD::fillRect for higher performance.

Inherits from: AbstractGraphElementNoCWR, AbstractGraphElement, CanvasWidget, Widget,
Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draws the given invalidated area.

int16_t getBarOffset() const
Gets bar offset (horizontally).

uint16_t getBarWidth() const
Gets bar width of the histogram columns.

float getBaselineAsFloat() const
Gets the base previously set using setBaseline.

int getBaselineAsInt() const
Gets the base previously set using setBaseline.

GraphElementHistogram()

virtual void invalidateGraphPointAt(int16_t index)
Invalidate the point at the given index.

void setBarOffset(int16_t offset)
Sets bar offset (horizontally).

void setBarWidth(uint16_t width)
Sets bar width of each histogram column.

void setBaseline(float baseline)

Sets the base of the area drawn.

void setBaseline(int baseline)
Sets the base of the area drawn.

Protected Functions
int getBaselineScaled() const

Gets the base previously set using setBaseline.

void setBaselineScaled(int baseline)
Sets the base of the area drawn.

Protected Attributes
int16_t barOffset

The horizontal bar offset.

uint16_t barWidth
Width of each bar.

int yBaseline
The baseline.

Additional inherited members
Public Functions inherited from
AbstractGraphElementNoCWR

AbstractGraphElementNoCWR()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

virtual colortype getColor() const
Gets the color of the graph element.

virtual void setColor(colortype newColor)
Sets the color of the graph element.

Protected Functions inherited from
AbstractGraphElementNoCWR

void normalizeRect(Rect & rect) const
Normalize rectangle by changing a rectangle with negative width or height to a
rectangle with positive width or height at the correct position.

virtual void setPainter(AbstractPainter & painter)
Protected function to prevent users from setting a painter.

Protected Attributes inherited from
AbstractGraphElementNoCWR

colortype color
The currently assigned color.

Public Functions inherited from AbstractGraphElement
AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const

Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const =0
Draw canvas widget for the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()

Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)

Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draws the given invalidated area.

If the underlying CanvasWidgetRenderer fail to render the widget (if the widget is too complex),
the invalidated area is cut into smaller slices (horizontally) which are then drawn separately. If
drawing a single raster line fails, that line is considered too complex and skipped (it is left
blank/transparent) and drawing continues on the next raster line.

If drawing has failed at least once, which means that the number of horizontal lines draw has been
reduced, the number of successfully drawn horizontal lines is remembered for the next invocation
of draw(). A future call to draw() would then start off with the reduced number of horizontal lines
to prevent potentially drawing the canvas widget in vain, as happened previously in draw().

Parameters:
invalidatedArea The invalidated area.

NOTE

Subclasses of CanvasWidget should implement drawCanvasWidget(), not draw(). The term "too complex"
means that the size of the buffer (assigned to CanvasWidgetRenderer using
CanvasWidgetRenderer::setupBuffer()) is too small.

See also:

drawCanvasWidget

Reimplements: touchgfx::CanvasWidget::draw

getBarOffset
int16_t getBarOffset () const

Gets bar offset (horizontally).

Bar offset can be used when there are two different histogram graphs on top of each other to
prevent one histogram from covering the other.

Returns:

The bar offset.

See also:

setBarOffset

getBarWidth
uint16_t getBarWidth () const

Gets bar width of the histogram columns.

Returns:

The bar width.

See also:

setBarWidth

getBaselineAsFloat
float getBaselineAsFloat () const

Gets the base previously set using setBaseline.

Returns:

The base value.

See also:

setBaseline

getBaselineAsInt
int getBaselineAsInt () const

Gets the base previously set using setBaseline.

Returns:

The base value.

See also:

setBaseline

GraphElementHistogram
GraphElementHistogram ()

invalidateGraphPointAt
virtual void invalidateGraphPointAt (int16_t index)

Invalidate the point at the given index.

This allows a graph element to only invalidate the minimum rectangle required for the given index.
The Graph will call this function before and after changing a point to ensure that both the old and
the new area are redrawn (invalidated).

Parameters:
index Zero-based index of the point.

Reimplements: touchgfx::AbstractGraphElement::invalidateGraphPointAt

setBarOffset
void setBarOffset (int16_t offset)

Sets bar offset (horizontally).

This can be used when there are two different histogram graphs on top of each other to prevent
one histogram from covering the other.

Parameters:
offset The offset.

See also:

getBarOffset

setBarWidth
void setBarWidth (uint16_t width)

Sets bar width of each histogram column.

Parameters:
width The width.

See also:

getBarWidth

setBaseline
void setBaseline (float baseline)

Sets the base of the area drawn.

Normally, the base is 0 which means that the area is drawn below positive y values and above
negative y values. Setting the base to a very high number will cause the area above the graph to be

drawn. Setting the base to a very low number will cause the area below the graph to be drawn
(even for negative numbers, which are higher than the base value).

Parameters:
baseline The base value.

See also:

getBaselineAsInt, getBaselineAsFloat

setBaseline
void setBaseline (int baseline)

Sets the base of the area drawn.

Normally, the base is 0 which means that the area is drawn below positive y values and above
negative y values. Setting the base to a very high number will cause the area above the graph to be
drawn. Setting the base to a very low number will cause the area below the graph to be drawn
(even for negative numbers, which are higher than the base value).

Parameters:
baseline The base value.

See also:

getBaselineAsInt, getBaselineAsFloat

Protected Functions Documentation
getBaselineScaled

int getBaselineScaled () const

Gets the base previously set using setBaseline.

Returns:

The base value.

NOTE

The baseline returned here is left unscaled. For internal use.

See also:

setBaseline

setBaselineScaled
void setBaselineScaled (int baseline)

Sets the base of the area drawn.

Normally, the base is 0 which means that the area is drawn below positive y values and above
negative y values. Setting the base to a very high number will cause the area above the graph to be
drawn. Setting the base to a very low number will cause the area below the graph to be drawn
(even for negative numbers, which are higher than the base value).

Parameters:
baseline The base value.

NOTE

The baseline set here must already be scaled. For internal use.

See also:

getBaselineAsInt, getBaselineAsFloat

Protected Attributes Documentation
barOffset

int16_t barOffset

The horizontal bar offset.

barWidth
uint16_t barWidth

Width of each bar.

yBaseline

int yBaseline

The baseline.

Version: 4.16

GraphElementLine
GraphElementLine will draw a line with a given thickness through the data points in the graph.

Note: The Line is drawn using CanvasWidget Renderer which is slower but produces much nicer
graphics.

Inherits from: AbstractGraphElement, CanvasWidget, Widget, Drawable

Public Functions
virtual bool drawCanvasWidget(const Rect & invalidatedArea) const

Draw canvas widget for the given invalidated area.

uint8_t getLineWidth() const
Gets line width.

GraphElementLine()

virtual void invalidateGraphPointAt(int16_t index)
Invalidate the point at the given index.

void setLineWidth(uint8_t width)
Sets line width.

Protected Functions
void drawIndexRange(Canvas & canvas, const AbstractDataGraph * graph, int16_t indexMin,

int16_t indexMax) const
Draw a line between all indexes in the given range.

Protected Attributes
uint8_t lineWidth

Width of the line.

Additional inherited members
Public Functions inherited from AbstractGraphElement

AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const

Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual void draw(const Rect & invalidatedArea) const
Draws the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const

Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)

Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
drawCanvasWidget

virtual bool drawCanvasWidget (const Rect & invalidatedArea)

Draw canvas widget for the given invalidated area.

Similar to draw(), but might be invoked several times with increasingly smaller areas to due to
memory constraints from the underlying CanvasWidgetRenderer.

Parameters:
invalidatedArea The invalidated area.

Returns:

true if the widget was drawn properly, false if not.

See also:

draw

Reimplements: touchgfx::CanvasWidget::drawCanvasWidget

getLineWidth
uint8_t getLineWidth () const

Gets line width.

Returns:

The line width.

See also:

setLineWidth

GraphElementLine
GraphElementLine ()

invalidateGraphPointAt
virtual void invalidateGraphPointAt (int16_t index)

Invalidate the point at the given index.

This allows a graph element to only invalidate the minimum rectangle required for the given index.
The Graph will call this function before and after changing a point to ensure that both the old and
the new area are redrawn (invalidated).

Parameters:
index Zero-based index of the point.

Reimplements: touchgfx::AbstractGraphElement::invalidateGraphPointAt

setLineWidth
void setLineWidth (uint8_t width)

Sets line width.

Parameters:
width The width.

See also:

getLineWidth

Protected Functions Documentation

drawIndexRange
void drawIndexRange (Canvas & canvas , const

const AbstractDataGraph * graph , const
int16_t indexMin , const
int16_t indexMax const
) const

Draw a line between all indexes in the given range.

This is used where there is a gap in the graph and the line has to be drawn as two separate lines.

Parameters:
canvas The canvas.
graph The graph.
indexMin The minimum index.
indexMax The maximum index.

Protected Attributes Documentation
lineWidth

uint8_t lineWidth

Width of the line.

Version: 4.16

GraphElementVerticalGapLine
The GraphElementVerticalGapLine is used to draw a vertical line where the gap in the graph is. This
only makes sense to add to a GraphWrapAndOverwrite (or DataGraphWrapAndOverwrite).

Note: The vertical line is drawn using LCD::fillRect for higher performance.

Inherits from: AbstractGraphElementNoCWR, AbstractGraphElement, CanvasWidget, Widget,
Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draws the given invalidated area.

uint16_t getGapLineWidth() const
Gets the width of the gap line as set using setGapLineWidth().

virtual void invalidateGraphPointAt(int16_t index)
Invalidate the point at the given index.

void setGapLineWidth(uint16_t width)
Sets the width of the gap line in pixels.

Protected Attributes
uint16_t lineWidth

Width of the line.

Additional inherited members
Public Functions inherited from
AbstractGraphElementNoCWR

AbstractGraphElementNoCWR()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

virtual colortype getColor() const
Gets the color of the graph element.

virtual void setColor(colortype newColor)
Sets the color of the graph element.

Protected Functions inherited from
AbstractGraphElementNoCWR

void normalizeRect(Rect & rect) const
Normalize rectangle by changing a rectangle with negative width or height to a
rectangle with positive width or height at the correct position.

virtual void setPainter(AbstractPainter & painter)
Protected function to prevent users from setting a painter.

Protected Attributes inherited from
AbstractGraphElementNoCWR

colortype color
The currently assigned color.

Public Functions inherited from AbstractGraphElement
AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const

Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const =0
Draw canvas widget for the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)

Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draws the given invalidated area.

If the underlying CanvasWidgetRenderer fail to render the widget (if the widget is too complex),
the invalidated area is cut into smaller slices (horizontally) which are then drawn separately. If
drawing a single raster line fails, that line is considered too complex and skipped (it is left
blank/transparent) and drawing continues on the next raster line.

If drawing has failed at least once, which means that the number of horizontal lines draw has been
reduced, the number of successfully drawn horizontal lines is remembered for the next invocation
of draw(). A future call to draw() would then start off with the reduced number of horizontal lines
to prevent potentially drawing the canvas widget in vain, as happened previously in draw().

Parameters:
invalidatedArea The invalidated area.

NOTE

Subclasses of CanvasWidget should implement drawCanvasWidget(), not draw(). The term "too complex"
means that the size of the buffer (assigned to CanvasWidgetRenderer using
CanvasWidgetRenderer::setupBuffer()) is too small.

See also:

drawCanvasWidget

Reimplements: touchgfx::CanvasWidget::draw

getGapLineWidth
uint16_t getGapLineWidth () const

Gets the width of the gap line as set using setGapLineWidth().

Returns:

The gap line width.

invalidateGraphPointAt
virtual void invalidateGraphPointAt (int16_t index)

Invalidate the point at the given index.

This allows a graph element to only invalidate the minimum rectangle required for the given index.
The Graph will call this function before and after changing a point to ensure that both the old and

the new area are redrawn (invalidated).

Parameters:
index Zero-based index of the point.

Reimplements: touchgfx::AbstractGraphElement::invalidateGraphPointAt

setGapLineWidth
void setGapLineWidth (uint16_t width)

Sets the width of the gap line in pixels.

If the gap line is set to 0 the gap line will extend to the next point in the graph.

Parameters:
width The width.

See also:

getGapLineWidth

Protected Attributes Documentation
lineWidth

uint16_t lineWidth

Width of the line.

Version: 4.16

GraphLabelsBase
Helper class for adding labels on the side of a graph.

See: GraphLabelsX, GraphLabelsY

Inherits from: AbstractGraphDecoration, AbstractGraphElementNoCWR, AbstractGraphElement,
CanvasWidget, Widget, Drawable

Inherited by: GraphLabelsX, GraphLabelsY

Public Functions
float getIntervalAsFloat() const

Gets the interval between each label.

int getIntervalAsInt() const
Gets the interval between each label.

Unicode::UnicodeChar getLabelDecimalPoint() const
Gets label decimal point previously set.

uint16_t getLabelDecimals() const
Gets number of decimals for labels.

TextRotation getLabelRotation() const
Gets label rotation.

TypedText getLabelTypedText() const
Gets TypedText label.

GraphLabelsBase()

virtual void invalidateGraphPointAt(int16_t index)
Invalidate the point at the given index.

void setInterval(float interval)
Sets the interval between each label.

void setInterval(int interval)

Sets the interval between each label.

void setLabelDecimalPoint(Unicode::UnicodeChar decimalPoint)
Sets label decimal point.

void setLabelDecimals(uint16_t decimals)
Sets number of decimals for labels, default is no decimals and no decimal
point.

void setLabelRotation(TextRotation rotation)
Sets label rotation.

void setLabelTypedText(const TypedText & typedText)
Sets TypedText to use for the label.

void setMajorLabel(const GraphLabelsBase & major)
Sets "major" label that will be responsible for drawing major labels.

Protected Functions
void formatLabel(Unicode::UnicodeChar * buffer, int16_t bufferSize, int label, int decimals,

Unicode::UnicodeChar decimalPoint, int scale) const
Format label according to the set number of decimals and the decimal point.

int getCorrectlyScaledMajorInterval(const AbstractDataGraph * graph) const
Gets correctly scaled major interval, as the major label may have a scale that differs the scale of
the graph and this label.

int getIntervalScaled() const
Gets the interval between each label.

void setIntervalScaled(int interval)
Sets the interval between each label.

Protected Attributes
Unicode::UnicodeChar labelDecimalPoint

The label decimal point character.

uint16_t labelDecimals

The number of decimals on the label.

int labelInterval
The interval between each label.

TextRotation labelRotation
The TextRotation to use for the label.

TypedText labelTypedText
The TypedText to use for the label.

const GraphLabelsBase * majorLabel
A pointer to a major label, if any.

Additional inherited members
Public Functions inherited from
AbstractGraphElementNoCWR

AbstractGraphElementNoCWR()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

virtual colortype getColor() const
Gets the color of the graph element.

virtual void setColor(colortype newColor)
Sets the color of the graph element.

Protected Functions inherited from
AbstractGraphElementNoCWR

void normalizeRect(Rect & rect) const
Normalize rectangle by changing a rectangle with negative width or height to a
rectangle with positive width or height at the correct position.

virtual void setPainter(AbstractPainter & painter)
Protected function to prevent users from setting a painter.

Protected Attributes inherited from
AbstractGraphElementNoCWR

colortype color
The currently assigned color.

Public Functions inherited from AbstractGraphElement
AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual void draw(const Rect & invalidatedArea) const
Draws the given invalidated area.

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const =0
Draw canvas widget for the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const

Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)

Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()

Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
getIntervalAsFloat

float getIntervalAsFloat () const

Gets the interval between each label.

Returns:

The interval between each label.

See also:

setInterval

getIntervalAsInt
int getIntervalAsInt () const

Gets the interval between each label.

Returns:

The interval between each label.

See also:

setInterval

getLabelDecimalPoint
Unicode::UnicodeChar getLabelDecimalPoint () const

Gets label decimal point previously set.

Returns:

The label decimal point.

See also:

setLabelDecimalPoint

getLabelDecimals
uint16_t getLabelDecimals () const

Gets number of decimals for labels.

Returns:

The number of label decimals.

getLabelRotation
TextRotation getLabelRotation () const

Gets label rotation.

Returns:

The label rotation.

See also:

setLabelRotation

getLabelTypedText

TypedText getLabelTypedText () const

Gets TypedText label.

Returns:

The label typed text.

See also:

setLabelTypedText

GraphLabelsBase
GraphLabelsBase ()

invalidateGraphPointAt
virtual void invalidateGraphPointAt (int16_t index)

Invalidate the point at the given index.

This allows a graph element to only invalidate the minimum rectangle required for the given index.
The Graph will call this function before and after changing a point to ensure that both the old and
the new area are redrawn (invalidated).

Parameters:
index Zero-based index of the point.

Reimplements: touchgfx::AbstractGraphElement::invalidateGraphPointAt

Reimplemented by: touchgfx::GraphLabelsX::invalidateGraphPointAt

setInterval
void setInterval (float interval)

Sets the interval between each label.

Parameters:
interval The interval between each label.

NOTE

If interval is 0 only the axis is shown.

See also:

getIntervalAsInt, getIntervalAsFloat, setMajorLabel

setInterval
void setInterval (int interval)

Sets the interval between each label.

Parameters:
interval The interval between each label.

NOTE

If interval is 0 only the axis is shown.

See also:

getIntervalAsInt, getIntervalAsFloat, setMajorLabel

setLabelDecimalPoint
void setLabelDecimalPoint (Unicode::UnicodeChar decimalPoint)

Sets label decimal point.

Default is to use '.' but this can be changed using this function.

Parameters:
decimalPoint The character to use for decimal point.

NOTE

The decimal point is only set if the label decimals > 0.

See also:

setLabelDecimals

setLabelDecimals
void setLabelDecimals (uint16_t decimals)

Sets number of decimals for labels, default is no decimals and no decimal point.

Parameters:
decimals The number of label decimals.

See also:

setLabelDecimalPoint

setLabelRotation
void setLabelRotation (TextRotation rotation)

Sets label rotation.

Parameters:
rotation The rotation or the text.

See also:

getLabelRotation

setLabelTypedText
void setLabelTypedText (const TypedText & typedText)

Sets TypedText to use for the label.

The TypedText should contain exactly one wildcard.

Parameters:
typedText The typed text.

See also:

getLabelTypedText

setMajorLabel
void setMajorLabel (const GraphLabelsBase & major)

Sets "major" label that will be responsible for drawing major labels.

If a label would be drawn at the same position as the major label, the label will not be drawn.

Parameters:
major Reference to a major label object.

Protected Functions Documentation
formatLabel

void formatLabel (Unicode::UnicodeChar * buffer , const
int16_t bufferSize , const
int label , const
int decimals , const
Unicode::UnicodeChar decimalPoint , const
int scale const
) const

Format label according to the set number of decimals and the decimal point.

Parameters:
buffer The buffer to fill with the formatted number.
bufferSize Size of the buffer.
label The label value.
decimals The number of decimals.
decimalPoint The decimal point.
scale The scale of the label value.

getCorrectlyScaledMajorInterval
int getCorrectlyScaledMajorInterval (const AbstractDataGraph * graph)

Gets correctly scaled major interval, as the major label may have a scale that differs the scale of the
graph and this label.

Parameters:
graph The graph.

Returns:

The correctly scaled major interval.

getIntervalScaled

int getIntervalScaled () const

Gets the interval between each label.

Returns:

The interval between each label.

NOTE

The interval returned here is left unscaled. For internal use.

See also:

setInterval

setIntervalScaled
void setIntervalScaled (int interval)

Sets the interval between each label.

Parameters:
interval The interval between each label.

NOTE

If interval is 0 only the axis is shown.The interval set here must already be scaled. For internal use.

See also:

getIntervalAsInt, getIntervalAsFloat, setMajorLabel

Protected Attributes Documentation
labelDecimalPoint

Unicode::UnicodeChar labelDecimalPoint

The label decimal point character.

labelDecimals

uint16_t labelDecimals

The number of decimals on the label.

labelInterval
int labelInterval

The interval between each label.

labelRotation
TextRotation labelRotation

The TextRotation to use for the label.

labelTypedText
TypedText labelTypedText

The TypedText to use for the label.

majorLabel
const GraphLabelsBase * majorLabel

A pointer to a major label, if any.

Version: 4.16

GraphLabelsX
GraphLabelsX will draw labels along the X axis at given intervals. By combining two GraphLabelsX it is
possible to have different appearance for major and minor y offsets.

Inherits from: GraphLabelsBase, AbstractGraphDecoration, AbstractGraphElementNoCWR,
AbstractGraphElement, CanvasWidget, Widget, Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draws the given invalidated area.

virtual void invalidateGraphPointAt(int16_t index)
Invalidate the point at the given index.

Protected Functions
void drawIndexRange(const Rect & invalidatedArea, const Font fontToDraw, const

AbstractDataGraph graph, int indexLow, int indexHigh, const uint8_t alpha) const
Draw labels for all indexes in the given range.

void drawString(const Rect & invalidatedArea, const Font fontToDraw, const AbstractDataGraph
graph, int index, const uint8_t alpha) const
Draw string using rotation and clipping to make sure it is written properly.

Additional inherited members
Public Functions inherited from GraphLabelsBase

float getIntervalAsFloat() const
Gets the interval between each label.

int getIntervalAsInt() const
Gets the interval between each label.

Unicode::UnicodeChar getLabelDecimalPoint() const
Gets label decimal point previously set.

uint16_t getLabelDecimals() const
Gets number of decimals for labels.

TextRotation getLabelRotation() const
Gets label rotation.

TypedText getLabelTypedText() const
Gets TypedText label.

GraphLabelsBase()

void setInterval(float interval)
Sets the interval between each label.

void setInterval(int interval)
Sets the interval between each label.

void setLabelDecimalPoint(Unicode::UnicodeChar decimalPoint)
Sets label decimal point.

void setLabelDecimals(uint16_t decimals)
Sets number of decimals for labels, default is no decimals and no decimal
point.

void setLabelRotation(TextRotation rotation)
Sets label rotation.

void setLabelTypedText(const TypedText & typedText)
Sets TypedText to use for the label.

void setMajorLabel(const GraphLabelsBase & major)
Sets "major" label that will be responsible for drawing major labels.

Protected Functions inherited from GraphLabelsBase

void formatLabel(Unicode::UnicodeChar * buffer, int16_t bufferSize, int label, int decimals,
Unicode::UnicodeChar decimalPoint, int scale) const
Format label according to the set number of decimals and the decimal point.

int getCorrectlyScaledMajorInterval(const AbstractDataGraph * graph) const
Gets correctly scaled major interval, as the major label may have a scale that differs the scale of
the graph and this label.

int getIntervalScaled() const
Gets the interval between each label.

void setIntervalScaled(int interval)
Sets the interval between each label.

Protected Attributes inherited from GraphLabelsBase
Unicode::UnicodeChar labelDecimalPoint

The label decimal point character.

uint16_t labelDecimals
The number of decimals on the label.

int labelInterval
The interval between each label.

TextRotation labelRotation
The TextRotation to use for the label.

TypedText labelTypedText
The TypedText to use for the label.

const GraphLabelsBase * majorLabel
A pointer to a major label, if any.

Public Functions inherited from
AbstractGraphElementNoCWR

AbstractGraphElementNoCWR()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

virtual colortype getColor() const
Gets the color of the graph element.

virtual void setColor(colortype newColor)
Sets the color of the graph element.

Protected Functions inherited from
AbstractGraphElementNoCWR

void normalizeRect(Rect & rect) const
Normalize rectangle by changing a rectangle with negative width or height to a
rectangle with positive width or height at the correct position.

virtual void setPainter(AbstractPainter & painter)
Protected function to prevent users from setting a painter.

Protected Attributes inherited from
AbstractGraphElementNoCWR

colortype color
The currently assigned color.

Public Functions inherited from AbstractGraphElement
AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const

Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const =0
Draw canvas widget for the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()

Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)

Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draws the given invalidated area.

If the underlying CanvasWidgetRenderer fail to render the widget (if the widget is too complex),
the invalidated area is cut into smaller slices (horizontally) which are then drawn separately. If
drawing a single raster line fails, that line is considered too complex and skipped (it is left
blank/transparent) and drawing continues on the next raster line.

If drawing has failed at least once, which means that the number of horizontal lines draw has been
reduced, the number of successfully drawn horizontal lines is remembered for the next invocation
of draw(). A future call to draw() would then start off with the reduced number of horizontal lines
to prevent potentially drawing the canvas widget in vain, as happened previously in draw().

Parameters:
invalidatedArea The invalidated area.

NOTE

Subclasses of CanvasWidget should implement drawCanvasWidget(), not draw(). The term "too complex"
means that the size of the buffer (assigned to CanvasWidgetRenderer using
CanvasWidgetRenderer::setupBuffer()) is too small.

See also:

drawCanvasWidget

Reimplements: touchgfx::CanvasWidget::draw

invalidateGraphPointAt
virtual void invalidateGraphPointAt (int16_t index)

Invalidate the point at the given index.

This allows a graph element to only invalidate the minimum rectangle required for the given index.
The Graph will call this function before and after changing a point to ensure that both the old and
the new area are redrawn (invalidated).

Parameters:
index Zero-based index of the point.

Reimplements: touchgfx::GraphLabelsBase::invalidateGraphPointAt

Protected Functions Documentation
drawIndexRange

void drawIndexRange (const Rect & invalidatedArea , const
const Font * fontToDraw , const
const AbstractDataGraph * graph , const

int indexLow , const
int indexHigh , const
const uint8_t alpha const
) const

Draw labels for all indexes in the given range.

This is used where there is a gap in the graph and the labels have to be drawn using different x
scales.

Parameters:
invalidatedArea The canvas.
fontToDraw The font to draw.
graph The graph.
indexLow The minimum index.
indexHigh The maximum index.
alpha The alpha.

drawString
void drawString (const Rect & invalidatedArea , const

const Font * fontToDraw , const
const AbstractDataGraph * graph , const
int index , const
const uint8_t alpha const
) const

Draw string using rotation and clipping to make sure it is written properly.

Parameters:
invalidatedArea The invalidated area.
fontToDraw The font to draw.
graph The graph.
index index of the data point.
alpha The alpha.

Version: 4.16

GraphLabelsY
GraphLabelsY will draw labels along the Y axis at given intervals. By combining two GraphLabelsY it is
possible to have different appearance for major and minor y offsets.

Inherits from: GraphLabelsBase, AbstractGraphDecoration, AbstractGraphElementNoCWR,
AbstractGraphElement, CanvasWidget, Widget, Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draws the given invalidated area.

Protected Functions
void drawString(const Rect & invalidatedArea, const Font fontToDraw, const AbstractDataGraph

graph, int valueScaled, int labelScaled, const uint8_t alpha) const
Draw string using rotation and clipping to make sure it is written properly.

Additional inherited members
Public Functions inherited from GraphLabelsBase

float getIntervalAsFloat() const
Gets the interval between each label.

int getIntervalAsInt() const
Gets the interval between each label.

Unicode::UnicodeChar getLabelDecimalPoint() const
Gets label decimal point previously set.

uint16_t getLabelDecimals() const
Gets number of decimals for labels.

TextRotation getLabelRotation() const
Gets label rotation.

TypedText getLabelTypedText() const
Gets TypedText label.

GraphLabelsBase()

virtual void invalidateGraphPointAt(int16_t index)
Invalidate the point at the given index.

void setInterval(float interval)
Sets the interval between each label.

void setInterval(int interval)
Sets the interval between each label.

void setLabelDecimalPoint(Unicode::UnicodeChar decimalPoint)
Sets label decimal point.

void setLabelDecimals(uint16_t decimals)
Sets number of decimals for labels, default is no decimals and no decimal
point.

void setLabelRotation(TextRotation rotation)
Sets label rotation.

void setLabelTypedText(const TypedText & typedText)
Sets TypedText to use for the label.

void setMajorLabel(const GraphLabelsBase & major)
Sets "major" label that will be responsible for drawing major labels.

Protected Functions inherited from GraphLabelsBase

void formatLabel(Unicode::UnicodeChar * buffer, int16_t bufferSize, int label, int decimals,
Unicode::UnicodeChar decimalPoint, int scale) const
Format label according to the set number of decimals and the decimal point.

int getCorrectlyScaledMajorInterval(const AbstractDataGraph * graph) const
Gets correctly scaled major interval, as the major label may have a scale that differs the scale of
the graph and this label.

int getIntervalScaled() const
Gets the interval between each label.

void setIntervalScaled(int interval)
Sets the interval between each label.

Protected Attributes inherited from GraphLabelsBase
Unicode::UnicodeChar labelDecimalPoint

The label decimal point character.

uint16_t labelDecimals
The number of decimals on the label.

int labelInterval
The interval between each label.

TextRotation labelRotation
The TextRotation to use for the label.

TypedText labelTypedText
The TypedText to use for the label.

const GraphLabelsBase * majorLabel
A pointer to a major label, if any.

Public Functions inherited from
AbstractGraphElementNoCWR

AbstractGraphElementNoCWR()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

virtual colortype getColor() const
Gets the color of the graph element.

virtual void setColor(colortype newColor)
Sets the color of the graph element.

Protected Functions inherited from
AbstractGraphElementNoCWR

void normalizeRect(Rect & rect) const
Normalize rectangle by changing a rectangle with negative width or height to a
rectangle with positive width or height at the correct position.

virtual void setPainter(AbstractPainter & painter)
Protected function to prevent users from setting a painter.

Protected Attributes inherited from
AbstractGraphElementNoCWR

colortype color
The currently assigned color.

Public Functions inherited from AbstractGraphElement
AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

virtual void invalidateGraphPointAt(int16_t index) =0
Invalidate the point at the given index.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const
Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const =0
Draw canvas widget for the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()

Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)

Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draws the given invalidated area.

If the underlying CanvasWidgetRenderer fail to render the widget (if the widget is too complex),
the invalidated area is cut into smaller slices (horizontally) which are then drawn separately. If
drawing a single raster line fails, that line is considered too complex and skipped (it is left
blank/transparent) and drawing continues on the next raster line.

If drawing has failed at least once, which means that the number of horizontal lines draw has been
reduced, the number of successfully drawn horizontal lines is remembered for the next invocation
of draw(). A future call to draw() would then start off with the reduced number of horizontal lines
to prevent potentially drawing the canvas widget in vain, as happened previously in draw().

Parameters:
invalidatedArea The invalidated area.

NOTE

Subclasses of CanvasWidget should implement drawCanvasWidget(), not draw(). The term "too complex"
means that the size of the buffer (assigned to CanvasWidgetRenderer using
CanvasWidgetRenderer::setupBuffer()) is too small.

See also:

drawCanvasWidget

Reimplements: touchgfx::CanvasWidget::draw

Protected Functions Documentation
drawString

void drawString (const Rect & invalidatedArea , const
const Font * fontToDraw , const
const AbstractDataGraph * graph , const
int valueScaled , const
int labelScaled , const
const uint8_t alpha const
) const

Draw string using rotation and clipping to make sure it is written properly.

Parameters:
invalidatedArea The invalidated area.
fontToDraw The font to draw.
graph The graph.
valueScaled The value (left scaled according to graph scale).
labelScaled The label value (left scaled according to graph label scale).
alpha The alpha.

Version: 4.16

GraphScroll
A Widget capable of drawing a graph with various visual styles and different appearances for the new
values added to the graph.

Inherits from: DataGraphScroll, AbstractDataGraphWithY, AbstractDataGraph, Container, Drawable

Public Functions
GraphScroll()

Additional inherited members
Public Functions inherited from DataGraphScroll

virtual void clear()
Clears the graph to its blank/initial state.

DataGraphScroll(int16_t capacity, int * values)
Initializes a new instance of the DataGraphScroll class.

virtual int32_t indexToGlobalIndex(int16_t index) const
Convert an index to global index.

Protected Functions inherited from DataGraphScroll
virtual int16_t addValue(int value)

Adds a value to the internal data array and keeps track of when graph points, graph
axis and the entire graph needs to be redrawn (invalidated).

virtual void beforeAddValue()
This function is called before a new value (data point) is added.

virtual int16_t realIndex(int16_t index) const
Get the real index in the yValues array of the given index.

Protected Attributes inherited from DataGraphScroll
int16_t current

The current position used for inserting new elements.

Public Functions inherited from AbstractDataGraphWithY
AbstractDataGraphWithY(int16_t capacity, int * values)
Initializes a new instance of the AbstractDataGraphWithY class.

int16_t addDataPoint(float y)
Adds a new data point to the end of the graph.

int16_t addDataPoint(int y)
Adds a new data point to the end of the graph.

virtual int getGraphRangeXMax() const
Gets the maximum x coordinate for the graph.

virtual int getGraphRangeXMin() const
Gets the minimum x coordinate for the graph.

virtual float getGraphRangeYMaxAsFloat() const
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMaxAsInt() const
Gets maximum y coordinate for the graph.

virtual float getGraphRangeYMinAsFloat() const
Gets minimum y coordinate for the graph.

virtual int getGraphRangeYMinAsInt() const
Gets minimum y coordinate for the graph.

virtual float getXAxisOffsetAsFloat() const
Get x coordinate axis offset value.

virtual int getXAxisOffsetAsInt() const
Get x coordinate axis offset value.

virtual float getXAxisScaleAsFloat() const
Get x coordinate axis scale value.

virtual int getXAxisScaleAsInt() const
Get x coordinate axis scale value.

virtual void setGraphRangeX(int min, int max)
Sets minimum and maximum x coordinates for the graph.

virtual void setGraphRangeY(float min, float max)
Sets minimum and maximum y coordinates for the graph.

virtual void setGraphRangeY(int min, int max)
Sets minimum and maximum y coordinates for the graph.

void setGraphRangeYAuto(bool showXaxis =true, int margin =0)
Automatic adjust min and max y coordinate to show entire graph.

virtual void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

virtual void setXAxisOffset(float offset)
Set x coordinate axis offset value.

virtual void setXAxisOffset(int offset)
Set x coordinate axis offset value.

virtual void setXAxisScale(float scale)
Set x coordinate axis scale value.

virtual void setXAxisScale(int scale)
Set x coordinate axis scale value.

Protected Functions inherited from AbstractDataGraphWithY
int16_t addDataPointScaled(int y)

Same as addDataPoint(int) except the passed argument is assumed scaled.

virtual int16_t addValue(int value) =0
Adds a value to the internal data array and keeps track of when graph points,
graph axis and the entire graph needs to be redrawn (invalidated).

virtual void beforeAddValue()
This function is called before a new value (data point) is added.

virtual int getGraphRangeYMaxScaled() const
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMinScaled() const
Gets minimum y coordinate for the graph.

virtual int getXAxisOffsetScaled() const
Get x axis offset as a scaled value.

virtual int getXAxisScaleScaled() const
Get x axis scale as a scaled value.

virtual int indexToDataPointXScaled(int16_t index) const
Same as indexToDataPointXAsInt(int16_t) except the returned value is left
scaled.

virtual int indexToDataPointYScaled(int16_t index) const
Same as indexToDataPointYAsInt(int16_t) except the returned value is left
scaled.

virtual CWRUtil::Q5 indexToScreenXQ5(int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

virtual CWRUtil::Q5 indexToScreenYQ5(int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

virtual int16_t realIndex(int16_t index) const
Get the real index in the yValues array of the given index.

virtual void setGraphRangeYScaled(int min, int max)
Same as setGraphRangeY(int,int) except the passed arguments are assumed
scaled.

virtual void setXAxisOffsetScaled(int offset)
Set x coordinate axis offset value with a pre-scaled offset value.

virtual void setXAxisScaleScaled(int scale)
Set x coordinate axis scale value using a pre-scaled value.

virtual CWRUtil::Q5 valueToScreenXQ5(int x) const
Gets screen x coordinate for an absolute value.

virtual CWRUtil::Q5 valueToScreenYQ5(int y) const

Gets screen y coordinate for an absolute value.

virtual bool xScreenRangeToIndexRange(int16_t xLo, int16_t xHi, int16_t & indexLow,
int16_t & indexHigh) const
Gets index range for screen x coordinate range taking the current graph range
into account.

Protected Attributes inherited from AbstractDataGraphWithY
uint32_t dataCounter

The data counter of how many times addDataPoint() has been called.

int xOffset
The x axis offset (real value of data point at index 0)

int xScale
The x axis scale (increment between two data points)

Public Classes inherited from AbstractDataGraph
class GraphClickEvent

An object of this type is passed with each callback that is sent when the graph is clicked.

class GraphDragEvent
An object of this type is passed with each callback that is sent when the graph is dragged.

Public Functions inherited from AbstractDataGraph
AbstractDataGraph(int16_t capacity)
Initializes a new instance of the AbstractDataGraph class.

void addBottomElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area below the graph.

void addGraphElement(AbstractGraphElement & d)
Adds a graph element which will display the graph.

void addLeftElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the left of the graph.

void addRightElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the right of the graph.

void addTopElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area above the graph.

virtual void clear()
Clears the graph to its blank/initial state.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

int16_t getGapBeforeIndex() const
Gets gap before index as set using setGapBeforeIndex().

int16_t getGraphAreaHeight() const
Gets graph area height.

int16_t getGraphAreaHeightIncludingPadding() const
Gets graph area height including padding (but not margin).

int16_t getGraphAreaMarginBottom() const
Gets graph margin bottom.

int16_t getGraphAreaMarginLeft() const
Gets graph margin left.

int16_t getGraphAreaMarginRight() const
Gets graph margin right.

int16_t getGraphAreaMarginTop() const
Gets graph margin top.

int16_t getGraphAreaPaddingBottom() const
Gets graph area padding bottom.

int16_t getGraphAreaPaddingLeft() const
Gets graph area padding left.

int16_t getGraphAreaPaddingRight() const
Gets graph area padding right.

int16_t getGraphAreaPaddingTop() const

Gets graph area padding top.

int16_t getGraphAreaWidth() const
Gets graph area width.

int16_t getGraphAreaWidthIncludingPadding() const
Gets graph area width including padding (but not margin).

virtual int getGraphRangeXMax() const =0
Gets the maximum x coordinate for the graph.

virtual int getGraphRangeXMin() const =0
Gets the minimum x coordinate for the graph.

virtual float getGraphRangeYMaxAsFloat() const =0
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMaxAsInt() const =0
Gets maximum y coordinate for the graph.

virtual float getGraphRangeYMinAsFloat() const =0
Gets minimum y coordinate for the graph.

virtual int getGraphRangeYMinAsInt() const =0
Gets minimum y coordinate for the graph.

int16_t getMaxCapacity() const
Gets the capacity (max number of points) of the graph.

virtual bool getNearestIndexForScreenX(int16_t x, int16_t & index) const
Gets graph index nearest to the given screen x coordinate.

virtual bool getNearestIndexForScreenXY(int16_t x, int16_t y, int16_t & index)
Gets graph index nearest to the given screen position.

int getScale() const
Gets the scaling factor previously set using setScale().

int16_t getUsedCapacity() const
Gets the number of point used by the graph.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

float indexToDataPointXAsFloat(int16_t index) const
Get the data point x value for the given graph point index.

int indexToDataPointXAsInt(int16_t index) const
Get the data point x value for the given graph point index.

float indexToDataPointYAsFloat(int16_t index) const
Get the data point y value for the given graph point index.

int indexToDataPointYAsInt(int16_t index) const
Get the data point y value for the given graph point index.

virtual int32_t indexToGlobalIndex(int16_t index) const
Convert an index to global index.

int16_t indexToScreenX(int16_t index) const
Get the screen x coordinate for the given graph point index.

int16_t indexToScreenY(int16_t index) const
Get the screen y coordinate for the given graph point index.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setClickAction(GenericCallback< const AbstractDataGraph &, const
GraphClickEvent & > & callback)
Sets an action to be executed when the graph is clicked.

void setDragAction(GenericCallback< const AbstractDataGraph &, const
GraphDragEvent & > & callback)
Sets an action to be executed when the graph is dragged.

void setGapBeforeIndex(int16_t index)
Makes gap before the specified index.

void setGraphAreaMargin(int16_t top, int16_t left, int16_t right, int16_t bottom)
Sets graph position inside the widget by reserving a margin around the graph.

void setGraphAreaPadding(int16_t top, int16_t left, int16_t right, int16_t bottom)

Adds some padding around the graph that will not be drawn in (apart from dots,
boxes etc.

void setGraphRange(int xMin, int xMax, float yMin, float yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

void setGraphRange(int xMin, int xMax, int yMin, int yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

virtual void setGraphRangeX(int min, int max) =0
Sets minimum and maximum x coordinates for the graph.

virtual void setGraphRangeY(float min, float max) =0
Sets minimum and maximum y coordinates for the graph.

virtual void setGraphRangeY(int min, int max) =0
Sets minimum and maximum y coordinates for the graph.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

int float2scaled(float f, int scale)
Multiply a floating point value with a constant and round the result.

int int2scaled(int i, int scale)
Multiply an integer value with a constant.

float scaled2float(int i, int scale)
Divide a floating point number with a constant.

int scaled2int(int i, int scale)
Divide an integer with a constant and round the result.

Protected Functions inherited from AbstractDataGraph
int convertToGraphScale(int value, int scale) const

Converts a number with one scale to a number that has the same scale as the
graph.

int float2scaled(float f) const
Same as float2scaled(float,int) using the graph's scale.

virtual int getGraphRangeYMaxScaled() const =0
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMinScaled() const =0
Gets minimum y coordinate for the graph.

virtual int getXAxisOffsetScaled() const
Get x axis offset as a scaled value.

virtual int getXAxisScaleScaled() const
Get x axis scale as a scaled value.

virtual int indexToDataPointXScaled(int16_t index) const =0
Same as indexToDataPointXAsInt(int16_t) except the returned value is left
scaled.

virtual int indexToDataPointYScaled(int16_t index) const =0
Same as indexToDataPointYAsInt(int16_t) except the returned value is left
scaled.

virtual CWRUtil::Q5 indexToScreenXQ5(int16_t index) const =0
Gets screen x coordinate for a specific data point added to the graph.

virtual CWRUtil::Q5 indexToScreenYQ5(int16_t index) const =0
Gets screen y coordinate for a specific data point added to the graph.

int int2scaled(int i) const
Same as int2scaled(int,int) using the graph's scale.

void invalidateAllXAxisPoints()
Invalidate all x axis points.

void invalidateGraphArea()
Invalidate entire graph area (the center of the graph).

void invalidateGraphPointAt(int16_t index)
Invalidate point at a given index.

void invalidateXAxisPointAt(int16_t index)
Invalidate x axis point at the given index.

float scaled2float(int i) const
Same as scaled2float(int,int) using the graph's scale.

int scaled2int(int i) const
Same as scaled2int(int,int) using the graph's scale.

void setGraphRangeScaled(int xMin, int xMax, int yMin, int yMax)
Same as setGraphRange(int,int,int,int) except the passed arguments are
assumed scaled.

virtual void setGraphRangeYScaled(int min, int max) =0
Same as setGraphRangeY(int,int) except the passed arguments are assumed
scaled.

void updateAreasPosition()
Updates the position of all elements in all area after a change in size of the
graph area and/or label padding.

virtual CWRUtil::Q5 valueToScreenXQ5(int x) const =0
Gets screen x coordinate for an absolute value.

virtual CWRUtil::Q5 valueToScreenYQ5(int y) const =0
Gets screen y coordinate for an absolute value.

virtual bool xScreenRangeToIndexRange(int16_t xLo, int16_t xHi, int16_t & indexLow,
int16_t & indexHigh) const =0
Gets index range for screen x coordinate range taking the current graph range
into account.

Protected Attributes inherited from AbstractDataGraph
uint8_t alpha

The alpha of the
entire graph.

Container bottomArea
The area below the
graph.

int16_t bottomPadding

The graph area
bottom padding.

GenericCallback< const AbstractDataGraph &, const GraphClickEvent & > * clickAction
The callback to be
executed when this
Graph is clicked.

int dataScale
The data scale
applied to all values.

GenericCallback< const AbstractDataGraph &, const GraphDragEvent & > * dragAction
The callback to be
executed when this
Graph is dragged.

int16_t gapBeforeIndex
The graph is
disconnected (there
is a gap) before this
element index.

Container graphArea
The graph area (the
center area)

Container leftArea
The area to the left
of the graph.

int16_t leftPadding
The graph area left
padding.

int16_t maxCapacity
Maximum number
of points in the
graph.

Container rightArea
The area to the right
of the graph.

int16_t rightPadding

The graph area right
padding.

Container topArea
The area above the
graph.

int16_t topPadding
The graph area top
padding.

int16_t usedCapacity
The number of used
points in the graph.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)

Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
GraphScroll

GraphScroll ()

Version: 4.16

GraphTitle
The GraphTitle is just a simple text, but it is automatically moved with the graph. Also, the alpha value
is combined with the alpha of the graph and so it will be faded if the graph is faded.

Inherits from: AbstractGraphDecoration, AbstractGraphElementNoCWR, AbstractGraphElement,
CanvasWidget, Widget, Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draws the given invalidated area.

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

TextRotation getTitleRotation() const
Gets title rotation.

TypedText getTitleTypedText() const
Gets title typed text.

GraphTitle()

virtual void invalidateGraphPointAt(int16_t index)
Invalidate the point at the given index.

void setTitleRotation(TextRotation rotation)
Sets TextRotation of the title.

void setTitleTypedText(const TypedText & typedText)
Sets TypedText to use as a title.

Additional inherited members
Public Functions inherited from
AbstractGraphElementNoCWR

AbstractGraphElementNoCWR()

virtual colortype getColor() const
Gets the color of the graph element.

virtual void setColor(colortype newColor)
Sets the color of the graph element.

Protected Functions inherited from
AbstractGraphElementNoCWR

void normalizeRect(Rect & rect) const
Normalize rectangle by changing a rectangle with negative width or height to a
rectangle with positive width or height at the correct position.

virtual void setPainter(AbstractPainter & painter)
Protected function to prevent users from setting a painter.

Protected Attributes inherited from
AbstractGraphElementNoCWR

colortype color
The currently assigned color.

Public Functions inherited from AbstractGraphElement
AbstractGraphElement()

int getScale() const
Gets the scaling factor set using setScale.

void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

Protected Functions inherited from AbstractGraphElement

int convertToGraphScale(const AbstractDataGraph * graph, int value, int scale)
const

Converts a number with one scale to a number that has the same scale as the
graph.

AbstractDataGraph * getGraph() const
Gets a pointer to the the graph containing the GraphElement.

int getGraphRangeYMaxScaled(const AbstractDataGraph * graph) const
Gets maximum y coordinate for the graph.

int getGraphRangeYMinScaled(const AbstractDataGraph * graph) const
Gets minimum y coordinate for the graph.

int getGraphXAxisOffsetScaled(const AbstractDataGraph * graph) const
Get x axis offset as a scaled value.

int getGraphXAxisScaleScaled(const AbstractDataGraph * graph) const
Get x axis scale as a scaled value.

CWRUtil::Q5 indexToScreenXQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

CWRUtil::Q5 indexToScreenYQ5(const AbstractDataGraph * graph, int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

bool isCenterInvisible(const AbstractDataGraph * graph, int16_t index) const
Query if the center of a given data point index is visible inside the graph area.

Rect rectAround(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5, CWRUtil::Q5 diameterQ5)
const
Find the screen rectangle around a given point with the specified diameter.

Rect
rectFromQ5Coordinates(CWRUtil::Q5 screenXminQ5, CWRUtil::Q5
screenYminQ5, CWRUtil::Q5 screenXmaxQ5, CWRUtil::Q5 screenYmaxQ5)
const
Find the screen rectangle containing the Q5 screen rectangle by rounding the
coordinates up/down.

CWRUtil::Q5 roundQ5(CWRUtil::Q5 q5) const
Round the given CWRUtil::Q5 to the nearest integer and return it as a
CWRUtil::Q5 instead of an integer.

CWRUtil::Q5 valueToScreenXQ5(const AbstractDataGraph * graph, int x) const
Gets graph screen x for x value.

CWRUtil::Q5 valueToScreenYQ5(const AbstractDataGraph * graph, int y) const
Gets graph screen y for y value.

bool xScreenRangeToIndexRange(int16_t xLow, int16_t xHigh, int16_t &
elementLow, int16_t & elementHigh) const
Gets graph element range for screen x coordinate range.

Protected Attributes inherited from AbstractGraphElement
int dataScale

The scaling factor.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)

Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draws the given invalidated area.

If the underlying CanvasWidgetRenderer fail to render the widget (if the widget is too complex),
the invalidated area is cut into smaller slices (horizontally) which are then drawn separately. If

drawing a single raster line fails, that line is considered too complex and skipped (it is left
blank/transparent) and drawing continues on the next raster line.

If drawing has failed at least once, which means that the number of horizontal lines draw has been
reduced, the number of successfully drawn horizontal lines is remembered for the next invocation
of draw(). A future call to draw() would then start off with the reduced number of horizontal lines
to prevent potentially drawing the canvas widget in vain, as happened previously in draw().

Parameters:
invalidatedArea The invalidated area.

NOTE

Subclasses of CanvasWidget should implement drawCanvasWidget(), not draw(). The term "too complex"
means that the size of the buffer (assigned to CanvasWidgetRenderer using
CanvasWidgetRenderer::setupBuffer()) is too small.

See also:

drawCanvasWidget

Reimplements: touchgfx::CanvasWidget::draw

drawCanvasWidget
virtual bool drawCanvasWidget (const Rect & invalidatedArea)

Draw canvas widget for the given invalidated area.

Similar to draw(), but might be invoked several times with increasingly smaller areas to due to
memory constraints from the underlying CanvasWidgetRenderer.

Parameters:
invalidatedArea The invalidated area.

Returns:

true if the widget was drawn properly, false if not.

See also:

draw

Reimplements: touchgfx::AbstractGraphElementNoCWR::drawCanvasWidget

getTitleRotation

TextRotation getTitleRotation () const

Gets title rotation.

Returns:

The title rotation.

See also:

setTitleRotation

getTitleTypedText
TypedText getTitleTypedText () const

Gets title typed text.

Returns:

The title typed text.

See also:

setTitleTypedText

GraphTitle
GraphTitle ()

invalidateGraphPointAt
virtual void invalidateGraphPointAt (int16_t index)

Invalidate the point at the given index.

This allows a graph element to only invalidate the minimum rectangle required for the given index.
The Graph will call this function before and after changing a point to ensure that both the old and
the new area are redrawn (invalidated).

Parameters:
index Zero-based index of the point.

Reimplements: touchgfx::AbstractGraphElement::invalidateGraphPointAt

setTitleRotation
void setTitleRotation (TextRotation rotation)

Sets TextRotation of the title.

Parameters:
rotation The rotation.

See also:

setTitleTypedText, getTitleRotation

setTitleTypedText
void setTitleTypedText (const TypedText & typedText)

Sets TypedText to use as a title.

It can be any static text which is just added as a title.

Parameters:
typedText The typed text.

See also:

getTitleTypedText

Version: 4.16

GraphWrapAndClear
The GraphWrapAndClear will show new points progressing across the graph. Once the graph is filled,
the next point added will cause the graph to be cleared and a new graph will slowly be created as new
values are added.

Inherits from: DataGraphWrapAndClear, AbstractDataGraphWithY, AbstractDataGraph, Container,
Drawable

Public Functions
GraphWrapAndClear()

Additional inherited members
Public Functions inherited from DataGraphWrapAndClear

DataGraphWrapAndClear(int16_t capacity, int * values)
Initializes a new instance of the DataGraphWrapAndOverwrite class.

virtual int32_t indexToGlobalIndex(int16_t index) const
Convert an index to global index.

Protected Functions inherited from DataGraphWrapAndClear
virtual int16_t addValue(int value)

Adds a value to the internal data array and keeps track of when graph points, graph
axis and the entire graph needs to be redrawn (invalidated).

virtual void beforeAddValue()
This function is called before a new value (data point) is added.

Public Functions inherited from AbstractDataGraphWithY
AbstractDataGraphWithY(int16_t capacity, int * values)

Initializes a new instance of the AbstractDataGraphWithY class.

int16_t addDataPoint(float y)
Adds a new data point to the end of the graph.

int16_t addDataPoint(int y)
Adds a new data point to the end of the graph.

virtual int getGraphRangeXMax() const
Gets the maximum x coordinate for the graph.

virtual int getGraphRangeXMin() const
Gets the minimum x coordinate for the graph.

virtual float getGraphRangeYMaxAsFloat() const
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMaxAsInt() const
Gets maximum y coordinate for the graph.

virtual float getGraphRangeYMinAsFloat() const
Gets minimum y coordinate for the graph.

virtual int getGraphRangeYMinAsInt() const
Gets minimum y coordinate for the graph.

virtual float getXAxisOffsetAsFloat() const
Get x coordinate axis offset value.

virtual int getXAxisOffsetAsInt() const
Get x coordinate axis offset value.

virtual float getXAxisScaleAsFloat() const
Get x coordinate axis scale value.

virtual int getXAxisScaleAsInt() const
Get x coordinate axis scale value.

virtual void setGraphRangeX(int min, int max)
Sets minimum and maximum x coordinates for the graph.

virtual void setGraphRangeY(float min, float max)
Sets minimum and maximum y coordinates for the graph.

virtual void setGraphRangeY(int min, int max)
Sets minimum and maximum y coordinates for the graph.

void setGraphRangeYAuto(bool showXaxis =true, int margin =0)
Automatic adjust min and max y coordinate to show entire graph.

virtual void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

virtual void setXAxisOffset(float offset)
Set x coordinate axis offset value.

virtual void setXAxisOffset(int offset)
Set x coordinate axis offset value.

virtual void setXAxisScale(float scale)
Set x coordinate axis scale value.

virtual void setXAxisScale(int scale)
Set x coordinate axis scale value.

Protected Functions inherited from AbstractDataGraphWithY
int16_t addDataPointScaled(int y)

Same as addDataPoint(int) except the passed argument is assumed scaled.

virtual int16_t addValue(int value) =0
Adds a value to the internal data array and keeps track of when graph points,
graph axis and the entire graph needs to be redrawn (invalidated).

virtual void beforeAddValue()
This function is called before a new value (data point) is added.

virtual int getGraphRangeYMaxScaled() const
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMinScaled() const
Gets minimum y coordinate for the graph.

virtual int getXAxisOffsetScaled() const
Get x axis offset as a scaled value.

virtual int getXAxisScaleScaled() const
Get x axis scale as a scaled value.

virtual int indexToDataPointXScaled(int16_t index) const
Same as indexToDataPointXAsInt(int16_t) except the returned value is left
scaled.

virtual int indexToDataPointYScaled(int16_t index) const
Same as indexToDataPointYAsInt(int16_t) except the returned value is left
scaled.

virtual CWRUtil::Q5 indexToScreenXQ5(int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

virtual CWRUtil::Q5 indexToScreenYQ5(int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

virtual int16_t realIndex(int16_t index) const
Get the real index in the yValues array of the given index.

virtual void setGraphRangeYScaled(int min, int max)
Same as setGraphRangeY(int,int) except the passed arguments are assumed
scaled.

virtual void setXAxisOffsetScaled(int offset)
Set x coordinate axis offset value with a pre-scaled offset value.

virtual void setXAxisScaleScaled(int scale)
Set x coordinate axis scale value using a pre-scaled value.

virtual CWRUtil::Q5 valueToScreenXQ5(int x) const
Gets screen x coordinate for an absolute value.

virtual CWRUtil::Q5 valueToScreenYQ5(int y) const
Gets screen y coordinate for an absolute value.

virtual bool xScreenRangeToIndexRange(int16_t xLo, int16_t xHi, int16_t & indexLow,
int16_t & indexHigh) const
Gets index range for screen x coordinate range taking the current graph range
into account.

Protected Attributes inherited from AbstractDataGraphWithY

uint32_t dataCounter
The data counter of how many times addDataPoint() has been called.

int xOffset
The x axis offset (real value of data point at index 0)

int xScale
The x axis scale (increment between two data points)

Public Classes inherited from AbstractDataGraph
class GraphClickEvent

An object of this type is passed with each callback that is sent when the graph is clicked.

class GraphDragEvent
An object of this type is passed with each callback that is sent when the graph is dragged.

Public Functions inherited from AbstractDataGraph
AbstractDataGraph(int16_t capacity)
Initializes a new instance of the AbstractDataGraph class.

void addBottomElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area below the graph.

void addGraphElement(AbstractGraphElement & d)
Adds a graph element which will display the graph.

void addLeftElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the left of the graph.

void addRightElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the right of the graph.

void addTopElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area above the graph.

virtual void clear()
Clears the graph to its blank/initial state.

uint8_t getAlpha() const

Gets the current alpha value of the widget.

int16_t getGapBeforeIndex() const
Gets gap before index as set using setGapBeforeIndex().

int16_t getGraphAreaHeight() const
Gets graph area height.

int16_t getGraphAreaHeightIncludingPadding() const
Gets graph area height including padding (but not margin).

int16_t getGraphAreaMarginBottom() const
Gets graph margin bottom.

int16_t getGraphAreaMarginLeft() const
Gets graph margin left.

int16_t getGraphAreaMarginRight() const
Gets graph margin right.

int16_t getGraphAreaMarginTop() const
Gets graph margin top.

int16_t getGraphAreaPaddingBottom() const
Gets graph area padding bottom.

int16_t getGraphAreaPaddingLeft() const
Gets graph area padding left.

int16_t getGraphAreaPaddingRight() const
Gets graph area padding right.

int16_t getGraphAreaPaddingTop() const
Gets graph area padding top.

int16_t getGraphAreaWidth() const
Gets graph area width.

int16_t getGraphAreaWidthIncludingPadding() const
Gets graph area width including padding (but not margin).

virtual int getGraphRangeXMax() const =0
Gets the maximum x coordinate for the graph.

virtual int getGraphRangeXMin() const =0
Gets the minimum x coordinate for the graph.

virtual float getGraphRangeYMaxAsFloat() const =0
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMaxAsInt() const =0
Gets maximum y coordinate for the graph.

virtual float getGraphRangeYMinAsFloat() const =0
Gets minimum y coordinate for the graph.

virtual int getGraphRangeYMinAsInt() const =0
Gets minimum y coordinate for the graph.

int16_t getMaxCapacity() const
Gets the capacity (max number of points) of the graph.

virtual bool getNearestIndexForScreenX(int16_t x, int16_t & index) const
Gets graph index nearest to the given screen x coordinate.

virtual bool getNearestIndexForScreenXY(int16_t x, int16_t y, int16_t & index)
Gets graph index nearest to the given screen position.

int getScale() const
Gets the scaling factor previously set using setScale().

int16_t getUsedCapacity() const
Gets the number of point used by the graph.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

float indexToDataPointXAsFloat(int16_t index) const
Get the data point x value for the given graph point index.

int indexToDataPointXAsInt(int16_t index) const
Get the data point x value for the given graph point index.

float indexToDataPointYAsFloat(int16_t index) const

Get the data point y value for the given graph point index.

int indexToDataPointYAsInt(int16_t index) const
Get the data point y value for the given graph point index.

virtual int32_t indexToGlobalIndex(int16_t index) const
Convert an index to global index.

int16_t indexToScreenX(int16_t index) const
Get the screen x coordinate for the given graph point index.

int16_t indexToScreenY(int16_t index) const
Get the screen y coordinate for the given graph point index.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setClickAction(GenericCallback< const AbstractDataGraph &, const
GraphClickEvent & > & callback)
Sets an action to be executed when the graph is clicked.

void setDragAction(GenericCallback< const AbstractDataGraph &, const
GraphDragEvent & > & callback)
Sets an action to be executed when the graph is dragged.

void setGapBeforeIndex(int16_t index)
Makes gap before the specified index.

void setGraphAreaMargin(int16_t top, int16_t left, int16_t right, int16_t bottom)
Sets graph position inside the widget by reserving a margin around the graph.

void setGraphAreaPadding(int16_t top, int16_t left, int16_t right, int16_t bottom)
Adds some padding around the graph that will not be drawn in (apart from dots,
boxes etc.

void setGraphRange(int xMin, int xMax, float yMin, float yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

void setGraphRange(int xMin, int xMax, int yMin, int yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

virtual void setGraphRangeX(int min, int max) =0
Sets minimum and maximum x coordinates for the graph.

virtual void setGraphRangeY(float min, float max) =0
Sets minimum and maximum y coordinates for the graph.

virtual void setGraphRangeY(int min, int max) =0
Sets minimum and maximum y coordinates for the graph.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

int float2scaled(float f, int scale)
Multiply a floating point value with a constant and round the result.

int int2scaled(int i, int scale)
Multiply an integer value with a constant.

float scaled2float(int i, int scale)
Divide a floating point number with a constant.

int scaled2int(int i, int scale)
Divide an integer with a constant and round the result.

Protected Functions inherited from AbstractDataGraph
int convertToGraphScale(int value, int scale) const

Converts a number with one scale to a number that has the same scale as the
graph.

int float2scaled(float f) const
Same as float2scaled(float,int) using the graph's scale.

virtual int getGraphRangeYMaxScaled() const =0
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMinScaled() const =0
Gets minimum y coordinate for the graph.

virtual int getXAxisOffsetScaled() const
Get x axis offset as a scaled value.

virtual int getXAxisScaleScaled() const
Get x axis scale as a scaled value.

virtual int indexToDataPointXScaled(int16_t index) const =0
Same as indexToDataPointXAsInt(int16_t) except the returned value is left
scaled.

virtual int indexToDataPointYScaled(int16_t index) const =0
Same as indexToDataPointYAsInt(int16_t) except the returned value is left
scaled.

virtual CWRUtil::Q5 indexToScreenXQ5(int16_t index) const =0
Gets screen x coordinate for a specific data point added to the graph.

virtual CWRUtil::Q5 indexToScreenYQ5(int16_t index) const =0
Gets screen y coordinate for a specific data point added to the graph.

int int2scaled(int i) const
Same as int2scaled(int,int) using the graph's scale.

void invalidateAllXAxisPoints()
Invalidate all x axis points.

void invalidateGraphArea()
Invalidate entire graph area (the center of the graph).

void invalidateGraphPointAt(int16_t index)
Invalidate point at a given index.

void invalidateXAxisPointAt(int16_t index)
Invalidate x axis point at the given index.

float scaled2float(int i) const
Same as scaled2float(int,int) using the graph's scale.

int scaled2int(int i) const
Same as scaled2int(int,int) using the graph's scale.

void setGraphRangeScaled(int xMin, int xMax, int yMin, int yMax)

Same as setGraphRange(int,int,int,int) except the passed arguments are
assumed scaled.

virtual void setGraphRangeYScaled(int min, int max) =0
Same as setGraphRangeY(int,int) except the passed arguments are assumed
scaled.

void updateAreasPosition()
Updates the position of all elements in all area after a change in size of the
graph area and/or label padding.

virtual CWRUtil::Q5 valueToScreenXQ5(int x) const =0
Gets screen x coordinate for an absolute value.

virtual CWRUtil::Q5 valueToScreenYQ5(int y) const =0
Gets screen y coordinate for an absolute value.

virtual bool xScreenRangeToIndexRange(int16_t xLo, int16_t xHi, int16_t & indexLow,
int16_t & indexHigh) const =0
Gets index range for screen x coordinate range taking the current graph range
into account.

Protected Attributes inherited from AbstractDataGraph
uint8_t alpha

The alpha of the
entire graph.

Container bottomArea
The area below the
graph.

int16_t bottomPadding
The graph area
bottom padding.

GenericCallback< const AbstractDataGraph &, const GraphClickEvent & > * clickAction
The callback to be
executed when this
Graph is clicked.

int dataScale
The data scale
applied to all values.

GenericCallback< const AbstractDataGraph &, const GraphDragEvent & > * dragAction
The callback to be
executed when this
Graph is dragged.

int16_t gapBeforeIndex
The graph is
disconnected (there
is a gap) before this
element index.

Container graphArea
The graph area (the
center area)

Container leftArea
The area to the left
of the graph.

int16_t leftPadding
The graph area left
padding.

int16_t maxCapacity
Maximum number
of points in the
graph.

Container rightArea
The area to the right
of the graph.

int16_t rightPadding
The graph area right
padding.

Container topArea
The area above the
graph.

int16_t topPadding
The graph area top
padding.

int16_t usedCapacity

The number of used
points in the graph.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0

Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible

True if this drawable should be drawn.

Public Functions Documentation
GraphWrapAndClear

GraphWrapAndClear ()

Version: 4.16

GraphWrapAndOverwrite
A Continuous graph. A quick way to create a DataGraphWrapAndOverwrite.

Inherits from: DataGraphWrapAndOverwrite, AbstractDataGraphWithY, AbstractDataGraph,
Container, Drawable

Public Functions
GraphWrapAndOverwrite()

Additional inherited members
Public Functions inherited from
DataGraphWrapAndOverwrite

virtual void clear()
Clears the graph to its blank/initial state.

DataGraphWrapAndOverwrite(int16_t capacity, int * values)
Initializes a new instance of the DataGraphWrapAndOverwrite class.

virtual int32_t indexToGlobalIndex(int16_t index) const
Convert an index to global index.

Protected Functions inherited from
DataGraphWrapAndOverwrite
virtual int16_t addValue(int value)

Adds a value to the internal data array and keeps track of when graph points, graph
axis and the entire graph needs to be redrawn (invalidated).

virtual void beforeAddValue()
This function is called before a new value (data point) is added.

Protected Attributes inherited from
DataGraphWrapAndOverwrite

int16_t current
The current index (used to keep track of where to insert new data point in value array)

Public Functions inherited from AbstractDataGraphWithY
AbstractDataGraphWithY(int16_t capacity, int * values)
Initializes a new instance of the AbstractDataGraphWithY class.

int16_t addDataPoint(float y)
Adds a new data point to the end of the graph.

int16_t addDataPoint(int y)
Adds a new data point to the end of the graph.

virtual int getGraphRangeXMax() const
Gets the maximum x coordinate for the graph.

virtual int getGraphRangeXMin() const
Gets the minimum x coordinate for the graph.

virtual float getGraphRangeYMaxAsFloat() const
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMaxAsInt() const
Gets maximum y coordinate for the graph.

virtual float getGraphRangeYMinAsFloat() const
Gets minimum y coordinate for the graph.

virtual int getGraphRangeYMinAsInt() const
Gets minimum y coordinate for the graph.

virtual float getXAxisOffsetAsFloat() const
Get x coordinate axis offset value.

virtual int getXAxisOffsetAsInt() const
Get x coordinate axis offset value.

virtual float getXAxisScaleAsFloat() const

Get x coordinate axis scale value.

virtual int getXAxisScaleAsInt() const
Get x coordinate axis scale value.

virtual void setGraphRangeX(int min, int max)
Sets minimum and maximum x coordinates for the graph.

virtual void setGraphRangeY(float min, float max)
Sets minimum and maximum y coordinates for the graph.

virtual void setGraphRangeY(int min, int max)
Sets minimum and maximum y coordinates for the graph.

void setGraphRangeYAuto(bool showXaxis =true, int margin =0)
Automatic adjust min and max y coordinate to show entire graph.

virtual void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

virtual void setXAxisOffset(float offset)
Set x coordinate axis offset value.

virtual void setXAxisOffset(int offset)
Set x coordinate axis offset value.

virtual void setXAxisScale(float scale)
Set x coordinate axis scale value.

virtual void setXAxisScale(int scale)
Set x coordinate axis scale value.

Protected Functions inherited from AbstractDataGraphWithY
int16_t addDataPointScaled(int y)

Same as addDataPoint(int) except the passed argument is assumed scaled.

virtual int16_t addValue(int value) =0
Adds a value to the internal data array and keeps track of when graph points,
graph axis and the entire graph needs to be redrawn (invalidated).

virtual void beforeAddValue()

This function is called before a new value (data point) is added.

virtual int getGraphRangeYMaxScaled() const
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMinScaled() const
Gets minimum y coordinate for the graph.

virtual int getXAxisOffsetScaled() const
Get x axis offset as a scaled value.

virtual int getXAxisScaleScaled() const
Get x axis scale as a scaled value.

virtual int indexToDataPointXScaled(int16_t index) const
Same as indexToDataPointXAsInt(int16_t) except the returned value is left
scaled.

virtual int indexToDataPointYScaled(int16_t index) const
Same as indexToDataPointYAsInt(int16_t) except the returned value is left
scaled.

virtual CWRUtil::Q5 indexToScreenXQ5(int16_t index) const
Gets screen x coordinate for a specific data point added to the graph.

virtual CWRUtil::Q5 indexToScreenYQ5(int16_t index) const
Gets screen y coordinate for a specific data point added to the graph.

virtual int16_t realIndex(int16_t index) const
Get the real index in the yValues array of the given index.

virtual void setGraphRangeYScaled(int min, int max)
Same as setGraphRangeY(int,int) except the passed arguments are assumed
scaled.

virtual void setXAxisOffsetScaled(int offset)
Set x coordinate axis offset value with a pre-scaled offset value.

virtual void setXAxisScaleScaled(int scale)
Set x coordinate axis scale value using a pre-scaled value.

virtual CWRUtil::Q5 valueToScreenXQ5(int x) const
Gets screen x coordinate for an absolute value.

virtual CWRUtil::Q5 valueToScreenYQ5(int y) const
Gets screen y coordinate for an absolute value.

virtual bool xScreenRangeToIndexRange(int16_t xLo, int16_t xHi, int16_t & indexLow,
int16_t & indexHigh) const
Gets index range for screen x coordinate range taking the current graph range
into account.

Protected Attributes inherited from AbstractDataGraphWithY
uint32_t dataCounter

The data counter of how many times addDataPoint() has been called.

int xOffset
The x axis offset (real value of data point at index 0)

int xScale
The x axis scale (increment between two data points)

Public Classes inherited from AbstractDataGraph
class GraphClickEvent

An object of this type is passed with each callback that is sent when the graph is clicked.

class GraphDragEvent
An object of this type is passed with each callback that is sent when the graph is dragged.

Public Functions inherited from AbstractDataGraph
AbstractDataGraph(int16_t capacity)
Initializes a new instance of the AbstractDataGraph class.

void addBottomElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area below the graph.

void addGraphElement(AbstractGraphElement & d)
Adds a graph element which will display the graph.

void addLeftElement(AbstractGraphDecoration & d)

Adds an element to be shown in the area to the left of the graph.

void addRightElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area to the right of the graph.

void addTopElement(AbstractGraphDecoration & d)
Adds an element to be shown in the area above the graph.

virtual void clear()
Clears the graph to its blank/initial state.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

int16_t getGapBeforeIndex() const
Gets gap before index as set using setGapBeforeIndex().

int16_t getGraphAreaHeight() const
Gets graph area height.

int16_t getGraphAreaHeightIncludingPadding() const
Gets graph area height including padding (but not margin).

int16_t getGraphAreaMarginBottom() const
Gets graph margin bottom.

int16_t getGraphAreaMarginLeft() const
Gets graph margin left.

int16_t getGraphAreaMarginRight() const
Gets graph margin right.

int16_t getGraphAreaMarginTop() const
Gets graph margin top.

int16_t getGraphAreaPaddingBottom() const
Gets graph area padding bottom.

int16_t getGraphAreaPaddingLeft() const
Gets graph area padding left.

int16_t getGraphAreaPaddingRight() const
Gets graph area padding right.

int16_t getGraphAreaPaddingTop() const
Gets graph area padding top.

int16_t getGraphAreaWidth() const
Gets graph area width.

int16_t getGraphAreaWidthIncludingPadding() const
Gets graph area width including padding (but not margin).

virtual int getGraphRangeXMax() const =0
Gets the maximum x coordinate for the graph.

virtual int getGraphRangeXMin() const =0
Gets the minimum x coordinate for the graph.

virtual float getGraphRangeYMaxAsFloat() const =0
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMaxAsInt() const =0
Gets maximum y coordinate for the graph.

virtual float getGraphRangeYMinAsFloat() const =0
Gets minimum y coordinate for the graph.

virtual int getGraphRangeYMinAsInt() const =0
Gets minimum y coordinate for the graph.

int16_t getMaxCapacity() const
Gets the capacity (max number of points) of the graph.

virtual bool getNearestIndexForScreenX(int16_t x, int16_t & index) const
Gets graph index nearest to the given screen x coordinate.

virtual bool getNearestIndexForScreenXY(int16_t x, int16_t y, int16_t & index)
Gets graph index nearest to the given screen position.

int getScale() const
Gets the scaling factor previously set using setScale().

int16_t getUsedCapacity() const
Gets the number of point used by the graph.

virtual void handleClickEvent(const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

float indexToDataPointXAsFloat(int16_t index) const
Get the data point x value for the given graph point index.

int indexToDataPointXAsInt(int16_t index) const
Get the data point x value for the given graph point index.

float indexToDataPointYAsFloat(int16_t index) const
Get the data point y value for the given graph point index.

int indexToDataPointYAsInt(int16_t index) const
Get the data point y value for the given graph point index.

virtual int32_t indexToGlobalIndex(int16_t index) const
Convert an index to global index.

int16_t indexToScreenX(int16_t index) const
Get the screen x coordinate for the given graph point index.

int16_t indexToScreenY(int16_t index) const
Get the screen y coordinate for the given graph point index.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setClickAction(GenericCallback< const AbstractDataGraph &, const
GraphClickEvent & > & callback)
Sets an action to be executed when the graph is clicked.

void setDragAction(GenericCallback< const AbstractDataGraph &, const
GraphDragEvent & > & callback)
Sets an action to be executed when the graph is dragged.

void setGapBeforeIndex(int16_t index)
Makes gap before the specified index.

void setGraphAreaMargin(int16_t top, int16_t left, int16_t right, int16_t bottom)
Sets graph position inside the widget by reserving a margin around the graph.

void setGraphAreaPadding(int16_t top, int16_t left, int16_t right, int16_t bottom)

Adds some padding around the graph that will not be drawn in (apart from dots,
boxes etc.

void setGraphRange(int xMin, int xMax, float yMin, float yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

void setGraphRange(int xMin, int xMax, int yMin, int yMax)
Sets minimum and maximum x and y coordinate ranges for the graph.

virtual void setGraphRangeX(int min, int max) =0
Sets minimum and maximum x coordinates for the graph.

virtual void setGraphRangeY(float min, float max) =0
Sets minimum and maximum y coordinates for the graph.

virtual void setGraphRangeY(int min, int max) =0
Sets minimum and maximum y coordinates for the graph.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setScale(int scale)
Sets a scaling factor to be multiplied on each added element.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

int float2scaled(float f, int scale)
Multiply a floating point value with a constant and round the result.

int int2scaled(int i, int scale)
Multiply an integer value with a constant.

float scaled2float(int i, int scale)
Divide a floating point number with a constant.

int scaled2int(int i, int scale)
Divide an integer with a constant and round the result.

Protected Functions inherited from AbstractDataGraph
int convertToGraphScale(int value, int scale) const

Converts a number with one scale to a number that has the same scale as the
graph.

int float2scaled(float f) const
Same as float2scaled(float,int) using the graph's scale.

virtual int getGraphRangeYMaxScaled() const =0
Gets maximum y coordinate for the graph.

virtual int getGraphRangeYMinScaled() const =0
Gets minimum y coordinate for the graph.

virtual int getXAxisOffsetScaled() const
Get x axis offset as a scaled value.

virtual int getXAxisScaleScaled() const
Get x axis scale as a scaled value.

virtual int indexToDataPointXScaled(int16_t index) const =0
Same as indexToDataPointXAsInt(int16_t) except the returned value is left
scaled.

virtual int indexToDataPointYScaled(int16_t index) const =0
Same as indexToDataPointYAsInt(int16_t) except the returned value is left
scaled.

virtual CWRUtil::Q5 indexToScreenXQ5(int16_t index) const =0
Gets screen x coordinate for a specific data point added to the graph.

virtual CWRUtil::Q5 indexToScreenYQ5(int16_t index) const =0
Gets screen y coordinate for a specific data point added to the graph.

int int2scaled(int i) const
Same as int2scaled(int,int) using the graph's scale.

void invalidateAllXAxisPoints()
Invalidate all x axis points.

void invalidateGraphArea()
Invalidate entire graph area (the center of the graph).

void invalidateGraphPointAt(int16_t index)
Invalidate point at a given index.

void invalidateXAxisPointAt(int16_t index)
Invalidate x axis point at the given index.

float scaled2float(int i) const
Same as scaled2float(int,int) using the graph's scale.

int scaled2int(int i) const
Same as scaled2int(int,int) using the graph's scale.

void setGraphRangeScaled(int xMin, int xMax, int yMin, int yMax)
Same as setGraphRange(int,int,int,int) except the passed arguments are
assumed scaled.

virtual void setGraphRangeYScaled(int min, int max) =0
Same as setGraphRangeY(int,int) except the passed arguments are assumed
scaled.

void updateAreasPosition()
Updates the position of all elements in all area after a change in size of the
graph area and/or label padding.

virtual CWRUtil::Q5 valueToScreenXQ5(int x) const =0
Gets screen x coordinate for an absolute value.

virtual CWRUtil::Q5 valueToScreenYQ5(int y) const =0
Gets screen y coordinate for an absolute value.

virtual bool xScreenRangeToIndexRange(int16_t xLo, int16_t xHi, int16_t & indexLow,
int16_t & indexHigh) const =0
Gets index range for screen x coordinate range taking the current graph range
into account.

Protected Attributes inherited from AbstractDataGraph
uint8_t alpha

The alpha of the
entire graph.

Container bottomArea
The area below the
graph.

int16_t bottomPadding

The graph area
bottom padding.

GenericCallback< const AbstractDataGraph &, const GraphClickEvent & > * clickAction
The callback to be
executed when this
Graph is clicked.

int dataScale
The data scale
applied to all values.

GenericCallback< const AbstractDataGraph &, const GraphDragEvent & > * dragAction
The callback to be
executed when this
Graph is dragged.

int16_t gapBeforeIndex
The graph is
disconnected (there
is a gap) before this
element index.

Container graphArea
The graph area (the
center area)

Container leftArea
The area to the left
of the graph.

int16_t leftPadding
The graph area left
padding.

int16_t maxCapacity
Maximum number
of points in the
graph.

Container rightArea
The area to the right
of the graph.

int16_t rightPadding

The graph area right
padding.

Container topArea
The area above the
graph.

int16_t topPadding
The graph area top
padding.

int16_t usedCapacity
The number of used
points in the graph.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)

Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
GraphWrapAndOverwrite

GraphWrapAndOverwrite ()

Version: 4.16

HAL
Hardware Abstraction Layer. Contains functions that are specific to the hardware platform the code is
running on.

Inherited by: HALSDL2

Public Types

enum
FrameRefreshStrategy { REFRESH_STRATEGY_DEFAULT,
REFRESH_STRATEGY_OPTIM_SINGLE_BUFFER_TFT_CTRL,
REFRESH_STRATEGY_PARTIAL_FRAMEBUFFER }
A list of available frame refresh strategies.

enum RenderingVariant { SOFTWARE, HARDWARE }
A list of rendering variants.

Public Functions
virtual void allowDMATransfers()

Allow the DMA to start transfers.

virtual void backPorchExited()
Has to be called from within the LCD IRQ rutine when the Back Porch Exit
is reached.

void
blitCopy(const uint16_t pSrc, const uint8_t pClut, uint16_t x, uint16_t y,
uint16_t width, uint16_t height, uint16_t srcWidth, uint8_t alpha, bool
hasTransparentPixels, uint16_t dstWidth, Bitmap::BitmapFormat
srcFormat, Bitmap::BitmapFormat dstFormat)
Blits a 2D source-array to the framebuffer performing alpha-blending as
specified.

virtual void
blitCopy(const uint16_t * pSrc, uint16_t x, uint16_t y, uint16_t width,
uint16_t height, uint16_t srcWidth, uint8_t alpha, bool
hasTransparentPixels)
Blits a 2D source-array to the framebuffer performing alpha-blending as
specified using the default lcd format.

virtual void
blitCopy(const uint16_t * pSrc, uint16_t x, uint16_t y, uint16_t width,
uint16_t height, uint16_t srcWidth, uint8_t alpha, bool
hasTransparentPixels, uint16_t dstWidth, Bitmap::BitmapFormat
srcFormat, Bitmap::BitmapFormat dstFormat)
Blits a 2D source-array to the framebuffer performing alpha-blending as
specified.

virtual void blitCopyARGB8888(const uint16_t * pSrc, uint16_t x, uint16_t y, uint16_t
width, uint16_t height, uint16_t srcWidth, uint8_t alpha)
Blits a 2D source-array to the framebuffer performing per-pixel alpha
blending.

virtual void
blitCopyGlyph(const uint8_t * pSrc, uint16_t x, uint16_t y, uint16_t width,
uint16_t height, uint16_t srcWidth, colortype color, uint8_t alpha,
BlitOperations operation)
Blits a 4bpp or 8bpp glyph - maybe use the same method and supply
additional color mode arg.

virtual void blitFill(colortype color, uint16_t x, uint16_t y, uint16_t width, uint16_t
height, uint8_t alpha)
Blits a color value to the framebuffer performing alpha-blending as
specified.

virtual void
blitFill(colortype color, uint16_t x, uint16_t y, uint16_t width, uint16_t
height, uint8_t alpha, uint16_t dstWidth, Bitmap::BitmapFormat
dstFormat)
Blits a color value to the framebuffer performing alpha-blending as
specified.

virtual bool blockCopy(void RESTRICT dest, const void RESTRICT src, uint32_t
numBytes)
This function performs a platform-specific memcpy, if supported by the
hardware.

virtual void configureInterrupts() =0
Configures the interrupts relevant for TouchGFX.

virtual uint16_t configurePartialFrameBuffer(const uint16_t x, const uint16_t y, const
uint16_t width, const uint16_t height)
Configures a partial framebuffer as current framebuffer.

virtual uint16_t * copyFBRegionToMemory(Rect meAbs)
Copies a region of the currently displayed framebuffer to memory.

virtual uint16_t * copyFBRegionToMemory(Rect meAbs, uint16_t * dst, uint32_t stride)

Copies a region of the currently displayed framebuffer to a buffer.

virtual void disableInterrupts() =0
Disables the DMA and LCD interrupts.

virtual void drawDrawableInDynamicBitmap(Drawable & drawable, BitmapId
bitmapId)
Render a Drawable and its widgets into a dynamic bitmap.

virtual void drawDrawableInDynamicBitmap(Drawable & drawable, BitmapId
bitmapId, const Rect & rect)
Render a Drawable and its widgets into a dynamic bitmap.

void enableDMAAcceleration(const bool enable)
Sets a flag to allow use of DMA operations to speed up drawing
operations.

virtual void enableInterrupts() =0
Enables the DMA and LCD interrupts.

virtual void enableLCDControllerInterrupt() =0
Configure the LCD controller to fire interrupts at VSYNC.

void enableMCULoadCalculation(bool enabled)
This method sets a flag that determines if generic HAL should calculate
MCU load based on concrete MCU instrumentation.

virtual void flushDMA()
This function blocks until the DMA queue (containing BlitOps) is empty.

virtual void flushFrameBuffer()
This function is called whenever the framework has performed a
complete draw.

virtual void flushFrameBuffer(const Rect & rect)
This function is called whenever the framework has performed a partial
draw.

void frontPorchEntered()
Has to be called from within the LCD IRQ routine when the Front Porch
Entry is reached.

uint16_t * getAnimationStorage() const
Gets the optional framebuffer used for animation storage.

LCD * getAuxiliaryLCD()
Get the auxiliary LCD class attached to the HAL instance if any.

virtual BlitOperations getBlitCaps()
Function for obtaining the blit capabilities of the concrete HAL
implementation.

ButtonController * getButtonController() const
Gets the associated ButtonController.

uint32_t getCPUCycles()
Gets the current cycle counter.

uint16_t getDisplayHeight() const
Gets display height.

DisplayOrientation getDisplayOrientation() const
Gets the current display orientation.

uint16_t getDisplayWidth() const
Gets display width.

virtual DMAType getDMAType()
Function for obtaining the DMA type of the concrete DMA
implementation.

uint8_t getFingerSize() const
Gets the finger size in pixels.

virtual FlashDataReader * getFlashDataReader() const
Gets the flash data reader.

FrameBufferAllocator * getFrameBufferAllocator()
Gets the framebuffer allocator.

FrameRefreshStrategy getFrameRefreshStrategy() const
Used internally by TouchGFX core to manage the timing and process of
drawing into the framebuffer.

Gestures * getGestures()
Get the Gesture class attached to the HAL instance.

uint32_t getLCDRefreshCount()

Returns the number of VSync interrupts between the current drawing
operation and the last drawing operation, i.e.

uint8_t getMCULoadPct() const
Gets the current MCU load.

virtual uint16_t getTFTCurrentLine()
Get the current line (Y) of the TFT controller.

virtual uint16_t * getTFTFrameBuffer() const =0
Gets the framebuffer address used by the TFT controller.

int8_t getTouchSampleRate() const
Gets the number of ticks between each touch screen sample.

HAL(DMA_Interface & dmaInterface, LCD & display, TouchController &
touchCtrl, uint16_t width, uint16_t height)
Initializes a new instance of the HAL class.

void initialize()
This function is responsible for initializing the entire framework.

void lockDMAToFrontPorch(bool enableLock)
Function to set whether the DMA transfers are locked to the TFT update
cycle.

virtual uint16_t * lockFrameBuffer()
Waits for the framebuffer to become available for use (i.e.

virtual void registerEventListener(UIEventListener & listener)
Registers an event handler implementation with the underlying event
system.

void registerTaskDelayFunction(void(*)(uint16_t) delayF)
Registers a function capable of delaying GUI task execution.

virtual bool sampleKey(uint8_t & key)
Sample external key event.

void setAuxiliaryLCD(LCD * auxLCD)
Set an auxiliary LCD class to be used for offscreen rendering.

void setButtonController(ButtonController * btnCtrl)

Stores a pointer to an instance of a specific implementation of a
ButtonController.

virtual void setDisplayOrientation(DisplayOrientation orientation)
Sets the desired display orientation (landscape or portrait).

void setDragThreshold(uint8_t value)
Configure the threshold for reporting drag events.

void setFingerSize(uint8_t size)
Sets the finger size in pixels.

void setFrameBufferAllocator(FrameBufferAllocator * allocator)
Sets a framebuffer allocator.

virtual void setFrameBufferStartAddresses(void frameBuffer, void doubleBuffer,
void * animationStorage)
Sets framebuffer start addresses.

void setFrameRateCompensation(bool enabled)
Enables or disables compensation for lost frames.

bool setFrameRefreshStrategy(FrameRefreshStrategy s)
Set a specific strategy for handling timing and mechanism of framebuffer
drawing.

void setMCUActive(bool active)
Register if MCU is active by measuring cpu cycles.

void setMCUInstrumentation(MCUInstrumentation * mcuInstr)
Stores a pointer to an instance of an MCU specific instrumentation class.

void setRenderingVariant(RenderingVariant variant)
Set current rendering variant for cache maintenance.

void setTouchSampleRate(int8_t sampleRateInTicks)
Sets the number of ticks between each touch screen sample.

void signalDMAInterrupt()
Notify the framework that a DMA interrupt has occurred.

void swapFrameBuffers()
Swaps the two framebuffers.

virtual void taskDelay(uint16_t ms)
Delay GUI task execution by number of milliseconds.

virtual void taskEntry()
Main event loop.

virtual void unlockFrameBuffer()
Unlocks the framebuffer (MUST be called exactly once for each call to
lockFrameBuffer()).

void vSync()
Called by the VSync interrupt.

virtual ~HAL()
Finalizes an instance of the HAL class.

HAL * getInstance()
Gets the HAL instance.

LCD & lcd()
Gets a reference to the LCD.

Protected Functions
virtual bool beginFrame()

Called when beginning to rendering a frame.

virtual void endFrame()
Called when a rendering pass is completed.

virtual void FlushCache()
Flush D-Cache.

uint16_t * getClientFrameBuffer()
Gets client framebuffer.

virtual void InvalidateCache()
Invalidate D-Cache.

virtual void noTouch()
Called by the touch driver to indicate that no touch is currently detected.

virtual void performDisplayOrientationChange()
Perform the actual display orientation change.

virtual void setTFTFrameBuffer(uint16_t * address) =0
Sets the framebuffer address used by the TFT controller.

virtual void tick()
This function is called at each timer tick, depending on platform implementation.

virtual void touch(int32_t x, int32_t y)
Called by the touch driver to indicate a touch.

Public Attributes
uint16_t DISPLAY_HEIGHT

The height of the LCD display in pixels.

DisplayRotation DISPLAY_ROTATION
The rotation from display to framebuffer.

uint16_t DISPLAY_WIDTH
The width of the LCD display in pixels.

uint16_t FRAME_BUFFER_HEIGHT
The height of the framebuffer in pixels.

uint16_t FRAME_BUFFER_WIDTH
The width of the framebuffer in pixels.

bool USE_ANIMATION_STORAGE
Is animation storage enabled?

bool USE_DOUBLE_BUFFERING
Is double buffering enabled?

Protected Attributes
LCD * auxiliaryLCD

Auxiliary LCD class used to render Drawables into dynamic bitmaps.

ButtonController * buttonController
A reference to an optional ButtonController.

DMA_Interface & dma
A reference to the DMA interface.

uint8_t fingerSize
The radius of the finger in pixels.

uint16_t * frameBuffer0
Pointer to the first framebuffer.

uint16_t * frameBuffer1
Pointer to the second framebuffer.

uint16_t * frameBuffer2
Pointer to the optional third framebuffer used for animation storage.

FrameBufferAllocator * frameBufferAllocator
A reference to an optional FrameBufferAllocator.

bool frameBufferUpdatedThisFrame
True if something was drawn in the current frame.

Gestures gestures
Class for low-level interpretation of touch events.

LCD & lcdRef
A reference to the LCD.

bool lockDMAToPorch
Whether or not to lock DMA transfers with TFT porch signal.

MCUInstrumentation * mcuInstrumentation
A reference to an optional MCU instrumentation.

DisplayOrientation nativeDisplayOrientation
Contains the native display orientation. If desired orientation is different,
apply rotation.

Rect partialFrameBufferRect
The region of the screen covered by the partial framebuffer.

FrameRefreshStrategy refreshStrategy
The selected display refresh strategy.

void(* taskDelayFunc
Pointer to a function that can delay GUI task for a number of milliseconds.

TouchController & touchController
A reference to the touch controller.

bool isDrawing
True if currently in the process of rendering a screen.

Public Types Documentation
FrameRefreshStrategy

enum FrameRefreshStrategy

A list of available frame refresh strategies.

REFRESH_STRATEGY_DEFAULT If not explicitly set, this strategy is
used.

REFRESH_STRATEGY_OPTIM_SINGLE_BUFFER_TFT_CTRL Strategy optimized for single
framebuffer on systems with TFT
controller.

REFRESH_STRATEGY_PARTIAL_FRAMEBUFFER Strategy using less than a full
framebuffer.

RenderingVariant
enum RenderingVariant

A list of rendering variants.

SOFTWARE
HARDWARE

Public Functions Documentation
allowDMATransfers

virtual void allowDMATransfers ()

Allow the DMA to start transfers.

Front Porch Entry is a good place to call this.

backPorchExited
virtual void backPorchExited ()

Has to be called from within the LCD IRQ rutine when the Back Porch Exit is reached.

Has to be called from within the LCD IRQ rutine when the Back Porch Exit is reached.

blitCopy
void blitCopy (const uint16_t * pSrc ,

const uint8_t * pClut ,
uint16_t x ,
uint16_t y ,
uint16_t width ,
uint16_t height ,
uint16_t srcWidth ,
uint8_t alpha ,
bool hasTransparentPixels ,
uint16_t dstWidth ,
Bitmap::BitmapFormat srcFormat ,
Bitmap::BitmapFormat dstFormat
)

Blits a 2D source-array to the framebuffer performing alpha-blending as specified.

Parameters:
pSrc The source-array pointer (points to first value to copy)
pClut The CLUT pointer (points to CLUT header data which include the type

and size of this CLUT followed by colors data)
x The destination x coordinate on the framebuffer.
y The destination y coordinate on the framebuffer.
width The width desired area of the source 2D array.

height The height of desired area of the source 2D array.
srcWidth The distance (in elements) from first value of first line, to first value of

second line (the source 2D array width)
alpha The alpha value to use for blending (255 = solid, no blending)
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.
dstWidth The distance (in elements) from first value of first line, to first value of

second line (the destination 2D array width)
srcFormat The source buffer color format (default is the framebuffer format)
dstFormat The destination buffer color format (default is the framebuffer format)

NOTE

Alpha=255 is assumed "solid" and shall be used if HAL does not support BLIT_OP_COPY_WITH_ALPHA.

blitCopy
virtual void blitCopy (const uint16_t * pSrc ,

uint16_t x ,
uint16_t y ,
uint16_t width ,
uint16_t height ,
uint16_t srcWidth ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits a 2D source-array to the framebuffer performing alpha-blending as specified using the default
lcd format.

Parameters:
pSrc The source-array pointer (points to first value to copy)
x The destination x coordinate on the framebuffer.
y The destination y coordinate on the framebuffer.
width The width desired area of the source 2D array.
height The height of desired area of the source 2D array.
srcWidth The distance (in elements) from first value of first line, to first value of

second line (the source 2D array width)
alpha The alpha value to use for blending (255 = solid, no blending)
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

NOTE

Alpha=255 is assumed "solid" and shall be used if HAL does not support BLIT_OP_COPY_WITH_ALPHA.

blitCopy
virtual void blitCopy (const uint16_t * pSrc ,

uint16_t x ,
uint16_t y ,
uint16_t width ,
uint16_t height ,
uint16_t srcWidth ,
uint8_t alpha ,
bool hasTransparentPixels ,
uint16_t dstWidth ,
Bitmap::BitmapFormat srcFormat ,
Bitmap::BitmapFormat dstFormat
)

Blits a 2D source-array to the framebuffer performing alpha-blending as specified.

Parameters:
pSrc The source-array pointer (points to first value to copy)
x The destination x coordinate on the framebuffer.
y The destination y coordinate on the framebuffer.
width The width desired area of the source 2D array.
height The height of desired area of the source 2D array.
srcWidth The distance (in elements) from first value of first line, to first value of

second line (the source 2D array width)
alpha The alpha value to use for blending (255 = solid, no blending)
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.
dstWidth The distance (in elements) from first value of first line, to first value of

second line (the destination 2D array width)
srcFormat The source buffer color format (default is the framebuffer format)
dstFormat The destination buffer color format (default is the framebuffer format)

NOTE

Alpha=255 is assumed "solid" and shall be used if HAL does not support BLIT_OP_COPY_WITH_ALPHA.

blitCopyARGB8888
virtual void blitCopyARGB8888 (const uint16_t * pSrc ,

uint16_t x ,

uint16_t y ,
uint16_t width ,
uint16_t height ,
uint16_t srcWidth ,
uint8_t alpha
)

Blits a 2D source-array to the framebuffer performing per-pixel alpha blending.

Parameters:
pSrc The source-array pointer (points to first value to copy)
x The destination x coordinate on the framebuffer.
y The destination y coordinate on the framebuffer.
width The width desired area of the source 2D array.
height The height of desired area of the source 2D array.
srcWidth The distance (in elements) from first value of first line, to first value of second line (the

source 2D array width)
alpha The alpha value to use for blending. This is applied on every pixel, in addition to the

per-pixel alpha value (255 = solid, no blending)

blitCopyGlyph
virtual void blitCopyGlyph (const uint8_t * pSrc ,

uint16_t x ,
uint16_t y ,
uint16_t width ,
uint16_t height ,
uint16_t srcWidth ,
colortype color ,
uint8_t alpha ,
BlitOperations operation
)

Blits a 4bpp or 8bpp glyph - maybe use the same method and supply additional color mode arg.

Parameters:
pSrc The source-array pointer (points to first value to copy)
x The destination x coordinate on the framebuffer.
y The destination y coordinate on the framebuffer.
width The width desired area of the source 2D array.
height The height of desired area of the source 2D array.
srcWidth The distance (in elements) from first value of first line, to first value of second line

(the source 2D array width)
color Color of the text.
alpha The alpha value to use for blending (255 = solid, no blending)

operation The operation type to use for blit copy.

blitFill
virtual void blitFill (colortype color ,

uint16_t x ,
uint16_t y ,
uint16_t width ,
uint16_t height ,
uint8_t alpha
)

Blits a color value to the framebuffer performing alpha-blending as specified.

Parameters:
color The desired fill-color.
x The destination x coordinate on the framebuffer.
y The destination y coordinate on the framebuffer.
width The width desired area of the source 2D array.
height The height of desired area of the source 2D array.
alpha The alpha value to use for blending (255 = solid, no blending)

NOTE

Alpha=255 is assumed "solid" and shall be used if HAL does not support BLIT_OP_FILL_WITH_ALPHA.

blitFill
virtual void blitFill (colortype color ,

uint16_t x ,
uint16_t y ,
uint16_t width ,
uint16_t height ,
uint8_t alpha ,
uint16_t dstWidth ,
Bitmap::BitmapFormat dstFormat
)

Blits a color value to the framebuffer performing alpha-blending as specified.

Parameters:
color The desired fill-color.

x The destination x coordinate on the framebuffer.
y The destination y coordinate on the framebuffer.
width The width desired area of the source 2D array.
height The height of desired area of the source 2D array.
alpha The alpha value to use for blending (255 = solid, no blending)
dstWidth The distance (in elements) from first value of first line, to first value of second line

(the destination 2D array width)
dstFormat The destination buffer color format (default is the framebuffer format)

NOTE

Alpha=255 is assumed "solid" and shall be used if HAL does not support BLIT_OP_FILL_WITH_ALPHA.

blockCopy
virtual bool blockCopy (void *RESTRICT dest ,

const void *RESTRICT src ,
uint32_t numBytes
)

This function performs a platform-specific memcpy, if supported by the hardware.

Parameters:
dest Pointer to destination memory.
src Pointer to source memory.
numBytes Number of bytes to copy.

Returns:

true if the copy succeeded, false if copy was not performed.

Reimplemented by: touchgfx::HALSDL2::blockCopy

configureInterrupts
virtual void configureInterrupts () =0

Configures the interrupts relevant for TouchGFX.

This primarily entails setting the interrupt priorities for the DMA and LCD interrupts.

Reimplemented by: touchgfx::HALSDL2::configureInterrupts

configurePartialFrameBuffer
virtual uint16_t configurePartialFrameBuffer (const uint16_t x ,

const uint16_t y ,
const uint16_t width ,
const uint16_t height
)

Configures a partial framebuffer as current framebuffer.

This method uses the assigned FrameBufferAllocator to allocate block of compatible dimensions.
The height of the allocated block is returned.

Parameters:
x The absolute x coordinate of the block on the screen.
y The absolute y coordinate of the block on the screen.
width The width of the block.
height The height of the block requested.

Returns:

The height of the block allocated.

copyFBRegionToMemory
virtual uint16_t * copyFBRegionToMemory (Rect meAbs)

Copies a region of the currently displayed framebuffer to memory.

Used for e.g. SlideTransition and for displaying pre-rendered drawables e.g. in animations where
redrawing the drawable is not necessary.

Parameters:
meAbs The framebuffer region to copy.

Returns:

A pointer to the memory address containing the copy of the framebuffer.

NOTE

Requires animation storage to be present.

copyFBRegionToMemory

virtual uint16_t * copyFBRegionToMemory (Rect meAbs ,
uint16_t * dst ,
uint32_t stride
)

Copies a region of the currently displayed framebuffer to a buffer.

Used for e.g. SlideTransition and for displaying pre-rendered drawables e.g. in animations where
redrawing the drawable is not necessary. The buffer can e.g. be a dynamic bitmap.

Parameters:
meAbs The framebuffer region to copy.
dst Address of the buffer to store the copy in.
stride The width of the target buffer (row length).

Returns:

A pointer to the memory address containing the copy of the framebuffer.

NOTE

Requires animation storage to be present.

disableInterrupts
virtual void disableInterrupts () =0

Disables the DMA and LCD interrupts.

Reimplemented by: touchgfx::HALSDL2::disableInterrupts

drawDrawableInDynamicBitmap
virtual void drawDrawableInDynamicBitmap (Drawable & drawable ,

BitmapId bitmapId
)

Render a Drawable and its widgets into a dynamic bitmap.

Parameters:
drawable A reference on the Drawable object to render.
bitmapId Dynamic bitmap to be used as a rendertarget.

drawDrawableInDynamicBitmap
virtual void drawDrawableInDynamicBitmap (Drawable & drawable ,

BitmapId bitmapId ,
const Rect & rect
)

Render a Drawable and its widgets into a dynamic bitmap.

Only the specified Rect region is updated.

Parameters:
drawable A reference on the Drawable object to render.
bitmapId Dynamic bitmap to be used as a rendertarget.
rect Region to update.

enableDMAAcceleration
void enableDMAAcceleration (const bool enable)

Sets a flag to allow use of DMA operations to speed up drawing operations.

Parameters:
enable True to enable, false to disable.

See also:

getBlitCaps

enableInterrupts
virtual void enableInterrupts () =0

Enables the DMA and LCD interrupts.

Reimplemented by: touchgfx::HALSDL2::enableInterrupts

enableLCDControllerInterrupt
virtual void enableLCDControllerInterrupt () =0

Configure the LCD controller to fire interrupts at VSYNC.

Called automatically once TouchGFX initialization has completed.

Reimplemented by: touchgfx::HALSDL2::enableLCDControllerInterrupt

enableMCULoadCalculation
void enableMCULoadCalculation (bool enabled)

This method sets a flag that determines if generic HAL should calculate MCU load based on
concrete MCU instrumentation.

Parameters:
enabled If true, set flag to update MCU load.

flushDMA
virtual void flushDMA ()

This function blocks until the DMA queue (containing BlitOps) is empty.

flushFrameBuffer
virtual void flushFrameBuffer ()

This function is called whenever the framework has performed a complete draw.

On some platforms, a local framebuffer needs to be pushed to the display through a SPI channel or
similar. Implement that functionality here. This function is called whenever the framework has
performed a complete draw.

Reimplemented by: touchgfx::HALSDL2::flushFrameBuffer

flushFrameBuffer
virtual void flushFrameBuffer (const Rect & rect)

This function is called whenever the framework has performed a partial draw.

Parameters:
rect The area of the screen that has been drawn, expressed in absolute coordinates.

See also:

flushFrameBuffer

Reimplemented by: touchgfx::HALSDL2::flushFrameBuffer

frontPorchEntered
void frontPorchEntered ()

Has to be called from within the LCD IRQ routine when the Front Porch Entry is reached.

getAnimationStorage
uint16_t * getAnimationStorage () const

Gets the optional framebuffer used for animation storage.

Returns:

The address or 0 if unused.

getAuxiliaryLCD
LCD * getAuxiliaryLCD ()

Get the auxiliary LCD class attached to the HAL instance if any.

Returns:

A pointer on the axiliary LCD class attached to the HAL instance.

getBlitCaps
virtual BlitOperations getBlitCaps ()

Function for obtaining the blit capabilities of the concrete HAL implementation.

As default, will return whatever blitcaps are reported by the associated DMA object.

DMA operations can be disabled by calling enableDMAAcceleration(bool).

Returns:

a bitmask of the supported blitcaps.

See also:

enableDMAAcceleration

getButtonController
ButtonController * getButtonController () const

Gets the associated ButtonController.

Returns:

A pointer to the ButtonController, or zero if no ButtonController has been set.

getCPUCycles
uint32_t getCPUCycles ()

Gets the current cycle counter.

Returns:

the cycle counter.

getDisplayHeight
uint16_t getDisplayHeight () const

Gets display height.

Returns:

The display height.

getDisplayOrientation
DisplayOrientation getDisplayOrientation () const

Gets the current display orientation.

Will be equal to the native orientation of the display unless setDisplayOrientation has been
explicitly called earlier.

Returns:

The current display orientation.

getDisplayWidth
uint16_t getDisplayWidth () const

Gets display width.

Returns:

The display width.

getDMAType
virtual DMAType getDMAType ()

Function for obtaining the DMA type of the concrete DMA implementation.

As default, will return DMA_TYPE_GENERIC type value.

Returns:

a DMAType value of the concrete DMA implementation.

getFingerSize
uint8_t getFingerSize () const

Gets the finger size in pixels.

Returns:

The size of the finger in pixels, 1 is the default value.

getFlashDataReader
virtual FlashDataReader * getFlashDataReader () const

Gets the flash data reader.

This method must be implemented in subclasses that uses a FlashDataReader object.

Returns:

the FlashDataReader.

getFrameBufferAllocator

FrameBufferAllocator * getFrameBufferAllocator ()

Gets the framebuffer allocator.

Returns:

The framebuffer allocator.

getFrameRefreshStrategy
FrameRefreshStrategy getFrameRefreshStrategy () const

Used internally by TouchGFX core to manage the timing and process of drawing into the
framebuffer.

Returns:

Current frame refresh strategy.

See also:

setFrameRefreshStrategy

getGestures
Gestures * getGestures ()

Get the Gesture class attached to the HAL instance.

Returns:

A pointer to the Gestures object.

getLCDRefreshCount
uint32_t getLCDRefreshCount ()

Returns the number of VSync interrupts between the current drawing operation and the last
drawing operation, i.e.

the number of lost frames.

Returns:

Number of VSync since previous draw.

getMCULoadPct
uint8_t getMCULoadPct () const

Gets the current MCU load.

Returns:

mcuLoadPct the MCU Load in %.

getTFTCurrentLine
virtual uint16_t getTFTCurrentLine ()

Get the current line (Y) of the TFT controller.

This function is used to obtain the progress of the TFT controller. More specifically, the line (or Y-
value) currently being transferred.

Note: The value must be adjusted to account for vertical back porch before returning, such that the
value is always within the range of [0; actual display height in pixels[

It is used for the REFRESH_STRATEGY_OPTIM_SINGLE_BUFFER_TFT_CTRL frame refresh strategy in
order to synchronize framebuffer drawing with TFT controller progress. If this strategy is used, the
concrete HAL subclass must provide an override of this function that returns correct line value. If
this strategy is not used, then the getTFTCurrentLine function is never called and can be
disregarded.

Returns:

In this default implementation, 0xFFFF is returned to signify "not implemented".

getTFTFrameBuffer
virtual uint16_t * getTFTFrameBuffer () const =0

Gets the framebuffer address used by the TFT controller.

Returns:

The address of the framebuffer currently being displayed on the TFT.

Reimplemented by: touchgfx::HALSDL2::getTFTFrameBuffer

getTouchSampleRate

int8_t getTouchSampleRate () const

Gets the number of ticks between each touch screen sample.

Returns:

Number of ticks between each touch screen sample.

HAL
HAL (DMA_Interface & dmaInterface ,

LCD & display ,
TouchController & touchCtrl ,
uint16_t width ,
uint16_t height
)

Initializes a new instance of the HAL class.

Parameters:
dmaInterface Reference to the DMA interface.
display Reference to the LCD.
touchCtrl Reference to the touch controller.
width The width of the LCD display, in pixels.
height The height of the LCD display, in pixels.

initialize
void initialize ()

This function is responsible for initializing the entire framework.

lockDMAToFrontPorch
void lockDMAToFrontPorch (bool enableLock)

Function to set whether the DMA transfers are locked to the TFT update cycle.

If locked, DMA transfer will not begin until the TFT controller has finished updating the display. If
not locked, DMA transfers will begin as soon as possible. Default is true (DMA is locked with TFT).

Disabling the lock will in most cases significantly increase rendering performance. It is therefore
strongly recommended to disable it. Depending on platform this may in rare cases cause rendering

problems (visible tearing on display). Please see the chapter "Optimizing DMA During TFT
Controller Access" for details on this setting.

Parameters:
enableLock True to lock DMA transfers to the front porch signal. Conservative, default setting.

False to disable, which will normally yield substantial performance improvement.

NOTE

This setting only has effect when using double buffering.

lockFrameBuffer
virtual uint16_t * lockFrameBuffer ()

Waits for the framebuffer to become available for use (i.e.

not used by DMA transfers).

Returns:

A pointer to the beginning of the currently used framebuffer.

NOTE

Function blocks until framebuffer is available. Client code MUST call unlockFrameBuffer() when
framebuffer operation has completed.

registerEventListener
virtual void registerEventListener (UIEventListener & listener)

Registers an event handler implementation with the underlying event system.

The actual HAL implementation decides whether or not multiple UIEventListener instances are
allowed (including execution order).

Parameters:
listener The listener to register.

registerTaskDelayFunction
void registerTaskDelayFunction (void(*)(uint16_t) delayF)

Registers a function capable of delaying GUI task execution.

In order to make use of the HAL::taskDelay function, a delay function must be registered by calling
this function. Usually the delay function would be OSWrappers::taskDelay.

Parameters:
delayF A pointer to a function returning void with an uint16_t parameter specifying number of

milliseconds to delay.

NOTE

The task delay capability is only used when the frame refresh strategy
REFRESH_STRATEGY_OPTIM_SINGLE_BUFFER_TFT_CTRL is selected. Otherwise it is not necessary to register
a delay function.

sampleKey
virtual bool sampleKey (uint8_t & key)

Sample external key event.

Parameters:
key Output parameter that will be set to the key value if a keypress was detected.

Returns:

True if a keypress was detected and the "key" parameter is set to a value.

Reimplemented by: touchgfx::HALSDL2::sampleKey

setAuxiliaryLCD
void setAuxiliaryLCD (LCD * auxLCD)

Set an auxiliary LCD class to be used for offscreen rendering.

Parameters:
auxLCD A pointer on the axiliary LCD class to use for offscreen rendering.

setButtonController
void setButtonController (ButtonController * btnCtrl)

Stores a pointer to an instance of a specific implementation of a ButtonController.

Parameters:
btnCtrl pointer to button controller.

setDisplayOrientation
virtual void setDisplayOrientation (DisplayOrientation orientation)

Sets the desired display orientation (landscape or portrait).

If desired orientation is different from the native orientation of the display, a rotation is
automatically applied. The rotation does not incur any performance cost.

Parameters:
orientation The desired display orientation.

NOTE

A screen transition must occur before this takes effect!

setDragThreshold
void setDragThreshold (uint8_t value)

Configure the threshold for reporting drag events.

A touch input movement must exceed this value in either axis in order to report a drag. Default
value is 0.

Parameters:
value New threshold value.

NOTE

Use if touch controller is not completely accurate to avoid "false" drags.

setFingerSize
void setFingerSize (uint8_t size)

Sets the finger size in pixels.

Setting the finger size to a size of more than 1 pixel will emulate a finger of width and height of 2*
(fingersize-1)+1. This can be especially useful when trying to interact with small elements on a high
ppi display. The finger size will influence which element is chosen as the point of interaction, when
clicking, dragging, ... the display. A number of samples will be drawn from within the finger area
and a best matching drawable will be chosen. The best matching algorithm will consider the size of
the drawable and the distance from the touch point.

Parameters:
size the size of the finger.

setFrameBufferAllocator
void setFrameBufferAllocator (FrameBufferAllocator * allocator)

Sets a framebuffer allocator.

The framebuffer allocator is only used in partial framebuffer mode.

Parameters:
allocator pointer to a framebuffer allocator object.

setFrameBufferStartAddresses
virtual void setFrameBufferStartAddresses (void * frameBuffer ,

void * doubleBuffer ,
void * animationStorage
)

Sets framebuffer start addresses.

Sets individual framebuffer start addresses.

Parameters:
frameBuffer Buffer for framebuffer data, must be non-null.
doubleBuffer If non-null, buffer for double buffer data. If null double buffering is disabled.
animationStorage If non-null, the animation storage. If null animation storage is disabled.

setFrameRateCompensation

void setFrameRateCompensation (bool enabled)

Enables or disables compensation for lost frames.

See knowledge base article.

Parameters:
enabled true to enable, false to disable.

setFrameRefreshStrategy
bool setFrameRefreshStrategy (FrameRefreshStrategy s)

Set a specific strategy for handling timing and mechanism of framebuffer drawing.

By setting a different frame refresh strategy, the internals of how TouchGFX interacts with the
framebuffer can be modified.

Currently there are two strategies available. This will increase over time.

REFRESH_STRATEGY_OPTIM_SINGLE_BUFFER_TFT_CTRL: this strategy is available on targets that
use single buffering on a TFT controller based system. It requires an implementation of the
getTFTCurrentLine() function as well as a task delay function being registered. The
implementation of this strategy is that TouchGFX will carefully track the progress of the TFT
controller, and draw parts of the framebuffer whenever possible. The effect is that the risk of
tearing is much reduced compared to the default single buffer strategy of only drawing in porch
areas. It does have a drawback of slightly increased MCU load. But in many cases employing this
strategy will make it possible to avoid external RAM, by using just a single framebuffer in
internal RAM and still avoid tearing.
REFRESH_STRATEGY_DEFAULT: This is a general strategy that works for all target configurations.
Recommendation: Try using REFRESH_STRATEGY_OPTIM_SINGLE_BUFFER_TFT_CTRL if you're on
a TFT controller based system (ie. non-8080) and you have a desire to avoid external RAM.
Otherwise stick to REFRESH_STRATEGY_DEFAULT.

Parameters:
s The desired strategy to use.

Returns:

true if the desired strategy will be used, false otherwise.

setMCUActive

void setMCUActive (bool active)

Register if MCU is active by measuring cpu cycles.

If user wishes to track MCU load, this method should be called whenever the OS Idle task is
scheduled in or out. This method makes calls to a concrete implementation of GPIO functionality
and a concrete implementation of cpu cycles.

Parameters:
active If true, MCU is registered as being active, inactive otherwise.

setMCUInstrumentation
void setMCUInstrumentation (MCUInstrumentation * mcuInstr)

Stores a pointer to an instance of an MCU specific instrumentation class.

Parameters:
mcuInstr pointer to MCU instrumentation.

setRenderingVariant
void setRenderingVariant (RenderingVariant variant)

Set current rendering variant for cache maintenance.

This function is used to keep track of previous rendering variant and will determine if cache should
be flush or invalidated depending on transition state.

Parameters:
variant The rendering variant used.

setTouchSampleRate
void setTouchSampleRate (int8_t sampleRateInTicks)

Sets the number of ticks between each touch screen sample.

Parameters:
sampleRateInTicks Sample rate. Default is 1 (every tick).

signalDMAInterrupt
void signalDMAInterrupt ()

Notify the framework that a DMA interrupt has occurred.

swapFrameBuffers
void swapFrameBuffers ()

Swaps the two framebuffers.

taskDelay
virtual void taskDelay (uint16_t ms)

Delay GUI task execution by number of milliseconds.

This function requires the presence of a task delay function. If a task delay function has not been
registered, it returns immediately. Otherwise it returns when number of milliseconds has passed.

Parameters:
ms Number of milliseconds to wait.

See also:

registerTaskDelayFunction

taskEntry
virtual void taskEntry ()

Main event loop.

Will wait for VSYNC signal, and then process next frame. Call this function from your GUI task.

NOTE

This function never returns!

Reimplemented by: touchgfx::HALSDL2::taskEntry

unlockFrameBuffer
virtual void unlockFrameBuffer ()

Unlocks the framebuffer (MUST be called exactly once for each call to lockFrameBuffer()).

vSync
void vSync ()

Called by the VSync interrupt.

Called by the VSync interrupt for counting of LCD refreshes.

~HAL
virtual ~HAL ()

Finalizes an instance of the HAL class.

getInstance
static HAL * getInstance ()

Gets the HAL instance.

Returns:

The HAL instance.

lcd
static LCD & lcd ()

Gets a reference to the LCD.

Returns:

A reference to the LCD.

Protected Functions Documentation

beginFrame
virtual bool beginFrame ()

Called when beginning to rendering a frame.

Returns:

true if rendering can begin, false otherwise.

endFrame
virtual void endFrame ()

Called when a rendering pass is completed.

FlushCache
virtual void FlushCache ()

Flush D-Cache.

Called by setRenderingVariant when chaning rendering variant from Software to Hardware
indicating the cache should be invalidated.

getClientFrameBuffer
uint16_t * getClientFrameBuffer ()

Gets client framebuffer.

Returns:

The address of the framebuffer currently used by the framework to draw in.

InvalidateCache
virtual void InvalidateCache ()

Invalidate D-Cache.

Called by setRenderingVariant when chaning rendering variant from Hardware to Software
indicating the cache should be invalidated.

noTouch
virtual void noTouch ()

Called by the touch driver to indicate that no touch is currently detected.

performDisplayOrientationChange
virtual void performDisplayOrientationChange ()

Perform the actual display orientation change.

Reimplemented by: touchgfx::HALSDL2::performDisplayOrientationChange

setTFTFrameBuffer
virtual void setTFTFrameBuffer (uint16_t * address)

Sets the framebuffer address used by the TFT controller.

Parameters:
address New framebuffer address.

Reimplemented by: touchgfx::HALSDL2::setTFTFrameBuffer

tick
virtual void tick ()

This function is called at each timer tick, depending on platform implementation.

touch
virtual void touch (int32_t x ,

int32_t y
)

Called by the touch driver to indicate a touch.

Parameters:
x The x coordinate of the touch.
y The y coordinate of the touch.

Public Attributes Documentation
DISPLAY_HEIGHT

uint16_t DISPLAY_HEIGHT

The height of the LCD display in pixels.

DISPLAY_ROTATION
DisplayRotation DISPLAY_ROTATION

The rotation from display to framebuffer.

DISPLAY_WIDTH
uint16_t DISPLAY_WIDTH

The width of the LCD display in pixels.

FRAME_BUFFER_HEIGHT
uint16_t FRAME_BUFFER_HEIGHT

The height of the framebuffer in pixels.

FRAME_BUFFER_WIDTH
uint16_t FRAME_BUFFER_WIDTH

The width of the framebuffer in pixels.

USE_ANIMATION_STORAGE

bool USE_ANIMATION_STORAGE

Is animation storage enabled?

USE_DOUBLE_BUFFERING
bool USE_DOUBLE_BUFFERING

Is double buffering enabled?

Protected Attributes Documentation
auxiliaryLCD

LCD * auxiliaryLCD

Auxiliary LCD class used to render Drawables into dynamic bitmaps.

buttonController
ButtonController * buttonController

A reference to an optional ButtonController.

dma
DMA_Interface & dma

A reference to the DMA interface.

fingerSize
uint8_t fingerSize

The radius of the finger in pixels.

frameBuffer0
uint16_t * frameBuffer0

Pointer to the first framebuffer.

frameBuffer1
uint16_t * frameBuffer1

Pointer to the second framebuffer.

frameBuffer2
uint16_t * frameBuffer2

Pointer to the optional third framebuffer used for animation storage.

frameBufferAllocator
FrameBufferAllocator * frameBufferAllocator

A reference to an optional FrameBufferAllocator.

frameBufferUpdatedThisFrame
bool frameBufferUpdatedThisFrame

True if something was drawn in the current frame.

gestures
Gestures gestures

Class for low-level interpretation of touch events.

lcdRef

LCD & lcdRef

A reference to the LCD.

lockDMAToPorch
bool lockDMAToPorch

Whether or not to lock DMA transfers with TFT porch signal.

mcuInstrumentation
MCUInstrumentation * mcuInstrumentation

A reference to an optional MCU instrumentation.

nativeDisplayOrientation
DisplayOrientation nativeDisplayOrientation

Contains the native display orientation. If desired orientation is different, apply rotation.

partialFrameBufferRect
Rect partialFrameBufferRect

The region of the screen covered by the partial framebuffer.

refreshStrategy
FrameRefreshStrategy refreshStrategy

The selected display refresh strategy.

taskDelayFunc

void(* taskDelayFunc

Pointer to a function that can delay GUI task for a number of milliseconds.

touchController
TouchController & touchController

A reference to the touch controller.

isDrawing
bool isDrawing

True if currently in the process of rendering a screen.

Version: 4.16

HALSDL2
HAL implementation for the TouchGFX simulator. This particular simulator HAL implementation uses
SDL2 to show the content of the framebuffer in a window.

See: HAL

Inherits from: HAL

Public Functions
virtual bool blockCopy(void RESTRICT dest, const void RESTRICT src, uint32_t numBytes)

This function performs a platform-specific memcpy, if supported by the hardware.

virtual void copyScreenshotToClipboard()
Copies the screenshot to clipboard.

bool doSampleTouch(int32_t & x, int32_t & y) const
Samples the position of the mouse cursor.

virtual void flushFrameBuffer()
This function is called whenever the framework has performed a complete draw.

virtual void flushFrameBuffer(const Rect & rect)
This function is called whenever the framework has performed a partial draw.

bool getConsoleVisible() const
Is console window visible?

bool getWindowVisible() const
Is the window visible?

HALSDL2(DMA_Interface & dma, LCD & lcd, TouchController & touchCtrl, uint16_t
width, uint16_t height)
Initializes a new instance of the HALSDL2 class.

void loadSkin(DisplayOrientation orientation, int x, int y)
Loads a skin for a given display orientation that will be rendered in the simulator
window with the the TouchGFX framebuffer placed inside the bitmap at the given
coordinates.

virtual bool sampleKey(uint8_t & key)
Sample key event from keyboard.

virtual void saveNextScreenshots(int n)
Copy the next N screenshots to disk.

void saveScreenshot()
Saves a screenshot to the default folder and default filename.

virtual void saveScreenshot(char folder, char filename)
Saves a screenshot.

virtual bool sdl_init(int argcount, char ** args)
Initializes SDL.

void setConsoleVisible(bool visible, bool redrawWindow =true)
Change visibility of console window (hidden vs.

void setVsyncInterval(float ms)
Sets vsync interval for simulating same tick speed as the real hardware.

void setWindowVisible(bool visible, bool redrawWindow =true)
Change visibility of window (hidden vs.

virtual void taskEntry()
Main event loop.

uint8_t * doRotate(uint8_t dst, uint8_t src)
Rotates a framebuffer if the display is rotated.

char ** getArgv(int * argc)
Gets the argc and argv for a Windows program.

const char * getWindowTitle()
Gets window title.

bool isSingleStepping()
Is single stepping.

uint8_t * scaleTo24bpp(uint8_t dst, uint16_t src, Bitmap::BitmapFormat format)
Scale framebuffer to 24bpp.

void setSingleStepping(bool singleStepping =true)

Single stepping enable/disable.

void setWindowTitle(const char * title)
Sets window title.

void singleStep(uint16_t steps =1)
Single step a number of steps.

Protected Functions
virtual void configureInterrupts()

Configures the interrupts relevant for TouchGFX.

virtual void configureLCDInterrupt()
Configures LCD interrupt.

virtual void disableInterrupts()
Disables the DMA and LCD interrupts.

virtual void enableInterrupts()
Enables the DMA and LCD interrupts.

virtual void enableLCDControllerInterrupt()
Enables the LCD interrupt.

virtual uint16_t * getTFTFrameBuffer() const
Gets TFT framebuffer.

virtual void performDisplayOrientationChange()
Perform the actual display orientation change.

virtual void renderLCD_FrameBufferToMemory(const Rect & _rectToUpdate, uint8_t *
frameBuffer)
Update framebuffer using an SDL Surface.

virtual void setTFTFrameBuffer(uint16_t * addr)
Sets TFT framebuffer.

Additional inherited members

Public Types inherited from HAL

enum
FrameRefreshStrategy { REFRESH_STRATEGY_DEFAULT,
REFRESH_STRATEGY_OPTIM_SINGLE_BUFFER_TFT_CTRL,
REFRESH_STRATEGY_PARTIAL_FRAMEBUFFER }
A list of available frame refresh strategies.

enum RenderingVariant { SOFTWARE, HARDWARE }
A list of rendering variants.

Public Functions inherited from HAL
virtual void allowDMATransfers()

Allow the DMA to start transfers.

virtual void backPorchExited()
Has to be called from within the LCD IRQ rutine when the Back Porch Exit
is reached.

void
blitCopy(const uint16_t pSrc, const uint8_t pClut, uint16_t x, uint16_t y,
uint16_t width, uint16_t height, uint16_t srcWidth, uint8_t alpha, bool
hasTransparentPixels, uint16_t dstWidth, Bitmap::BitmapFormat
srcFormat, Bitmap::BitmapFormat dstFormat)
Blits a 2D source-array to the framebuffer performing alpha-blending as
specified.

virtual void
blitCopy(const uint16_t * pSrc, uint16_t x, uint16_t y, uint16_t width,
uint16_t height, uint16_t srcWidth, uint8_t alpha, bool
hasTransparentPixels)
Blits a 2D source-array to the framebuffer performing alpha-blending as
specified using the default lcd format.

virtual void
blitCopy(const uint16_t * pSrc, uint16_t x, uint16_t y, uint16_t width,
uint16_t height, uint16_t srcWidth, uint8_t alpha, bool
hasTransparentPixels, uint16_t dstWidth, Bitmap::BitmapFormat
srcFormat, Bitmap::BitmapFormat dstFormat)
Blits a 2D source-array to the framebuffer performing alpha-blending as
specified.

virtual void blitCopyARGB8888(const uint16_t * pSrc, uint16_t x, uint16_t y, uint16_t
width, uint16_t height, uint16_t srcWidth, uint8_t alpha)
Blits a 2D source-array to the framebuffer performing per-pixel alpha
blending.

virtual void
blitCopyGlyph(const uint8_t * pSrc, uint16_t x, uint16_t y, uint16_t width,
uint16_t height, uint16_t srcWidth, colortype color, uint8_t alpha,
BlitOperations operation)
Blits a 4bpp or 8bpp glyph - maybe use the same method and supply
additional color mode arg.

virtual void blitFill(colortype color, uint16_t x, uint16_t y, uint16_t width, uint16_t
height, uint8_t alpha)
Blits a color value to the framebuffer performing alpha-blending as
specified.

virtual void
blitFill(colortype color, uint16_t x, uint16_t y, uint16_t width, uint16_t
height, uint8_t alpha, uint16_t dstWidth, Bitmap::BitmapFormat
dstFormat)
Blits a color value to the framebuffer performing alpha-blending as
specified.

virtual uint16_t configurePartialFrameBuffer(const uint16_t x, const uint16_t y, const
uint16_t width, const uint16_t height)
Configures a partial framebuffer as current framebuffer.

virtual uint16_t * copyFBRegionToMemory(Rect meAbs)
Copies a region of the currently displayed framebuffer to memory.

virtual uint16_t * copyFBRegionToMemory(Rect meAbs, uint16_t * dst, uint32_t stride)
Copies a region of the currently displayed framebuffer to a buffer.

virtual void drawDrawableInDynamicBitmap(Drawable & drawable, BitmapId
bitmapId)
Render a Drawable and its widgets into a dynamic bitmap.

virtual void drawDrawableInDynamicBitmap(Drawable & drawable, BitmapId
bitmapId, const Rect & rect)
Render a Drawable and its widgets into a dynamic bitmap.

void enableDMAAcceleration(const bool enable)
Sets a flag to allow use of DMA operations to speed up drawing
operations.

void enableMCULoadCalculation(bool enabled)
This method sets a flag that determines if generic HAL should calculate
MCU load based on concrete MCU instrumentation.

virtual void flushDMA()
This function blocks until the DMA queue (containing BlitOps) is empty.

void frontPorchEntered()
Has to be called from within the LCD IRQ routine when the Front Porch
Entry is reached.

uint16_t * getAnimationStorage() const
Gets the optional framebuffer used for animation storage.

LCD * getAuxiliaryLCD()
Get the auxiliary LCD class attached to the HAL instance if any.

virtual BlitOperations getBlitCaps()
Function for obtaining the blit capabilities of the concrete HAL
implementation.

ButtonController * getButtonController() const
Gets the associated ButtonController.

uint32_t getCPUCycles()
Gets the current cycle counter.

uint16_t getDisplayHeight() const
Gets display height.

DisplayOrientation getDisplayOrientation() const
Gets the current display orientation.

uint16_t getDisplayWidth() const
Gets display width.

virtual DMAType getDMAType()
Function for obtaining the DMA type of the concrete DMA
implementation.

uint8_t getFingerSize() const
Gets the finger size in pixels.

virtual FlashDataReader * getFlashDataReader() const
Gets the flash data reader.

FrameBufferAllocator * getFrameBufferAllocator()
Gets the framebuffer allocator.

FrameRefreshStrategy getFrameRefreshStrategy() const

Used internally by TouchGFX core to manage the timing and process of
drawing into the framebuffer.

Gestures * getGestures()
Get the Gesture class attached to the HAL instance.

uint32_t getLCDRefreshCount()
Returns the number of VSync interrupts between the current drawing
operation and the last drawing operation, i.e.

uint8_t getMCULoadPct() const
Gets the current MCU load.

virtual uint16_t getTFTCurrentLine()
Get the current line (Y) of the TFT controller.

int8_t getTouchSampleRate() const
Gets the number of ticks between each touch screen sample.

HAL(DMA_Interface & dmaInterface, LCD & display, TouchController &
touchCtrl, uint16_t width, uint16_t height)
Initializes a new instance of the HAL class.

void initialize()
This function is responsible for initializing the entire framework.

void lockDMAToFrontPorch(bool enableLock)
Function to set whether the DMA transfers are locked to the TFT update
cycle.

virtual uint16_t * lockFrameBuffer()
Waits for the framebuffer to become available for use (i.e.

virtual void registerEventListener(UIEventListener & listener)
Registers an event handler implementation with the underlying event
system.

void registerTaskDelayFunction(void(*)(uint16_t) delayF)
Registers a function capable of delaying GUI task execution.

void setAuxiliaryLCD(LCD * auxLCD)
Set an auxiliary LCD class to be used for offscreen rendering.

void setButtonController(ButtonController * btnCtrl)

Stores a pointer to an instance of a specific implementation of a
ButtonController.

virtual void setDisplayOrientation(DisplayOrientation orientation)
Sets the desired display orientation (landscape or portrait).

void setDragThreshold(uint8_t value)
Configure the threshold for reporting drag events.

void setFingerSize(uint8_t size)
Sets the finger size in pixels.

void setFrameBufferAllocator(FrameBufferAllocator * allocator)
Sets a framebuffer allocator.

virtual void setFrameBufferStartAddresses(void frameBuffer, void doubleBuffer,
void * animationStorage)
Sets framebuffer start addresses.

void setFrameRateCompensation(bool enabled)
Enables or disables compensation for lost frames.

bool setFrameRefreshStrategy(FrameRefreshStrategy s)
Set a specific strategy for handling timing and mechanism of framebuffer
drawing.

void setMCUActive(bool active)
Register if MCU is active by measuring cpu cycles.

void setMCUInstrumentation(MCUInstrumentation * mcuInstr)
Stores a pointer to an instance of an MCU specific instrumentation class.

void setRenderingVariant(RenderingVariant variant)
Set current rendering variant for cache maintenance.

void setTouchSampleRate(int8_t sampleRateInTicks)
Sets the number of ticks between each touch screen sample.

void signalDMAInterrupt()
Notify the framework that a DMA interrupt has occurred.

void swapFrameBuffers()
Swaps the two framebuffers.

virtual void taskDelay(uint16_t ms)
Delay GUI task execution by number of milliseconds.

virtual void unlockFrameBuffer()
Unlocks the framebuffer (MUST be called exactly once for each call to
lockFrameBuffer()).

void vSync()
Called by the VSync interrupt.

virtual ~HAL()
Finalizes an instance of the HAL class.

HAL * getInstance()
Gets the HAL instance.

LCD & lcd()
Gets a reference to the LCD.

Protected Functions inherited from HAL
virtual bool beginFrame()

Called when beginning to rendering a frame.

virtual void endFrame()
Called when a rendering pass is completed.

virtual void FlushCache()
Flush D-Cache.

uint16_t * getClientFrameBuffer()
Gets client framebuffer.

virtual void InvalidateCache()
Invalidate D-Cache.

virtual void noTouch()
Called by the touch driver to indicate that no touch is currently detected.

virtual void tick()
This function is called at each timer tick, depending on platform implementation.

virtual void touch(int32_t x, int32_t y)
Called by the touch driver to indicate a touch.

Public Attributes inherited from HAL
uint16_t DISPLAY_HEIGHT

The height of the LCD display in pixels.

DisplayRotation DISPLAY_ROTATION
The rotation from display to framebuffer.

uint16_t DISPLAY_WIDTH
The width of the LCD display in pixels.

uint16_t FRAME_BUFFER_HEIGHT
The height of the framebuffer in pixels.

uint16_t FRAME_BUFFER_WIDTH
The width of the framebuffer in pixels.

bool USE_ANIMATION_STORAGE
Is animation storage enabled?

bool USE_DOUBLE_BUFFERING
Is double buffering enabled?

Protected Attributes inherited from HAL
LCD * auxiliaryLCD

Auxiliary LCD class used to render Drawables into dynamic bitmaps.

ButtonController * buttonController
A reference to an optional ButtonController.

DMA_Interface & dma
A reference to the DMA interface.

uint8_t fingerSize
The radius of the finger in pixels.

uint16_t * frameBuffer0

Pointer to the first framebuffer.

uint16_t * frameBuffer1
Pointer to the second framebuffer.

uint16_t * frameBuffer2
Pointer to the optional third framebuffer used for animation storage.

FrameBufferAllocator * frameBufferAllocator
A reference to an optional FrameBufferAllocator.

bool frameBufferUpdatedThisFrame
True if something was drawn in the current frame.

Gestures gestures
Class for low-level interpretation of touch events.

LCD & lcdRef
A reference to the LCD.

bool lockDMAToPorch
Whether or not to lock DMA transfers with TFT porch signal.

MCUInstrumentation * mcuInstrumentation
A reference to an optional MCU instrumentation.

DisplayOrientation nativeDisplayOrientation
Contains the native display orientation. If desired orientation is different,
apply rotation.

Rect partialFrameBufferRect
The region of the screen covered by the partial framebuffer.

FrameRefreshStrategy refreshStrategy
The selected display refresh strategy.

void(* taskDelayFunc
Pointer to a function that can delay GUI task for a number of milliseconds.

TouchController & touchController
A reference to the touch controller.

bool isDrawing

True if currently in the process of rendering a screen.

Public Functions Documentation
blockCopy

virtual bool blockCopy (void *RESTRICT dest ,
const void *RESTRICT src ,
uint32_t numBytes
)

This function performs a platform-specific memcpy, if supported by the hardware.

Parameters:
dest Pointer to destination memory.
src Pointer to source memory.
numBytes Number of bytes to copy.

Returns:

true if the copy succeeded, false if copy was not performed.

Reimplements: touchgfx::HAL::blockCopy

copyScreenshotToClipboard
virtual void copyScreenshotToClipboard ()

Copies the screenshot to clipboard.

doSampleTouch
bool doSampleTouch (int32_t & x , const

int32_t & y const
) const

Samples the position of the mouse cursor.

Parameters:
x The x coordinate.
y The y coordinate.

Returns:

True if touch detected, false otherwise.

flushFrameBuffer
virtual void flushFrameBuffer ()

This function is called whenever the framework has performed a complete draw.

On some platforms, a local framebuffer needs to be pushed to the display through a SPI channel or
similar. Implement that functionality here. This function is called whenever the framework has
performed a complete draw.

Reimplements: touchgfx::HAL::flushFrameBuffer

flushFrameBuffer
virtual void flushFrameBuffer (const Rect & rect)

This function is called whenever the framework has performed a partial draw.

Parameters:
rect The area of the screen that has been drawn, expressed in absolute coordinates.

Reimplements: touchgfx::HAL::flushFrameBuffer

getConsoleVisible
bool getConsoleVisible () const

Is console window visible?

Returns:

True if it is visible, false if it is hidden.

See also:

setConsoleVisible, getWindowVisible

getWindowVisible

bool getWindowVisible () const

Is the window visible?

Returns:

True if it is visible, false if it is hidden.

See also:

setWindowVisible, getConsoleVisible

HALSDL2
HALSDL2 (DMA_Interface & dma ,

LCD & lcd ,
TouchController & touchCtrl ,
uint16_t width ,
uint16_t height
)

Initializes a new instance of the HALSDL2 class.

Parameters:
dma Reference to DMA interface.
lcd Reference to the LCD.
touchCtrl Reference to Touch Controller driver.
width Width of the display.
height Height of the display.

loadSkin
void loadSkin (DisplayOrientation orientation ,

int x ,
int y
)

Loads a skin for a given display orientation that will be rendered in the simulator window with the
the TouchGFX framebuffer placed inside the bitmap at the given coordinates.

Different bitmaps can be loaded in landscape and portrait mode. If the provided bitmap cannot be
loaded, the TouchGFX framebuffer will be displayed as normal. If the png files contain areas with
alpha < 255, this will be used to create a shaped window.

Parameters:

orientation The orientation.
x The x coordinate.
y The y coordinate.

NOTE

The skins must be named "portrait.png" and "landscape.png" and placed inside the "simulator/" folder. The
build process of the simulator will automatically copy the skins to the folder where the executable
simulator is generated. When as skin is set, the entire framebuffer is rendered through SDL whenever there
is a change. Without a skin, only the areas with changes is rendered through SDL.

sampleKey
virtual bool sampleKey (uint8_t & key)

Sample key event from keyboard.

Parameters:
key Output parameter that will be set to the key value if a key press was detected.

Returns:

True if a key press was detected and the "key" parameter is set to a value.

Reimplements: touchgfx::HAL::sampleKey

saveNextScreenshots
virtual void saveNextScreenshots (int n)

Copy the next N screenshots to disk.

On each screen update, the new screen is saved to disk.

Parameters:
n Number of screenshots to save. These are added to any ongoing amount of screenshots in

queue.

saveScreenshot
void saveScreenshot ()

Saves a screenshot to the default folder and default filename.

saveScreenshot
virtual void saveScreenshot (char * folder ,

char * filename
)

Saves a screenshot.

Parameters:
folder Folder name to place the screenshot in.
filename Filename to save the screenshot to.

sdl_init
virtual bool sdl_init (int argcount ,

char ** args
)

Initializes SDL.

Parameters:
argcount Number of arguments.
args Arguments.

Returns:

True if init went well, false otherwise.

setConsoleVisible
void setConsoleVisible (bool visible ,

bool redrawWindow =true
)

Change visibility of console window (hidden vs.

shown).

Parameters:
visible Should the window be visible?
redrawWindow (Optional) Should the window be redrawn? Default is true.

See also:

setWindowVisible, getConsoleVisible

setVsyncInterval
void setVsyncInterval (float ms)

Sets vsync interval for simulating same tick speed as the real hardware.

Due to limitations in the granularity of SDL, the generated ticks in the simulator might not occur at
the exact time, but accumulated over several ticks, the precision is very good.

Parameters:
ms The milliseconds between ticks.

NOTE

That you can also use HAL::setFrameRateCompensation() in the simulator. The effect of this can easily be
demonstrated by dragging the console output window of the simulator (when running from Visual Studio)
as this will pause the SDL and generate a lot of ticks when the console window is released. Beware that
since the missed vsyncs are accumulated in an 8 bit counter, only up to 255 ticks may be missed, so at
VsyncInterval = 16.6667, dragging the windows for more than 255 * 16.6667ms = 4250ms = 4.25s will not
generate all the ticks that were actually missed. This situation is, however, not very realistic, as normally just
a couple of vsyncs are skipped.

setWindowVisible
void setWindowVisible (bool visible ,

bool redrawWindow =true
)

Change visibility of window (hidden vs.

shown) as well as (due to backward compatibility) the visibility of the console window.

Parameters:
visible Should the window be visible?
redrawWindow (Optional) Should the window be redrawn? Default is true.

See also:

getWindowVisible, setConsoleVisible

taskEntry

y
virtual void taskEntry ()

Main event loop.

Will wait for VSYNC signal, and then process next frame. Call this function from your GUI task.

NOTE

This function never returns!

Reimplements: touchgfx::HAL::taskEntry

doRotate
static uint8_t * doRotate (uint8_t * dst ,

uint8_t * src
)

Rotates a framebuffer if the display is rotated.

Parameters:
dst Destination for the rotated framebuffer. must be non-null if the screen is rotated.
src The framebuffer.

Returns:

Null if it fails, else a pointer to an uint8_t.

getArgv
static char ** getArgv (int * argc)

Gets the argc and argv for a Windows program.

Parameters:
argc Pointer to where to store number of arguments.

Returns:

The argv list of arguments.

getWindowTitle
static const char * getWindowTitle ()

Gets window title.

Returns:

null "TouchGFX simulator" unless set to something else using setWindowTitle().

See also:

setWindowTitle

isSingleStepping
static bool isSingleStepping ()

Is single stepping.

Returns:

True if single stepping, false if not.

See also:

setSingleStepping

scaleTo24bpp
static uint8_t * scaleTo24bpp (uint8_t * dst ,

uint16_t * src ,
Bitmap::BitmapFormat format
)

Scale framebuffer to 24bpp.

The format of the framebuffer (src) is given in parameter format. The result is placed in the pre-
allocated memory pointed to by parameter dst. If the frambebuffer is in format Bitmap::RGB888,
parameter dst is not used and the parameter src is simply returned.

Parameters:
dst Destination for the framebuffer. must be non-null unless format is Bitmap::RGB888.
src The framebuffer.
format Describes the format of the framebuffer (lcd().framebufferFormat()).

Returns:

Null if it fails, else a pointer to an uint8_t.

setSingleStepping
static void setSingleStepping (bool singleStepping =true)

Single stepping enable/disable.

When single stepping is enabled, F10 will execute one tick and F9 will disable single stepping.

Parameters:
singleStepping (Optional) True to pause the simulation and start single stepping.

See also:

isSingleStepping

setWindowTitle
static void setWindowTitle (const char * title)

Sets window title.

Sets window title of the TouchGFX simulator.

Parameters:
title The title, if null the original "TouchGFX simulator" will be used.

See also:

getWindowTitle

singleStep
static void singleStep (uint16_t steps =1)

Single step a number of steps.

Only works if single stepping is already enabled.

Parameters:
steps (Optional) The steps Default is 1 step.

See also:

setSingleStepping, isSingleStepping

Protected Functions Documentation
configureInterrupts

virtual void configureInterrupts ()

Configures the interrupts relevant for TouchGFX.

This primarily entails setting the interrupt priorities for the DMA and LCD interrupts.

Reimplements: touchgfx::HAL::configureInterrupts

configureLCDInterrupt
virtual void configureLCDInterrupt ()

Configures LCD interrupt.

disableInterrupts
virtual void disableInterrupts ()

Disables the DMA and LCD interrupts.

Reimplements: touchgfx::HAL::disableInterrupts

enableInterrupts
virtual void enableInterrupts ()

Enables the DMA and LCD interrupts.

Reimplements: touchgfx::HAL::enableInterrupts

enableLCDControllerInterrupt
virtual void enableLCDControllerInterrupt ()

Enables the LCD interrupt.

Reimplements: touchgfx::HAL::enableLCDControllerInterrupt

getTFTFrameBuffer
virtual uint16_t * getTFTFrameBuffer () const

Gets TFT framebuffer.

Returns:

null if it fails, else the TFT framebuffer.

Reimplements: touchgfx::HAL::getTFTFrameBuffer

performDisplayOrientationChange
virtual void performDisplayOrientationChange ()

Perform the actual display orientation change.

Reimplements: touchgfx::HAL::performDisplayOrientationChange

renderLCD_FrameBufferToMemory
virtual void renderLCD_FrameBufferToMemory (const Rect & _rectToUpdate ,

uint8_t * frameBuffer
)

Update framebuffer using an SDL Surface.

Parameters:
_rectToUpdate Area to update.
frameBuffer Target framebuffer.

setTFTFrameBuffer
virtual void setTFTFrameBuffer (uint16_t * addr)

Sets TFT framebuffer.

Parameters:
addr The address of the TFT framebuffer.

Reimplements: touchgfx::HAL::setTFTFrameBuffer

Version: 4.16

I2C
Platform independent interface for I2C drivers.

Public Functions
I2C(uint8_t ch)
Initializes a new instance of the I2C class.

virtual void init() =0
Initializes the I2C driver.

virtual bool readRegister(uint8_t addr, uint8_t reg, uint8_t * data, uint32_t cnt) =0
Reads the specified register on the device with the specified address.

virtual bool writeRegister(uint8_t addr, uint8_t reg, uint8_t val) =0
Writes the specified value in a register.

virtual ~I2C()
Finalizes an instance of the I2C class.

Protected Attributes
uint8_t channel

I2c channel is stored in order to initialize and recover a specific I2C channel.

Public Functions Documentation
I2C

I2C (uint8_t ch)

Initializes a new instance of the I2C class.

Stores the channel of the I2C bus to be configured.

Parameters:
ch I2C channel.

init
virtual void init () =0

Initializes the I2C driver.

readRegister
virtual bool readRegister (uint8_t addr , =0

uint8_t reg , =0
uint8_t * data , =0
uint32_t cnt =0
) =0

Reads the specified register on the device with the specified address.

Parameters:
addr The I2C device address.
reg The register.
data Pointer to buffer in which to place the result.
cnt Size of buffer in bytes.

Returns:

true on success, false otherwise.

writeRegister
virtual bool writeRegister (uint8_t addr , =0

uint8_t reg , =0
uint8_t val =0
) =0

Writes the specified value in a register.

Parameters:
addr The I2C device address.
reg The register.
val The new value.

Returns:

true on success, false otherwise.

~I2C
virtual ~I2C ()

Finalizes an instance of the I2C class.

Protected Attributes Documentation
channel

uint8_t channel

I2c channel is stored in order to initialize and recover a specific I2C channel.

Version: 4.16

I2CTouchController
Specific I2C-enabled type of Touch Controller.

See: TouchController

Inherits from: TouchController

Public Functions
I2CTouchController(I2C & i2c)
Constructor.

virtual void init() =0
Initializes touch controller.

virtual bool sampleTouch(int32_t & x, int32_t & y) =0
Checks whether the touch screen is being touched, and if so, what coordinates.

virtual ~I2CTouchController()

Protected Attributes
I2C & i2c

I2C driver.

Additional inherited members
Public Functions inherited from TouchController

virtual ~TouchController()
Finalizes an instance of the TouchController class.

Public Functions Documentation
I2CTouchController

I2CTouchController (I2C & i2c)

Constructor.

Initializes I2C driver.

Parameters:
i2c I2C driver.

init
virtual void init () =0

Initializes touch controller.

Reimplements: touchgfx::TouchController::init

sampleTouch
virtual bool sampleTouch (int32_t & x , =0

int32_t & y =0
) =0

Checks whether the touch screen is being touched, and if so, what coordinates.

Parameters:
x The x position of the touch.
y The y position of the touch.

Returns:

True if a touch has been detected, otherwise false.

Reimplements: touchgfx::TouchController::sampleTouch

~I2CTouchController
virtual ~I2CTouchController ()

Protected Attributes Documentation
i2c

I2C & i2c

I2C driver.

Version: 4.16

IconButtonStyle
An icon button style. This class is supposed to be used with one of the ButtonTrigger classes to create
a functional button. This class will show one of two icons depending on the state of the button
(pressed or released).

To get a background behind the icon, use IconButtonStyle together with e.g. ImageButtonStyle:
IconButtonStyle<ImageButtonStyle<ClickButtonTrigger> > myButton;

The IconButtonStyle will center the icon on the enclosing container (normally
AbstractButtonContainer). Set the size of the button before setting the icons.

The position of the icon can be adjusted with setIconXY.

See: AbstractButtonContainer

Inherits from: T

Public Functions
Bitmap getCurrentlyDisplayedIcon() const

Gets currently displayed icon.

int16_t getIconX() const
Gets icon x coordinate.

int16_t getIconY() const
Gets icon y coordinate.

IconButtonStyle()

virtual void setIconBitmaps(const Bitmap & newIconReleased, const Bitmap & newIconPressed)
Sets icon bitmaps.

void setIconX(int16_t x)
Sets icon x coordinate.

void setIconXY(int16_t x, int16_t y)
Sets the position of the icon.

void setIconY(int16_t y)
Sets icon y coordinate.

Protected Functions
virtual void handleAlphaUpdated()

Handles what should happen when the alpha is updated.

virtual void handlePressedUpdated()
Handles what should happen when the pressed state is updated.

Protected Attributes
Image iconImage

The icon image.

Bitmap iconPressed
Icon to display when button is pressed.

Bitmap iconReleased
Icon to display when button is not pressed.

Public Functions Documentation
getCurrentlyDisplayedIcon

Bitmap getCurrentlyDisplayedIcon () const

Gets currently displayed icon.

Returns:

The currently displayed icon.

getIconX
int16_t getIconX () const

Gets icon x coordinate.

Returns:

The icon x coordinate.

getIconY
int16_t getIconY () const

Gets icon y coordinate.

Returns:

The icon y coordinate.

IconButtonStyle
IconButtonStyle ()

setIconBitmaps
virtual void setIconBitmaps (const Bitmap & newIconReleased ,

const Bitmap & newIconPressed
)

Sets icon bitmaps.

Parameters:
newIconReleased The new icon released.
newIconPressed The new icon pressed.

setIconX
void setIconX (int16_t x)

Sets icon x coordinate.

Parameters:
x The x coordinate.

setIconXY
void setIconXY (int16_t x ,

int16_t y
)

Sets the position of the icon.

Parameters:
x The x coordinate.
y The y coordinate.

setIconY
void setIconY (int16_t y)

Sets icon y coordinate.

Parameters:
y The y coordinate.

Protected Functions Documentation
handleAlphaUpdated

virtual void handleAlphaUpdated ()

Handles what should happen when the alpha is updated.

handlePressedUpdated
virtual void handlePressedUpdated ()

Handles what should happen when the pressed state is updated.

Protected Attributes Documentation
iconImage

Image iconImage

The icon image.

iconPressed
Bitmap iconPressed

Icon to display when button is pressed.

iconReleased
Bitmap iconReleased

Icon to display when button is not pressed.

Version: 4.16

Image
Simple widget capable of showing a bitmap on the display. The bitmap can be alpha-blended with the
background (or whichever other Drawable might be "underneath" the Image). The bitmap can and
have areas of varying opacity.

The conversion from image.bmp or image.png to a bitmap that can be used in TouchGFX is handled
by the Image Converter as part of compiling the project. Each image is assigned a unique BITMAP
identifier which.

See: Bitmap

Inherits from: Widget, Drawable

Inherited by: AnimatedImage, ScalableImage, TextureMapper, TiledImage

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

Bitmap getBitmap() const
Gets the Bitmap currently assigned to the Image widget.

BitmapId getBitmapId() const
Gets the BitmapId currently assigned to the Image widget.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

Image(const Bitmap & bitmap =Bitmap())
Constructs a new Image with a default alpha value of 255 (solid) and a default Bitmap
(undefined) if none is specified.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setBitmap(const Bitmap & bitmap)
Sets the bitmap for this Image and updates the width and height of this widget to
match those of the Bitmap.

Protected Attributes
uint8_t alpha

The Alpha for this image.

Bitmap bitmap
The Bitmap to display.

Additional inherited members
Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()

Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Drawable::draw

Reimplemented by: touchgfx::ScalableImage::draw, touchgfx::TextureMapper::draw,
touchgfx::TiledImage::draw

getAlpha
uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getBitmap

Bitmap getBitmap () const

Gets the Bitmap currently assigned to the Image widget.

Returns:

The current Bitmap of the widget.

getBitmapId
BitmapId getBitmapId () const

Gets the BitmapId currently assigned to the Image widget.

Returns:

The current BitmapId of the widget.

DEPRECATED

Use getBitmap() which is automatically converted to BitmapId on demand.

getSolidRect
virtual Rect getSolidRect () const

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

This information is important, as any Drawable underneath the solid area does not need to be
drawn.

Returns:

The solid rectangle part of the Drawable.

NOTE

The rectangle returned must be relative to upper left corner of the Drawable, meaning that a completely
solid widget should return the full size Rect(0, 0, getWidth(), getHeight()). If no area can be guaranteed to
be solid, an empty Rect(0, 0, 0, 0) must be returned. Failing to return the correct rectangle may result in
errors on the display.

Reimplements: touchgfx::Drawable::getSolidRect

Reimplemented by: touchgfx::ScalableImage::getSolidRect,
touchgfx::TextureMapper::getSolidRect, touchgfx::TiledImage::getSolidRect

Image
Image (const Bitmap & bitmap =Bitmap())

Constructs a new Image with a default alpha value of 255 (solid) and a default Bitmap (undefined)
if none is specified.

If a Bitmap is passed to the constructor, the width and height of this widget is set to those of the
bitmap.

Parameters:
bitmap (Optional) The bitmap to display.

See also:

setBitmap

setAlpha
void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setBitmap
virtual void setBitmap (const Bitmap & bitmap)

Sets the bitmap for this Image and updates the width and height of this widget to match those of
the Bitmap.

Parameters:

bitmap The bitmap instance.

NOTE

The user code must call invalidate() in order to update the image on the display.

Reimplemented by: touchgfx::AnimatedImage::setBitmap,
touchgfx::TextureMapper::setBitmap, touchgfx::TiledImage::setBitmap

Protected Attributes Documentation
alpha

uint8_t alpha

The Alpha for this image.

bitmap
Bitmap bitmap

The Bitmap to display.

Version: 4.16

ImageButtonStyle
An image button style. This class is supposed to be used with one of the ButtonTrigger classes to
create a functional button. This class will show one of two images depending on the state of the
button (pressed or released).

The ImageButtonStyle will set the size of the enclosing container (normally AbstractButtonContainer)
to the size of the pressed Bitmap. This can be overridden by calling setWidth/setHeight after setting
the bitmaps.

The position of the bitmap can be adjusted with setBitmapXY (default is upper left corner).

Template Parameters:

T Generic type parameter. Typically a AbstractButtonContainer subclass.

See: AbstractButtonContainer

Inherits from: T

Public Functions
Bitmap getCurrentlyDisplayedBitmap() const

Gets currently displayed bitmap.

ImageButtonStyle()

virtual void setBitmaps(const Bitmap & bmpReleased, const Bitmap & bmpPressed)
Sets the bitmaps.

void setBitmapXY(uint16_t x, uint16_t y)
Sets bitmap x and y.

Protected Functions
virtual void handleAlphaUpdated()

Handles what should happen when the alpha is updated.

virtual void handlePressedUpdated()
Handles what should happen when the pressed state is updated.

Protected Attributes
Image buttonImage

The button image.

Bitmap down
The image to display when button is pressed.

Bitmap up
The image to display when button is released.

Public Functions Documentation
getCurrentlyDisplayedBitmap

Bitmap getCurrentlyDisplayedBitmap () const

Gets currently displayed bitmap.

Returns:

The currently displayed bitmap.

ImageButtonStyle
ImageButtonStyle ()

setBitmaps
virtual void setBitmaps (const Bitmap & bmpReleased ,

const Bitmap & bmpPressed
)

Sets the bitmaps.

Parameters:

bmpReleased The bitmap released.
bmpPressed The bitmap pressed.

setBitmapXY
void setBitmapXY (uint16_t x ,

uint16_t y
)

Sets bitmap x and y.

Parameters:
x An uint16_t to process.
y An uint16_t to process.

Protected Functions Documentation
handleAlphaUpdated

virtual void handleAlphaUpdated ()

Handles what should happen when the alpha is updated.

handlePressedUpdated
virtual void handlePressedUpdated ()

Handles what should happen when the pressed state is updated.

Protected Attributes Documentation
buttonImage

Image buttonImage

The button image.

down
Bitmap down

The image to display when button is pressed.

up
Bitmap up

The image to display when button is released.

Version: 4.16

ImageProgress
An image progress will show parts of an image as a progress indicator. The image can progress from
the left, the right, the bottom or the top of the given area, and can visually be fixed with a larger and
larger portion of the image showing, or it can be moved into view.

Inherits from: AbstractDirectionProgress, AbstractProgressIndicator, Container, Drawable

Public Functions
virtual uint8_t getAlpha() const

Gets the current alpha value of the widget.

virtual bool getAnchorAtZero() const
Gets the current anchor at zero setting.

virtual BitmapId getBitmap() const
Gets the bitmap id of the current image.

ImageProgress()

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setAnchorAtZero(bool anchorAtZero)
Sets anchor at zero.

virtual void setBitmap(BitmapId bitmapId)
Sets the bitmap id to use for progress.

virtual void setProgressIndicatorPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the position and dimensions of the actual progress indicator relative to the
background image.

virtual void setValue(int value)
Sets the current value in the range (min..max) set by setRange().

Protected Attributes

Container container
The container for the image to allow for anchored images.

bool fixedPosition
true if the image should not move during progress

TiledImage image
The image.

Additional inherited members
Public Types inherited from AbstractDirectionProgress

enum DirectionType { RIGHT, LEFT, DOWN, UP }
Values that represent directions.

Public Functions inherited from AbstractDirectionProgress
AbstractDirectionProgress()

virtual DirectionType getDirection() const
Gets the current direction for the progress indicator.

virtual void setDirection(DirectionType direction)
Sets a direction for the progress indicator.

Protected Attributes inherited from
AbstractDirectionProgress

DirectionType progressDirection
The progress direction.

Public Functions inherited from AbstractProgressIndicator
AbstractProgressIndicator()

Initializes a new instance of the AbstractProgressIndicator class with a default
range 0-100.

virtual uint16_t getProgress(uint16_t range =100) const
Gets the current progress based on the range set by setRange() and the value set by
setValue().

virtual int16_t getProgressIndicatorHeight() const
Gets progress indicator height.

virtual int16_t getProgressIndicatorWidth() const
Gets progress indicator width.

virtual int16_t getProgressIndicatorX() const
Gets progress indicator x coordinate.

virtual int16_t getProgressIndicatorY() const
Gets progress indicator y coordinate.

virtual void getRange(int & min, int & max) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps, uint16_t & minStep) const
Gets the range set by setRange().

virtual int getValue() const
Gets the current value set by setValue().

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void setBackground(const Bitmap & bitmapBackground)
Sets the background image.

virtual void setEasingEquation(EasingEquation easingEquation)
Sets easing equation to be used in updateValue.

virtual void setRange(int min, int max, uint16_t steps =0, uint16_t minStep =0)
Sets the range for the progress indicator.

void setValueSetAction(GenericCallback< const AbstractProgressIndicator & > &
callback)
Sets callback that will be triggered every time a new value is assigned to the
progress indicator.

void setValueUpdatedAction(GenericCallback< const AbstractProgressIndicator & >
& callback)
Sets callback that will be triggered when updateValue has finished animating to the
final value.

virtual void updateValue(int value, uint16_t duration)
Update the current value in the range (min..max) set by setRange().

Protected Attributes inherited from AbstractProgressIndicator
int animationDuration

Duration of the animation.

int animationEndValue
The animation end value.

int animationStartValue
The animation start value.

int animationStep
The current animation step.

Image background
The background image.

int currentValue
The current value.

EasingEquation equation
The equation used in updateValue()

Container progressIndicatorContainer
The container that holds the actual
progress indicator.

int rangeMax
The range maximum.

int rangeMin
The range minimum.

uint16_t rangeSteps
The range steps.

uint16_t rangeStepsMin
The range steps minimum.

GenericCallback< const AbstractProgressIndicator & > * valueSetCallback
New value assigned Callback.

GenericCallback< const AbstractProgressIndicator & > * valueUpdatedCallback
Animation ended Callback.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)

Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
getAlpha

virtual uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getAnchorAtZero
virtual bool getAnchorAtZero () const

Gets the current anchor at zero setting.

Returns:

true if the image is anchored at zero, false if it is anchored at current progress.

See also:

setAnchorAtZero

getBitmap
virtual BitmapId getBitmap () const

Gets the bitmap id of the current image.

Returns:

The image.

See also:

setBitmap

ImageProgress
ImageProgress ()

setAlpha
virtual void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setAnchorAtZero
virtual void setAnchorAtZero (bool anchorAtZero)

Sets anchor at zero.

Setting anchor at zero will force the image will be placed so that it is not moved during progress,
only more and more of the image will become visible. If the image is not anchored at zero, it will be
anchored at the current progress and will appear to slide into view.

Parameters:
anchorAtZero true to anchor at zero, false to anchor at current progress.

See also:

getAnchorAtZero

setBitmap
virtual void setBitmap (BitmapId bitmapId)

Sets the bitmap id to use for progress.

Please note that the bitmap is tiled which will allow smaller bitmaps to repeat on the display and
save memory.

Parameters:
bitmapId The bitmap id.

See also:

getBitmap, TiledImage

setProgressIndicatorPosition
virtual void setProgressIndicatorPosition (int16_t x ,

int16_t y ,
int16_t width ,
int16_t height
)

Sets the position and dimensions of the actual progress indicator relative to the background image.

Parameters:
x The x coordinate.
y The y coordinate.
width The width of the box progress indicator.
height The height of the box progress indicator.

See also:

getProgressIndicatorX, getProgressIndicatorY, getProgressIndicatorWidth,
getProgressIndicatorHeight

Reimplements: touchgfx::AbstractProgressIndicator::setProgressIndicatorPosition

setValue
virtual void setValue (int value)

Sets the current value in the range (min..max) set by setRange().

Values lower than min are mapped to min, values higher than max are mapped to max. If a callback
function has been set using setValueSetAction, that callback will be called (unless the new value is
the same as the current value).

Parameters:
value The value.

NOTE

if value is equal to the current value, nothing happens, and the callback will not be called.

See also:

getValue, updateValue, setValueSetAction

Reimplements: touchgfx::AbstractProgressIndicator::setValue

Protected Attributes Documentation
container

Container container

The container for the image to allow for anchored images.

fixedPosition
bool fixedPosition

true if the image should not move during progress

image
TiledImage image

The image.

Version: 4.16

InternalFlashFont
An InternalFlashFont has both glyph table and glyph data placed in a flash which supports random
access read (i.e. not a NAND flash)

See: Font, ConstFont

Inherits from: ConstFont, Font

Public Functions
virtual int8_t getKerning(Unicode::UnicodeChar prevChar, const GlyphNode * glyph)

const
Gets the kerning distance between two characters.

virtual const uint8_t * getPixelData(const GlyphNode * glyph) const
Gets the pixel date associated with this glyph.

InternalFlashFont(const GlyphNode list, uint16_t size, uint16_t height, uint8_t
pixBelowBase, uint8_t bitsPerPixel, uint8_t byteAlignRow, uint8_t maxLeft,
uint8_t maxRight, const uint8_t glyphDataInternalFlash, const KerningNode *
kerningList, const Unicode::UnicodeChar fallbackChar, const
Unicode::UnicodeChar ellipsisChar)
Initializes a new instance of the InternalFlashFont class.

Additional inherited members
Public Functions inherited from ConstFont

ConstFont(const GlyphNode * list, uint16_t size, uint16_t height, uint8_t
pixBelowBase, uint8_t bitsPerPixel, uint8_t byteAlignRow, uint8_t maxLeft,
uint8_t maxRight, const Unicode::UnicodeChar fallbackChar, const
Unicode::UnicodeChar ellipsisChar)
Initializes a new instance of the ConstFont class.

const GlyphNode * find(Unicode::UnicodeChar unicode) const
Finds the glyph data associated with the specified unicode.

const GlyphNode * getGlyph(Unicode::UnicodeChar unicode)
Gets the glyph data associated with the specified Unicode.

virtual const GlyphNode * getGlyph(Unicode::UnicodeChar unicode, const uint8_t *& pixelData,
uint8_t & bitsPerPixel) const
Gets the glyph data associated with the specified Unicode.

const GlyphNode * getGlyph(Unicode::UnicodeChar unicode, const uint8_t *& pixelData,
uint8_t & bitsPerPixel)
Gets the glyph data associated with the specified Unicode.

Protected Attributes inherited from ConstFont
const GlyphNode * glyphList

The list of glyphs.

uint16_t listSize
The size of the list of glyphs.

Public Functions inherited from Font
virtual FORCE_INLINE_FUNCTION uint8_t getBitsPerPixel() const

Gets bits per pixel for this font.

virtual FORCE_INLINE_FUNCTION uint8_t getByteAlignRow() const
Are the glyphs saved with each glyph row byte aligned?

virtual uint16_t getCharWidth(const Unicode::UnicodeChar c) const
Gets the width in pixels of the specified character.

virtual Unicode::UnicodeChar getEllipsisChar() const
Gets ellipsis character for the given font.

virtual Unicode::UnicodeChar getFallbackChar() const
Gets fallback character for the given font.

virtual FORCE_INLINE_FUNCTION uint16_t getFontHeight() const
Returns the height in pixels of this font.

virtual const GlyphNode * getGlyph(Unicode::UnicodeChar unicode) const

Gets the glyph data associated with the specified
Unicode.

virtual const GlyphNode * getGlyph(Unicode::UnicodeChar unicode, const uint8_t
*& pixelData, uint8_t & bitsPerPixel) const =0
Gets the glyph data associated with the specified
Unicode.

virtual const uint16_t * getGSUBTable() const
Gets GSUB table.

FORCE_INLINE_FUNCTION uint8_t getMaxPixelsLeft() const
Gets maximum pixels left of any glyph in the font.

FORCE_INLINE_FUNCTION uint8_t getMaxPixelsRight() const
Gets maximum pixels right of any glyph in the font.

virtual uint16_t getMaxTextHeight(const Unicode::UnicodeChar * text,
...) const
Gets the height of the highest character in a given string.

virtual FORCE_INLINE_FUNCTION uint16_t getMinimumTextHeight() const
Returns the minimum height needed for a text field that
uses this font.

virtual uint16_t getNumberOfLines(const Unicode::UnicodeChar * text,
...) const
Count the number of lines in a given text.

virtual uint8_t getSpacingAbove(const Unicode::UnicodeChar * text, ...
) const
Gets the number of blank pixels at the top of the given
text.

virtual uint16_t getStringWidth(const Unicode::UnicodeChar * text, ...)
const
Gets the width in pixels of the specified string.

virtual uint16_t getStringWidth(TextDirection textDirection, const
Unicode::UnicodeChar * text, ...) const
Gets the width in pixels of the specified string.

virtual ~Font()
Finalizes an instance of the Font class.

FORCE_INLINE_FUNCTION bool isInvisibleZeroWidth(Unicode::UnicodeChar character)
Query if 'character' is invisible, zero width.

Protected Functions inherited from Font
Font(uint16_t height, uint8_t pixBelowBase, uint8_t bitsPerPixel, uint8_t byteAlignRow,
uint8_t maxLeft, uint8_t maxRight, const Unicode::UnicodeChar fallbackChar, const
Unicode::UnicodeChar ellipsisChar)
Initializes a new instance of the Font class.

uint16_t getStringWidthLTR(TextDirection textDirection, const Unicode::UnicodeChar * text,
va_list pArg) const
Gets the width in pixels of the specified string.

uint16_t getStringWidthRTL(TextDirection textDirection, const Unicode::UnicodeChar * text,
va_list pArg) const
Gets the width in pixels of the specified string.

Protected Attributes inherited from Font
uint8_t bAlignRow

The glyphs are saved with each row byte aligned.

uint8_t bPerPixel
The number of bits per pixel.

Unicode::UnicodeChar ellipsisCharacter
The ellipsis character used for truncating long texts.

Unicode::UnicodeChar fallbackCharacter
The fallback character to use when no glyph exists for the wanted character.

uint16_t fontHeight
The font height in pixels.

uint8_t maxPixelsLeft
The maximum number of pixels a glyph extends to the left.

uint8_t maxPixelsRight
The maximum number of pixels a glyph extends to the right.

uint8_t pixelsBelowBaseline
The number of pixels below the base line.

Public Functions Documentation
getKerning

virtual int8_t getKerning (Unicode::UnicodeChar prevChar , const
const GlyphNode * glyph const
) const

Gets the kerning distance between two characters.

Parameters:
prevChar The Unicode value of the previous character.
glyph the glyph object for the current character.

Returns:

The kerning distance between prevChar and glyph char.

Reimplements: touchgfx::ConstFont::getKerning

getPixelData
virtual const uint8_t * getPixelData (const GlyphNode * glyph)

Gets the pixel date associated with this glyph.

Parameters:
glyph The glyph to get the pixels data from.

Returns:

Pointer to the pixel data of this glyph.

Reimplements: touchgfx::ConstFont::getPixelData

InternalFlashFont
InternalFlashFont (const GlyphNode * list ,

uint16_t size ,

uint16_t height ,
uint8_t pixBelowBase ,
uint8_t bitsPerPixel ,
uint8_t byteAlignRow ,
uint8_t maxLeft ,
uint8_t maxRight ,
const uint8_t * glyphDataInternalFlash ,
const KerningNode * kerningList ,
const Unicode::UnicodeChar fallbackChar ,
const Unicode::UnicodeChar ellipsisChar
)

Initializes a new instance of the InternalFlashFont class.

Parameters:
list The array of glyphs known to this font.
size The number of glyphs in list.
height The height in pixels of the highest character in this font.
pixBelowBase The maximum number of pixels that can be drawn below the baseline

in this font.
bitsPerPixel The number of bits per pixel in this font.
byteAlignRow The glyphs are saved with each row byte aligned.
maxLeft The maximum a character extends to the left.
maxRight The maximum a character extends to the right.
glyphDataInternalFlash Pointer to the glyph data for the font, placed in internal flash.
kerningList pointer to the kerning data for the font, placed in internal flash.
fallbackChar The fallback character for the typography in case no glyph is available.
ellipsisChar The ellipsis character used for truncating long texts.

Version: 4.16

KerningNode
Structure providing information about a kerning for a given pair of characters. Used by LCD when
rendering, calculating text width etc.

Public Attributes
int8_t distance

The kerning distance.

Unicode::UnicodeChar unicodePrevChar
The Unicode for the first character in the kerning pair.

Public Attributes Documentation
distance

int8_t distance

The kerning distance.

unicodePrevChar
Unicode::UnicodeChar unicodePrevChar

The Unicode for the first character in the kerning pair.

Version: 4.16

Key
Mapping from rectangle to key id.

Public Attributes
BitmapId highlightBitmapId

A bitmap to show when the area is "pressed".

Rect keyArea
The area occupied by the key.

uint8_t keyId
The id of a key.

Public Attributes Documentation
highlightBitmapId

BitmapId highlightBitmapId

A bitmap to show when the area is "pressed".

keyArea
Rect keyArea

The area occupied by the key.

keyId
uint8_t keyId

The id of a key.

Version: 4.16

Keyboard
The keyboard provides text input for touch devices. It is configured using a Layout and a
KeyMappingList, both of which can be changed at runtime. The class using the keyboard must provide
a buffer where the entered text is placed. The Layout contains a bitmap id for the image to display and
two mappings: rectangles to key ids and rectangles to callback methods.

The KeyMappingList maps key ids to Unicode characters. When the user presses a key, the keyboard
looks in its layout for a rectangle containing the coordinates pressed. If it finds a mapping to a
callback method, it will invoke that method. If it finds a mapping to a key it will look up the Unicode
character for that key and place it in a text buffer. The sequence is: (x,y) -> KeyId -> UnicodeChar.

A keyboard with multiple key mappings e.g. lower case alpha, upper case alpha and numeric
mappings can be created by implementing callback methods for shift and mode areas in the provided
bitmap and then changing the KeyMappingList when those areas are pressed.

Inherits from: Container, Drawable

Public Classes
struct CallbackArea

Mapping from rectangle to a callback method to execute.

struct Key
Mapping from rectangle to key id.

struct KeyMapping
Mapping from key id to Unicode character.

struct KeyMappingList
List of KeyMappings to use.

struct Layout
Definition of the keyboard layout.

Public Functions

virtual void draw(const Rect & invalidatedArea) const
Overrides the draw implementation on the Container.

Unicode::UnicodeChar * getBuffer() const
Gets the buffer.

uint16_t getBufferPosition()
Gets buffer position.

const KeyMappingList * getKeyMappingList() const
Gets key mapping list.

const Layout * getLayout() const
Gets the layout.

virtual void handleClickEvent(const ClickEvent & evt)
Overrides the handleClickEvent on the container.

virtual void handleDragEvent(const DragEvent & evt)
Overrides the handleDragEvent on the container.

Keyboard()

void setBuffer(Unicode::UnicodeChar * newBuffer, uint16_t newBufferSize)
Sets the buffer to be used by the keyboard.

void setBufferPosition(uint16_t newPos)
Change the buffer position i.e.

void setKeyListener(GenericCallback< Unicode::UnicodeChar > & callback)
Sets the callback for the keyboard.

void setKeymappingList(const KeyMappingList * newKeyMappingList)
Set/change the KeyMappingList to use.

void setLayout(const Layout * newLayout)
Set/change the Keyboard::Layout to use.The Keyboard will invalidate the
space it occupies to request a redraw.

void setTextIndentation()
Sets text indentation by making the area for entered text slightly larger.

Protected Functions
CallbackArea getCallbackAreaForCoordinates(int16_t x, int16_t y) const

Gets the callback area defined by the layout for the specified coordinates.

Unicode::UnicodeChar getCharForKey(uint8_t keyId) const
Maps a keyId to the UnicodeChar being displayed by that key.

Key getKeyForCoordinates(int16_t x, int16_t y) const
Gets key for coordinates.

Protected Attributes
Unicode::UnicodeChar * buffer

Pointer to null-terminated buffer where the entered
text is being displayed.

uint16_t bufferPosition
Current position in buffer.

uint16_t bufferSize
Size of the buffer.

bool cancelIsEmitted
Tells if a cancel is emitted to check when a key is
released.

TextAreaWithOneWildcard enteredText
Widget capable of displaying the entered text buffer.

Image highlightImage
Image to display when a key is highlighted.

Image image
Layout bitmap.

GenericCallback< Unicode::UnicodeChar > * keyListener
Pointer to callback being executed when a key is
pressed.

const KeyMappingList * keyMappingList

Pointer to key mapping.

const Layout * layout
Pointer to layout.

Additional inherited members
Public Functions inherited from Container

virtual void add(Drawable & d)
Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()

Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0

Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation

draw
virtual void draw (const Rect & invalidatedArea)

Overrides the draw implementation on the Container.

First invokes the container draw implementation to draw the keyboard bitmap and text area
holding the entered text. If additional drawables have been added to the keyboard, they will also
be draw. After invoking the container draw, the glyphs mapped to keys are drawn and if a key has
been pressed, it will be highlighted.

Parameters:
invalidatedArea The area to draw.

Reimplements: touchgfx::Container::draw

getBuffer
Unicode::UnicodeChar * getBuffer () const

Gets the buffer.

Returns:

The buffer containing entered text currently being displayed.

See also:

setBuffer

getBufferPosition
uint16_t getBufferPosition ()

Gets buffer position.

Returns:

the buffer position, i.e. the current index where new characters will be placed.

See also:

setBufferPosition

getKeyMappingList

const KeyMappingList * getKeyMappingList () const

Gets key mapping list.

Returns:

The KeyMappingList used by the Keyboard.

getLayout
const Layout * getLayout () const

Gets the layout.

Returns:

The layout used by the Keyboard.

See also:

setLayout

handleClickEvent
virtual void handleClickEvent (const ClickEvent & evt)

Overrides the handleClickEvent on the container.

The keyboard handles all click events internally and click events are not propagated to drawables
added to the keyboard.

Parameters:
evt The ClickEvent.

Reimplements: touchgfx::Drawable::handleClickEvent

handleDragEvent
virtual void handleDragEvent (const DragEvent & evt)

Overrides the handleDragEvent on the container.

The keyboard handles drag events to enable the container to, emit a CANCEL, if the user drags
outside the currently pressed key.

Parameters:

evt The DragEvent.

Reimplements: touchgfx::Drawable::handleDragEvent

Keyboard
Keyboard ()

setBuffer
void setBuffer (Unicode::UnicodeChar * newBuffer ,

uint16_t newBufferSize
)

Sets the buffer to be used by the keyboard.

Keys entered are added to the buffer.

Parameters:
newBuffer Pointer to a buffer holding the text edited by the keyboard. If the buffer is not

empty, the edit position for the keyboard will be set to the end of the provided
text.

newBufferSize Length of the buffer, i.e. number of UnicodeChar's.

See also:

getBuffer

setBufferPosition
void setBufferPosition (uint16_t newPos)

Change the buffer position i.e.

the next index to place a character when a key is pressed. This can be used to implement backspace
functionality if the class using the Keyboard implements a callback and maps it to a backspace
implementation. Setting the position will cause the TextArea displaying the text to be invalidated
to request a redraw.

Parameters:
newPos The buffer position.

See also:

setTextIndentation

setKeyListener
void setKeyListener (GenericCallback< Unicode::UnicodeChar > & callback)

Sets the callback for the keyboard.

The callback will be executed every time a key is clicked. The callback argument contains the key
that was just pressed.

Parameters:
callback The Callback to invoke.

NOTE

Backspace, shift and mode keys report a 0 as value.

setKeymappingList
void setKeymappingList (const KeyMappingList * newKeyMappingList)

Set/change the KeyMappingList to use.

The Keyboard will invalidate the space it occupies to request a redraw.

Parameters:
newKeyMappingList The new KeyMappingList.

setLayout
void setLayout (const Layout * newLayout)

Set/change the Keyboard::Layout to use.The Keyboard will invalidate the space it occupies to
request a redraw.

Parameters:
newLayout The new layout.

See also:

getLayout

setTextIndentation
void setTextIndentation ()

Sets text indentation by making the area for entered text slightly larger.

The result is that some characters (often 'j' and '_') will not be cut off. Indentation is added to both
sides of the text area in case the text is right-to-left. Indentation is automatically set so all
characters will display properly.

See also:

TextArea::setIndentation

Protected Functions Documentation
getCallbackAreaForCoordinates

CallbackArea getCallbackAreaForCoordinates (int16_t x , const
int16_t y const
) const

Gets the callback area defined by the layout for the specified coordinates.

Parameters:
x The x coordinate to perform key look up with.
y The y coordinate to perform key look up with.

Returns:

The CallbackArea, which is empty if not found.

getCharForKey
Unicode::UnicodeChar getCharForKey (uint8_t keyId)

Maps a keyId to the UnicodeChar being displayed by that key.

Parameters:
keyId The id of the key to perform lookup with.

Returns:

the UnicodeChar used for the specified key.

getKeyForCoordinates
Key getKeyForCoordinates (int16_t x , const

int16_t y const
) const

Gets key for coordinates.

Parameters:
x The x coordinate to perform key look up with.
y The y coordinate to perform key look up with.

Returns:

The key for the given coordinates.

Protected Attributes Documentation
buffer

Unicode::UnicodeChar * buffer

Pointer to null-terminated buffer where the entered text is being displayed.

bufferPosition
uint16_t bufferPosition

Current position in buffer.

bufferSize
uint16_t bufferSize

Size of the buffer.

cancelIsEmitted
bool cancelIsEmitted

Tells if a cancel is emitted to check when a key is released.

enteredText
TextAreaWithOneWildcard enteredText

Widget capable of displaying the entered text buffer.

highlightImage
Image highlightImage

Image to display when a key is highlighted.

image
Image image

Layout bitmap.

keyListener
GenericCallback< Unicode::UnicodeChar > * keyListener

Pointer to callback being executed when a key is pressed.

keyMappingList
const KeyMappingList * keyMappingList

Pointer to key mapping.

layout
const Layout * layout

Pointer to layout.

Version: 4.16

KeyMapping
Mapping from key id to Unicode character.

Public Attributes
uint8_t keyId

Id of a key.

Unicode::UnicodeChar keyValue
Unicode equivalent of the key id.

Public Attributes Documentation
keyId

uint8_t keyId

Id of a key.

keyValue
Unicode::UnicodeChar keyValue

Unicode equivalent of the key id.

Version: 4.16

KeyMappingList
List of KeyMappings to use.

Public Attributes
const KeyMapping * keyMappingArray

The array of key mappings used by the keyboard.

uint8_t numberOfKeys
The number of keys in the list.

Public Attributes Documentation
keyMappingArray

const KeyMapping * keyMappingArray

The array of key mappings used by the keyboard.

numberOfKeys
uint8_t numberOfKeys

The number of keys in the list.

Version: 4.16

Layout
Definition of the keyboard layout. The keyboard can handle changing layouts, so different keyboard
modes can be implemented by changing layouts and key mappings.

Public Attributes
BitmapId bitmap

The bitmap used for the keyboard layout.

CallbackArea * callbackAreaArray
The array of areas and corresponding callbacks.

const Key * keyArray
The keys on the keyboard layout.

FontId keyFont
The font used for the keys.

colortype keyFontColor
The color used for the keys.

uint8_t numberOfCallbackAreas
The number of areas and corresponding callbacks.

uint8_t numberOfKeys
The number of keys on this keyboard layout.

TypedText textAreaFont
The font used for typing text.

colortype textAreaFontColor
The color used for the typing text.

Rect textAreaPosition
The area where text is written.

Public Attributes Documentation

bitmap
BitmapId bitmap

The bitmap used for the keyboard layout.

callbackAreaArray
CallbackArea * callbackAreaArray

The array of areas and corresponding callbacks.

keyArray
const Key * keyArray

The keys on the keyboard layout.

keyFont
FontId keyFont

The font used for the keys.

keyFontColor
colortype keyFontColor

The color used for the keys.

numberOfCallbackAreas
uint8_t numberOfCallbackAreas

The number of areas and corresponding callbacks.

numberOfKeys

y
uint8_t numberOfKeys

The number of keys on this keyboard layout.

textAreaFont
TypedText textAreaFont

The font used for typing text.

textAreaFontColor
colortype textAreaFontColor

The color used for the typing text.

textAreaPosition
Rect textAreaPosition

The area where text is written.

Version: 4.16

LCD
This class contains the various low-level drawing routines for drawing bitmaps, texts and
rectangles/boxes. Normally, these draw operations are called from widgets, which also keep track of
logical states such as visibility etc.

The LCD class cannot be instantiated, instead use one of the subclasses which implements the LCD
drawing operations for a specific display configuration.

Note: All coordinates sent to functions in the LCD class are expected to be in absolute coordinates, i.e.
(0, 0) is upper left corner of the display.

Inherited by: LCD16bpp, LCD16bppSerialFlash, LCD1bpp, LCD24bpp, LCD2bpp, LCD32bpp, LCD4bpp,
LCD8bpp_ABGR2222, LCD8bpp_ARGB2222, LCD8bpp_BGRA2222, LCD8bpp_RGBA2222

Public Classes
struct StringVisuals

The visual elements when writing a string.

Protected Classes
class DrawTextureMapScanLineBase

Base class for drawing scanline by the texture mapper.

Public Functions
virtual uint8_t bitDepth() const =0

Number of bits per pixel used by the display.

virtual void
blitCopy(const uint16_t * sourceData, const Rect & source,
const Rect & blitRect, uint8_t alpha, bool hasTransparentPixels)
=0
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual void
blitCopy(const uint8_t * sourceData, Bitmap::BitmapFormat
sourceFormat, const Rect & source, const Rect & blitRect,
uint8_t alpha, bool hasTransparentPixels) =0
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

uint16_t * copyFrameBufferRegionToMemory(const Rect & region,
const BitmapId bitmapId =BITMAP_ANIMATION_STORAGE)
Copies part of the framebuffer to the data section of a bitmap.

virtual uint16_t * copyFrameBufferRegionToMemory(const Rect & visRegion,
const Rect & absRegion, const BitmapId bitmapId) =0
Copies part of the framebuffer to the data section of a bitmap.

virtual void
drawPartialBitmap(const Bitmap & bitmap, int16_t x, int16_t y,
const Rect & rect, uint8_t alpha =255, bool useOptimized =true)
=0
Draws all (or a part) of a bitmap.

void
drawString(Rect widgetArea, const Rect & invalidatedArea,
const StringVisuals & stringVisuals, const
Unicode::UnicodeChar * format, ...)
Draws the specified Unicode string.

virtual void

drawTextureMapTriangle(const DrawingSurface & dest, const
Point3D * vertices, const TextureSurface & texture, const Rect
& absoluteRect, const Rect & dirtyAreaAbsolute,
RenderingVariant renderVariant, uint8_t alpha =255, uint16_t
subDivisionSize =12)
Texture map triangle.

virtual void fillRect(const Rect & rect, colortype color, uint8_t alpha =255)
=0
Draws a filled rectangle in the framebuffer in the specified color
and opacity.

virtual Bitmap::BitmapFormat framebufferFormat() const =0
Framebuffer format used by the display.

virtual uint16_t framebufferStride() const =0
Framebuffer stride in bytes.

virtual uint8_t getBlueColor(colortype color) const =0
Gets the blue color part of a color.

virtual colortype getColorFrom24BitRGB(uint8_t red, uint8_t green, uint8_t blue)
const =0
Generates a color representation to be used on the LCD, based
on 24 bit RGB values.

colortype getDefaultColor() const
Gets default color previously set using setDefaultColor.

virtual uint8_t getGreenColor(colortype color) const =0
Gets the green color part of a color.

virtual uint8_t getRedColor(colortype color) const =0
Gets the red color part of a color.

void setDefaultColor(colortype color)
Sets default color as used by alpha level only bitmap formats,
e.g.

virtual ~LCD()
Finalizes an instance of the LCD class.

FORCE_INLINE_FUNCTION uint8_t div255(uint16_t num)
Approximates an integer division of a 16bit value by 255.

FORCE_INLINE_FUNCTION uint32_t div255g(uint32_t pixelxAlpha)
Divides the green component of pixelxAlpha by 255.

FORCE_INLINE_FUNCTION uint32_t div255rb(uint32_t pixelxAlpha)
Divides the red and blue components of pixelxAlpha by 255.

Protected Functions

virtual void

drawGlyph(uint16_t wbuf16, Rect widgetArea, int16_t x,
int16_t y, uint16_t offsetX, uint16_t offsetY, const Rect &
invalidatedArea, const GlyphNode glyph, const uint8_t *
glyphData, uint8_t byteAlignRow, colortype color, uint8_t
bitsPerPixel, uint8_t alpha, TextRotation rotation) =0
Private version of draw-glyph with explicit destination
buffer pointer argument.

void
drawStringLTR(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

void
drawStringRTL(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

virtual void

drawTextureMapScanLine(const DrawingSurface &
dest, const Gradients & gradients, const Edge leftEdge,
const Edge rightEdge, const TextureSurface & texture,
const Rect & absoluteRect, const Rect &
dirtyAreaAbsolute, RenderingVariant renderVariant,
uint8_t alpha, uint16_t subDivisionSize)
Draw scan line.

virtual DrawTextureMapScanLineBase * getTextureMapperDrawScanLine(const TextureSurface
& texture, RenderingVariant renderVariant, uint8_t alpha)
Gets pointer to object that can draw a scan line which
allows for highly specialized and optimized
implementation.

FORCE_INLINE_FUNCTION uint8_t getAlphaFromA4(const uint16_t * data, uint32_t offset)
Gets alpha from A4 image at given offset.

uint16_t
getNumLines(TextProvider & textProvider,
WideTextAction wideTextAction, TextDirection
textDirection, const Font * font, int16_t width)
Gets number of lines for a given text taking word wrap
into consideration.

int realX(const Rect & widgetArea, int16_t x, int16_t y,
TextRotation rotation)
Find the real, absolute x coordinate of a point inside a
widget with regards to rotation.

int realY(const Rect & widgetArea, int16_t x, int16_t y,
TextRotation rotation)
Find the real, absolute y coordinate of a point inside a
widget with regards to rotation.

void rotateRect(Rect & rect, const Rect & canvas, const
TextRotation rotation)
Rotate a rectangle inside another rectangle.

uint16_t stringWidth(TextProvider & textProvider, const Font &
font, const int numChars, TextDirection textDirection)
Find string width of the given number of ligatures read
from the given TextProvider.

Protected Attributes
colortype defaultColor

Default Color to use when displaying transparency-only elements, e.g. A4 bitmaps.

const uint16_t newLine
NewLine value.

Public Functions Documentation
bitDepth

virtual uint8_t bitDepth () const =0

Number of bits per pixel used by the display.

Returns:

The number of bits per pixel.

Reimplemented by: touchgfx::LCD16bpp::bitDepth, touchgfx::LCD16bppSerialFlash::bitDepth,
touchgfx::LCD1bpp::bitDepth, touchgfx::LCD24bpp::bitDepth, touchgfx::LCD2bpp::bitDepth,
touchgfx::LCD32bpp::bitDepth, touchgfx::LCD4bpp::bitDepth,
touchgfx::LCD8bpp_ABGR2222::bitDepth, touchgfx::LCD8bpp_ARGB2222::bitDepth,
touchgfx::LCD8bpp_BGRA2222::bitDepth, touchgfx::LCD8bpp_RGBA2222::bitDepth

blitCopy
virtual void blitCopy (const uint16_t * sourceData , =0

const Rect & source , =0
const Rect & blitRect , =0
uint8_t alpha , =0
bool hasTransparentPixels =0
) =0

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha != 255
(solid).

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplemented by: touchgfx::LCD16bpp::blitCopy, touchgfx::LCD16bppSerialFlash::blitCopy,
touchgfx::LCD1bpp::blitCopy, touchgfx::LCD24bpp::blitCopy, touchgfx::LCD2bpp::blitCopy,
touchgfx::LCD32bpp::blitCopy, touchgfx::LCD4bpp::blitCopy,
touchgfx::LCD8bpp_ABGR2222::blitCopy, touchgfx::LCD8bpp_ARGB2222::blitCopy,
touchgfx::LCD8bpp_BGRA2222::blitCopy, touchgfx::LCD8bpp_RGBA2222::blitCopy

blitCopy
virtual void blitCopy (const uint8_t * sourceData , =0

Bitmap::BitmapFormat sourceFormat , =0
const Rect & source , =0
const Rect & blitRect , =0
uint8_t alpha , =0
bool hasTransparentPixels =0
) =0

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha < 255
(solid).

If the display does not support the specified sourceFormat, an assert will be raised.

Parameters:

sourceData The source array pointer (points to the beginning of the data). The
sourceData must be stored in a format suitable for the selected display.

sourceFormat The bitmap format used in the source data.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplemented by: touchgfx::LCD16bpp::blitCopy, touchgfx::LCD16bppSerialFlash::blitCopy,
touchgfx::LCD1bpp::blitCopy, touchgfx::LCD24bpp::blitCopy, touchgfx::LCD2bpp::blitCopy,
touchgfx::LCD32bpp::blitCopy, touchgfx::LCD4bpp::blitCopy,
touchgfx::LCD8bpp_ABGR2222::blitCopy, touchgfx::LCD8bpp_ARGB2222::blitCopy,
touchgfx::LCD8bpp_BGRA2222::blitCopy, touchgfx::LCD8bpp_RGBA2222::blitCopy

copyFrameBufferRegionToMemory
uint16_t
* copyFrameBufferRegionToMemory (const Rect & region ,

const
BitmapId

bitmapId
=BITMAP_ANIMATION_STORAGE

)

Copies part of the framebuffer to the data section of a bitmap.

The bitmap must be a dynamic bitmap or animation storage (BITMAPANIMATION_STORAGE). Only
the part specified with by parameter _region is copied.

If region has negative x/y coordinates of if width/height exceeds those of the given bitmap, only
the visible and legal part of the framebuffer is copied. The rest of the bitmap image is left
untouched.

Parameters:
region The part of the framebuffer to copy.
bitmapId (Optional) The bitmap to store the data in. Default is to use Animation Storage.

Returns:

A pointer to the copy.

NOTE

There is only one instance of animation storage. The content of the bitmap data (or animation storage)
outside the given region is left untouched.

See also:

blitCopy

copyFrameBufferRegionToMemory
virtual uint16_t * copyFrameBufferRegionToMemory (const Rect & visRegion , =0

const Rect & absRegion , =0
const BitmapId bitmapId =0
) =0

Copies part of the framebuffer to the data section of a bitmap.

The bitmap must be a dynamic bitmap or animation storage (BITMAP_ANIMATION_STORAGE). The
two regions given are the visible region and the absolute region on screen. This is used to copy
only a part of the framebuffer. This might be the case if a SnapshotWidget is placed inside a
Container where parts of the SnapshowWidget is outside the area defined by the Container. The
visible region must be completely inside the absolute region.

Parameters:
visRegion The visible region.
absRegion The absolute region.
bitmapId Identifier for the bitmap.

Returns:

Null if it fails, else a pointer to the data in the given bitmap.

NOTE

There is only one instance of animation storage. The content of the bitmap data /animation storage
outside the given region is left untouched.

See also:

blitCopy

Reimplemented by: touchgfx::LCD16bpp::copyFrameBufferRegionToMemory,
touchgfx::LCD16bppSerialFlash::copyFrameBufferRegionToMemory,
touchgfx::LCD1bpp::copyFrameBufferRegionToMemory,
touchgfx::LCD24bpp::copyFrameBufferRegionToMemory,
touchgfx::LCD2bpp::copyFrameBufferRegionToMemory,

touchgfx::LCD32bpp::copyFrameBufferRegionToMemory,
touchgfx::LCD4bpp::copyFrameBufferRegionToMemory,
touchgfx::LCD8bpp_ABGR2222::copyFrameBufferRegionToMemory,
touchgfx::LCD8bpp_ARGB2222::copyFrameBufferRegionToMemory,
touchgfx::LCD8bpp_BGRA2222::copyFrameBufferRegionToMemory,
touchgfx::LCD8bpp_RGBA2222::copyFrameBufferRegionToMemory

drawPartialBitmap
virtual void drawPartialBitmap (const Bitmap & bitmap , =0

int16_t x , =0
int16_t y , =0
const Rect & rect , =0
uint8_t alpha =255, =0
bool useOptimized =true =0
) =0

Draws all (or a part) of a bitmap.

The coordinates of the corner of the bitmap is given in (x, y) and rect describes which part of the
bitmap should be drawn. The bitmap can be drawn as it is or more or less transparent depending
on the value of alpha. The value of alpha is independent of the transparency of the individual pixels
of the given bitmap.

Parameters:
bitmap The bitmap to draw.
x The absolute x coordinate to place (0, 0) of the bitmap on the screen.
y The absolute y coordinate to place (0, 0) of the bitmap on the screen.
rect A rectangle describing what region of the bitmap is to be drawn.
alpha (Optional) Optional alpha value ranging from 0=invisible to 255=solid. Default is

255 (solid).
useOptimized (Optional) if false, do not attempt to substitute (parts of) this bitmap with faster

fillrects.

Reimplemented by: touchgfx::LCD16bpp::drawPartialBitmap,
touchgfx::LCD16bppSerialFlash::drawPartialBitmap, touchgfx::LCD1bpp::drawPartialBitmap,
touchgfx::LCD24bpp::drawPartialBitmap, touchgfx::LCD2bpp::drawPartialBitmap,
touchgfx::LCD32bpp::drawPartialBitmap, touchgfx::LCD4bpp::drawPartialBitmap,
touchgfx::LCD8bpp_ABGR2222::drawPartialBitmap,
touchgfx::LCD8bpp_ARGB2222::drawPartialBitmap,
touchgfx::LCD8bpp_BGRA2222::drawPartialBitmap,
touchgfx::LCD8bpp_RGBA2222::drawPartialBitmap

drawString
void drawString (Rect widgetArea ,

const Rect & invalidatedArea ,
const StringVisuals & stringVisuals ,
const Unicode::UnicodeChar * format ,
...
)

Draws the specified Unicode string.

Breaks line on newline.

Parameters:
widgetArea The area covered by the drawing widget in absolute coordinates.
invalidatedArea The (sub)region of the widget area to draw, expressed relative to the widget

area. If the widgetArea is x=10, y=10, width=20, height=20 and
invalidatedArea is x=5, y=5, width=6, height=6 the widgetArea drawn on the
LCD is x=15, y=15, width=6, height=6.

stringVisuals The string visuals (font, alignment, line space, color) with which to draw this
string.

format A pointer to a null-terminated text string with optional additional wildcard
arguments.

... Variable arguments providing additional information.

drawTextureMapTriangle
virtual void drawTextureMapTriangle (const DrawingSurface & dest ,

const Point3D * vertices ,
const TextureSurface & texture ,
const Rect & absoluteRect ,
const Rect & dirtyAreaAbsolute ,
RenderingVariant renderVariant ,
uint8_t alpha =255,
uint16_t subDivisionSize =12
)

Texture map triangle.

Draw a perspective correct texture mapped triangle. The vertices describes the surface, the x,y,z
coordinates and the u,v coordinates of the texture. The texture contains the image data to be
drawn The triangle line will be placed and clipped using the absolute and dirty rectangles The alpha
will determine how the triangle should be alpha blended. The subDivisionSize will determine the
size of the piecewise affine texture mapped portions of the triangle.

Parameters:
dest The description of where the texture is drawn - can be used to issue a draw

off screen.
vertices The vertices of the triangle.
texture The texture.
absoluteRect The containing rectangle in absolute coordinates.
dirtyAreaAbsolute The dirty area in absolute coordinates.
renderVariant The render variant - includes the algorithm and the pixel format.
alpha (Optional) the alpha. Default is 255 (solid).
subDivisionSize (Optional) the size of the subdivisions of the scan line. Default is 12.

fillRect
virtual void fillRect (const Rect & rect , =0

colortype color , =0
uint8_t alpha =255 =0
) =0

Draws a filled rectangle in the framebuffer in the specified color and opacity.

By default the rectangle will be drawn as a solid box. The rectangle can be drawn with transparency
by specifying alpha from 0=invisible to 255=solid.

Parameters:
rect The rectangle to draw in absolute display coordinates.
color The rectangle color.
alpha (Optional) The rectangle opacity, from 0=invisible to 255=solid.

Reimplemented by: touchgfx::LCD16bpp::fillRect, touchgfx::LCD16bppSerialFlash::fillRect,
touchgfx::LCD1bpp::fillRect, touchgfx::LCD24bpp::fillRect, touchgfx::LCD2bpp::fillRect,
touchgfx::LCD32bpp::fillRect, touchgfx::LCD4bpp::fillRect,
touchgfx::LCD8bpp_ABGR2222::fillRect, touchgfx::LCD8bpp_ARGB2222::fillRect,
touchgfx::LCD8bpp_BGRA2222::fillRect, touchgfx::LCD8bpp_RGBA2222::fillRect

framebufferFormat
virtual Bitmap::BitmapFormat framebufferFormat () const =0

Framebuffer format used by the display.

Returns:

A Bitmap::BitmapFormat.

Reimplemented by: touchgfx::LCD16bpp::framebufferFormat,
touchgfx::LCD16bppSerialFlash::framebufferFormat, touchgfx::LCD1bpp::framebufferFormat,
touchgfx::LCD24bpp::framebufferFormat, touchgfx::LCD2bpp::framebufferFormat,
touchgfx::LCD32bpp::framebufferFormat, touchgfx::LCD4bpp::framebufferFormat,
touchgfx::LCD8bpp_ABGR2222::framebufferFormat,
touchgfx::LCD8bpp_ARGB2222::framebufferFormat,
touchgfx::LCD8bpp_BGRA2222::framebufferFormat,
touchgfx::LCD8bpp_RGBA2222::framebufferFormat

framebufferStride
virtual uint16_t framebufferStride () const =0

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

Reimplemented by: touchgfx::LCD16bpp::framebufferStride,
touchgfx::LCD16bppSerialFlash::framebufferStride, touchgfx::LCD1bpp::framebufferStride,
touchgfx::LCD24bpp::framebufferStride, touchgfx::LCD2bpp::framebufferStride,
touchgfx::LCD32bpp::framebufferStride, touchgfx::LCD4bpp::framebufferStride,
touchgfx::LCD8bpp_ABGR2222::framebufferStride,
touchgfx::LCD8bpp_ARGB2222::framebufferStride,
touchgfx::LCD8bpp_BGRA2222::framebufferStride,
touchgfx::LCD8bpp_RGBA2222::framebufferStride

getBlueColor
virtual uint8_t getBlueColor (colortype color)

Gets the blue color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The blue part of the color.

Reimplemented by: touchgfx::LCD16bpp::getBlueColor,
touchgfx::LCD16bppSerialFlash::getBlueColor, touchgfx::LCD1bpp::getBlueColor,
touchgfx::LCD24bpp::getBlueColor, touchgfx::LCD2bpp::getBlueColor,
touchgfx::LCD32bpp::getBlueColor, touchgfx::LCD4bpp::getBlueColor,
touchgfx::LCD8bpp_ABGR2222::getBlueColor, touchgfx::LCD8bpp_ARGB2222::getBlueColor,
touchgfx::LCD8bpp_BGRA2222::getBlueColor, touchgfx::LCD8bpp_RGBA2222::getBlueColor

getColorFrom24BitRGB
virtual colortype getColorFrom24BitRGB (uint8_t red , const =0

uint8_t green , const =0
uint8_t blue const =0
) const =0

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Depending on your chosen color bit depth, the color will be interpreted internally as either a 16 bit
or 24 bit color value. This function can be safely used regardless of whether your application is
configured for 16 or 24 bit colors.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

Reimplemented by: touchgfx::LCD16bpp::getColorFrom24BitRGB,
touchgfx::LCD16bppSerialFlash::getColorFrom24BitRGB,
touchgfx::LCD1bpp::getColorFrom24BitRGB, touchgfx::LCD24bpp::getColorFrom24BitRGB,
touchgfx::LCD2bpp::getColorFrom24BitRGB, touchgfx::LCD32bpp::getColorFrom24BitRGB,
touchgfx::LCD4bpp::getColorFrom24BitRGB,
touchgfx::LCD8bpp_ABGR2222::getColorFrom24BitRGB,
touchgfx::LCD8bpp_ARGB2222::getColorFrom24BitRGB,
touchgfx::LCD8bpp_BGRA2222::getColorFrom24BitRGB,
touchgfx::LCD8bpp_RGBA2222::getColorFrom24BitRGB

getDefaultColor

colortype getDefaultColor () const

Gets default color previously set using setDefaultColor.

Returns:

The default color.

See also:

setDefaultColor

getGreenColor
virtual uint8_t getGreenColor (colortype color)

Gets the green color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The green part of the color.

Reimplemented by: touchgfx::LCD16bpp::getGreenColor,
touchgfx::LCD16bppSerialFlash::getGreenColor, touchgfx::LCD1bpp::getGreenColor,
touchgfx::LCD24bpp::getGreenColor, touchgfx::LCD2bpp::getGreenColor,
touchgfx::LCD32bpp::getGreenColor, touchgfx::LCD4bpp::getGreenColor,
touchgfx::LCD8bpp_ABGR2222::getGreenColor,
touchgfx::LCD8bpp_ARGB2222::getGreenColor,
touchgfx::LCD8bpp_BGRA2222::getGreenColor,
touchgfx::LCD8bpp_RGBA2222::getGreenColor

getRedColor
virtual uint8_t getRedColor (colortype color)

Gets the red color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The color value.

Returns:

The red part of the color.

Reimplemented by: touchgfx::LCD16bpp::getRedColor,
touchgfx::LCD16bppSerialFlash::getRedColor, touchgfx::LCD1bpp::getRedColor,
touchgfx::LCD24bpp::getRedColor, touchgfx::LCD2bpp::getRedColor,
touchgfx::LCD32bpp::getRedColor, touchgfx::LCD4bpp::getRedColor,
touchgfx::LCD8bpp_ABGR2222::getRedColor, touchgfx::LCD8bpp_ARGB2222::getRedColor,
touchgfx::LCD8bpp_BGRA2222::getRedColor, touchgfx::LCD8bpp_RGBA2222::getRedColor

setDefaultColor
void setDefaultColor (colortype color)

Sets default color as used by alpha level only bitmap formats, e.g.

A4. The default color, if no color is set, is black.

Parameters:
color The color.

See also:

getDefaultColor

~LCD
virtual ~LCD ()

Finalizes an instance of the LCD class.

div255
static FORCE_INLINE_FUNCTION uint8_t div255 (uint16_t num)

Approximates an integer division of a 16bit value by 255.

Divides numerator num (e.g. the sum resulting from an alpha-blending operation) by 255.

Parameters:

num The numerator to divide by 255.

Returns:

The result of a division by 255.

div255g
static FORCE_INLINE_FUNCTION uint32_t div255g (uint32_t pixelxAlpha)

Divides the green component of pixelxAlpha by 255.

Parameters:
pixelxAlpha The green component of a 32bit ARGB pixel multiplied by an alpha factor.

Returns:

pixelxAlpha with its green component divided by 255.

div255rb
static FORCE_INLINE_FUNCTION uint32_t div255rb (uint32_t pixelxAlpha)

Divides the red and blue components of pixelxAlpha by 255.

Parameters:
pixelxAlpha The red and blue components of a 32bit ARGB pixel multiplied by an alpha factor.

Returns:

pixelxAlpha with its red and blue components divided by 255.

Protected Functions Documentation
drawGlyph

virtual void drawGlyph (uint16_t * wbuf16 , =0
Rect widgetArea , =0
int16_t x , =0
int16_t y , =0
uint16_t offsetX , =0
uint16_t offsetY , =0

const Rect & invalidatedArea , =0
const GlyphNode * glyph , =0
const uint8_t * glyphData , =0
uint8_t byteAlignRow , =0
colortype color , =0
uint8_t bitsPerPixel , =0
uint8_t alpha , =0
TextRotation rotation =0
) =0

Private version of draw-glyph with explicit destination buffer pointer argument.

For all parameters (except the buffer pointer) see the public function drawString().

Parameters:
wbuf16 The destination (frame) buffer to draw to.
widgetArea The canvas to draw the glyph inside.
x Horizontal offset to start drawing the glyph.
y Vertical offset to start drawing the glyph.
offsetX Horizontal offset in the glyph to start drawing from.
offsetY Vertical offset in the glyph to start drawing from.
invalidatedArea The area to draw inside.
glyph Specifications of the glyph to draw.
glyphData Data containing the actual glyph (dense format)
byteAlignRow Each row of glyph data starts in a new byte.
color The color of the glyph.
bitsPerPixel Bit depth of the glyph.
alpha The transparency of the glyph.
rotation Rotation to do before drawing the glyph.

Reimplemented by: touchgfx::LCD16bpp::drawGlyph,
touchgfx::LCD16bppSerialFlash::drawGlyph, touchgfx::LCD1bpp::drawGlyph,
touchgfx::LCD24bpp::drawGlyph, touchgfx::LCD2bpp::drawGlyph,
touchgfx::LCD32bpp::drawGlyph, touchgfx::LCD4bpp::drawGlyph,
touchgfx::LCD8bpp_ABGR2222::drawGlyph, touchgfx::LCD8bpp_ARGB2222::drawGlyph,
touchgfx::LCD8bpp_BGRA2222::drawGlyph, touchgfx::LCD8bpp_RGBA2222::drawGlyph

drawStringLTR
void drawStringLTR (const Rect & widgetArea ,

const Rect & invalidatedArea ,
const StringVisuals & visuals ,
const Unicode::UnicodeChar * format ,
va_list pArg

)

Draws the specified Unicode string.

Breaks line on newline. The string is assumed to contain only Latin characters written left-to-right.

Parameters:
widgetArea The area covered by the drawing widget in absolute coordinates.
invalidatedArea The (sub)region of the widget area to draw, expressed relative to the widget

area. If the widgetArea is x=10, y=10, width=20, height=20 and
invalidatedArea is x=5, y=5, width=6, height=6 the widgetArea drawn on the
LCD is x=15, y=15, width=6, height=6.

visuals The string visuals (font, alignment, line space, color) with which to draw this
string.

format A pointer to a null-terminated text string with optional additional wildcard
arguments.

pArg Variable arguments providing additional information.

See also:

drawString

drawStringRTL
void drawStringRTL (const Rect & widgetArea ,

const Rect & invalidatedArea ,
const StringVisuals & visuals ,
const Unicode::UnicodeChar * format ,
va_list pArg
)

Draws the specified Unicode string.

Breaks line on newline. The string can be either right-to-left or left-to-right and may contain
sequences of Arabic / Hebrew and Latin characters.

Parameters:
widgetArea The area covered by the drawing widget in absolute coordinates.
invalidatedArea The (sub)region of the widget area to draw, expressed relative to the widget

area. If the widgetArea is x=10, y=10, width=20, height=20 and
invalidatedArea is x=5, y=5, width=6, height=6 the widgetArea drawn on the
LCD is x=15, y=15, width=6, height=6.

visuals The string visuals (font, alignment, line space, color) with which to draw this
string.

format A pointer to a null-terminated text string with optional additional wildcard
arguments.

pArg Variable arguments providing additional information.

See also:

drawString

drawTextureMapScanLine
virtual void drawTextureMapScanLine (const DrawingSurface & dest ,

const Gradients & gradients ,
const Edge * leftEdge ,
const Edge * rightEdge ,
const TextureSurface & texture ,
const Rect & absoluteRect ,
const Rect & dirtyAreaAbsolute ,
RenderingVariant renderVariant ,
uint8_t alpha ,
uint16_t subDivisionSize
)

Draw scan line.

Draw one horizontal line of the texture map on screen. The scan line will be drawn using
perspective correct texture mapping. The appearance of the line is determined by the left and right
edge and the gradients structure. The edges contain the information about the x,y,z coordinates of
the left and right side respectively and also information about the u,v coordinates of the texture
map used. The gradients structure contains information about how to interpolate all the values
across the scan line. The data drawn should be present in the texture argument.

The scan line will be drawn using the additional arguments. The scan line will be placed and clipped
using the absolute and dirty rectangles The alpha will determine how the scan line should be alpha
blended. The subDivisionSize will determine the size of the piecewise affine texture mapped lines.

Parameters:
dest The description of where the texture is drawn - can be used to issue a draw

off screen.
gradients The gradients using in interpolation across the scan line.
leftEdge The left edge of the scan line.
rightEdge The right edge of the scan line.
texture The texture.
absoluteRect The containing rectangle in absolute coordinates.
dirtyAreaAbsolute The dirty area in absolute coordinates.
renderVariant The render variant - includes the algorithm and the pixel format.
alpha The alpha.

subDivisionSize The size of the subdivisions of the scan line. A value of 1 will give a
completely perspective correct texture mapped scan line. A large value will
give an affine texture mapped scan line.

Reimplemented by: touchgfx::LCD1bpp::drawTextureMapScanLine

getTextureMapperDrawScanLine
virtual DrawTextureMapScanLineBase
* getTextureMapperDrawScanLine (const

TextureSurface & texture ,

RenderingVariant renderVariant
,

uint8_t alpha
)

Gets pointer to object that can draw a scan line which allows for highly specialized and optimized
implementation.

Parameters:
texture The texture Surface.
renderVariant The render variant.
alpha The global alpha.

Returns:

Null if it fails, else the pointer to the texture mapper draw scan line object.

Reimplemented by: touchgfx::LCD16bpp::getTextureMapperDrawScanLine,
touchgfx::LCD16bppSerialFlash::getTextureMapperDrawScanLine,
touchgfx::LCD24bpp::getTextureMapperDrawScanLine,
touchgfx::LCD2bpp::getTextureMapperDrawScanLine,
touchgfx::LCD32bpp::getTextureMapperDrawScanLine,
touchgfx::LCD4bpp::getTextureMapperDrawScanLine,
touchgfx::LCD8bpp_ABGR2222::getTextureMapperDrawScanLine,
touchgfx::LCD8bpp_ARGB2222::getTextureMapperDrawScanLine,
touchgfx::LCD8bpp_BGRA2222::getTextureMapperDrawScanLine,
touchgfx::LCD8bpp_RGBA2222::getTextureMapperDrawScanLine

getAlphaFromA4
static FORCE_INLINE_FUNCTION uint8_t getAlphaFromA4 (const uint16_t * data ,

uint32_t offset
)

Gets alpha from A4 image at given offset.

The value is scaled up from range 0-15 to 0- 255.

Parameters:
data A pointer to the start of the A4 data.
offset The offset into the A4 image.

Returns:

The alpha from A4 (0-255).

getNumLines
static uint16_t getNumLines (TextProvider & textProvider ,

WideTextAction wideTextAction ,
TextDirection textDirection ,
const Font * font ,
int16_t width
)

Gets number of lines for a given text taking word wrap into consideration.

The font and width are required to find the number of lines in case word wrap is true.

Parameters:
textProvider The text provider.
wideTextAction The wide text action in case lines are longer than the width of the text area.
textDirection The text direction (LTR or RTL).
font The font.
width The width.

Returns:

The number lines.

realX
static int realX (const Rect & widgetArea ,

int16_t x ,
int16_t y ,
TextRotation rotation
)

Find the real, absolute x coordinate of a point inside a widget with regards to rotation.

Parameters:
widgetArea The widget containing the point.
x The x coordinate.
y The y coordinate.
rotation Rotation to perform.

Returns:

The absolute x coordinate after applying appropriate rotation.

realY
static int realY (const Rect & widgetArea ,

int16_t x ,
int16_t y ,
TextRotation rotation
)

Find the real, absolute y coordinate of a point inside a widget with regards to rotation.

Parameters:
widgetArea The widget containing the point.
x The x coordinate.
y The y coordinate.
rotation Rotation to perform.

Returns:

The absolute y coordinate after applying appropriate rotation.

rotateRect
static void rotateRect (Rect & rect ,

const Rect & canvas ,
const TextRotation rotation
)

Rotate a rectangle inside another rectangle.

Parameters:
rect The rectangle to rotate.
canvas The rectangle containing the rect to rotate.
rotation Rotation to perform on rect.

stringWidth
static uint16_t stringWidth (TextProvider & textProvider ,

const Font & font ,
const int numChars ,
TextDirection textDirection
)

Find string width of the given number of ligatures read from the given TextProvider.

After the introduction of Arabic, Thai, Hindi and other languages, ligatures are counted instead of
characters. For Latin languages, number of characters equal number of ligatures.

Parameters:
textProvider The text provider.
font The font.
numChars Number of characters (ligatures).
textDirection The text direction.

Returns:

An int16_t.

Protected Attributes Documentation
defaultColor

colortype defaultColor

Default Color to use when displaying transparency-only elements, e.g. A4 bitmaps.

newLine
const uint16_t newLine = 10

NewLine value.

Version: 4.16

LCD16bpp
This class contains the various low-level drawing routines for drawing bitmaps, texts and rectangles on 16 bits
per pixel displays.

See: LCD

Note: All coordinates are expected to be in absolute coordinates!

Inherits from: LCD

Public Functions
virtual uint8_t bitDepth() const

Number of bits per pixel used by the display.

virtual void blitCopy(const uint16_t * sourceData, const Rect & source, const
Rect & blitRect, uint8_t alpha, bool hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer, performing
alpha blending (and tranparency keying) as specified.

virtual void
blitCopy(const uint8_t * sourceData, Bitmap::BitmapFormat
sourceFormat, const Rect & source, const Rect & blitRect, uint8_t
alpha, bool hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer, performing
alpha blending (and tranparency keying) as specified.

virtual uint16_t * copyFrameBufferRegionToMemory(const Rect & visRegion, const
Rect & absRegion, const BitmapId bitmapId)
Copies part of the framebuffer to the data section of a bitmap.

virtual void drawPartialBitmap(const Bitmap & bitmap, int16_t x, int16_t y, const
Rect & rect, uint8_t alpha =255, bool useOptimized =true)
Draws all (or a part) of a bitmap.

void enableTextureMapperA4()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_BilinearInterpolation()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_NearestNeighbor()
Enables the texture mappers for A4 image format.

void enableTextureMapperAll()
Enables the texture mappers for all image formats.

void enableTextureMapperARGB8888()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_BilinearInterpolation()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_NearestNeighbor()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperL8_ARGB8888()
Enables the texture mappers for L8_ARGB8888 image format.

void enableTextureMapperL8_ARGB8888_BilinearInterpolation()
Enables the texture mappers for L8_ARGB8888 image format.

void enableTextureMapperL8_ARGB8888_NearestNeighbor()
Enables the texture mappers for L8_ARGB8888 image format.

void enableTextureMapperL8_RGB565()
Enables the texture mappers for L8_RGB565 image format.

void enableTextureMapperL8_RGB565_BilinearInterpolation()
Enables the texture mappers for L8_RGB565 image format.

void enableTextureMapperL8_RGB565_NearestNeighbor()
Enables the texture mappers for L8_RGB565 image format.

void enableTextureMapperL8_RGB888()
Enables the texture mappers for L8_RGB888 image format.

void enableTextureMapperL8_RGB888_BilinearInterpolation()
Enables the texture mappers for L8_RGB888 image format.

void enableTextureMapperL8_RGB888_NearestNeighbor()
Enables the texture mappers for L8_RGB888 image format.

void enableTextureMapperRGB565()
Enables the texture mappers for RGB565 image format.

void enableTextureMapperRGB565_NonOpaque_BilinearInterpolation()
Enables the texture mappers for NonOpaque RGB565 image format.

void enableTextureMapperRGB565_NonOpaque_NearestNeighbor()

Enables the texture mappers for NonOpaque RGB565 image format.

void enableTextureMapperRGB565_Opaque_BilinearInterpolation()
Enables the texture mappers for Opaque RGB565 image format.

void enableTextureMapperRGB565_Opaque_NearestNeighbor()
Enables the texture mappers for Opaque RGB565 image format.

virtual void fillRect(const Rect & rect, colortype color, uint8_t alpha =255)
Draws a filled rectangle in the framebuffer in the specified color and
opacity.

virtual Bitmap::BitmapFormat framebufferFormat() const
Framebuffer format used by the display.

virtual uint16_t framebufferStride() const
Framebuffer stride in bytes.

virtual uint8_t getBlueColor(colortype color) const
Gets the blue color part of a color.

virtual colortype getColorFrom24BitRGB(uint8_t red, uint8_t green, uint8_t blue)
const
Generates a color representation to be used on the LCD, based on 24
bit RGB values.

virtual uint8_t getGreenColor(colortype color) const
Gets the green color part of a color.

virtual uint8_t getRedColor(colortype color) const
Gets the red color part of a color.

LCD16bpp()

FORCE_INLINE_FUNCTION uint8_t getBlueFromColor(colortype color)
Gets blue from color.

FORCE_INLINE_FUNCTION colortype getColorFromRGB(uint8_t red, uint8_t green, uint8_t blue)
Generates a color representation to be used on the LCD, based on 24
bit RGB values.

FORCE_INLINE_FUNCTION uint16_t getFramebufferStride()
Framebuffer stride in bytes.

FORCE_INLINE_FUNCTION uint8_t getGreenFromColor(colortype color)
Gets green from color.

FORCE_INLINE_FUNCTION uint8_t getRedFromColor(colortype color)
Gets red from color.

Protected Functions

virtual void

drawGlyph(uint16_t wbuf16, Rect widgetArea, int16_t x, int16_t y,
uint16_t offsetX, uint16_t offsetY, const Rect & invalidatedArea,
const GlyphNode glyph, const uint8_t * glyphData, uint8_t
byteAlignRow, colortype color, uint8_t bitsPerPixel, uint8_t alpha,
TextRotation rotation)
Private version of draw-glyph with explicit destination buffer
pointer argument.

virtual DrawTextureMapScanLineBase * getTextureMapperDrawScanLine(const TextureSurface &
texture, RenderingVariant renderVariant, uint8_t alpha)
Gets pointer to object that can draw a scan line which allows for
highly specialized and optimized implementation.

void
blitCopyAlphaPerPixel(const uint16_t sourceData, const uint8_t
alphaData, const Rect & source, const Rect & blitRect, uint8_t
alpha)
Blits a 2D source-array to the framebuffer performing alpha-
blending per pixel as specified.

void blitCopyARGB8888(const uint32_t * sourceData, const Rect &
source, const Rect & blitRect, uint8_t alpha)
Blits a 2D source-array to the framebuffer performing alpha-
blending per pixel as specified.

void blitCopyL8(const uint8_t sourceData, const uint8_t clutData, const
Rect & source, const Rect & blitRect, uint8_t alpha)
Blits a 2D indexed 8-bit source to the framebuffer performing
alpha-blending per pixel as specified if indexed format is not
supported by the DMA a software blend is performed.

void
blitCopyL8_ARGB8888(const uint8_t sourceData, const uint8_t
clutData, const Rect & source, const Rect & blitRect, uint8_t
alpha)
Blits a 2D indexed 8-bit source to the framebuffer performing
alpha-blending per pixel as specified if L8_ARGB8888 is not
supported by the DMA a software blend is performed.

void
blitCopyL8_RGB565(const uint8_t sourceData, const uint8_t
clutData, const Rect & source, const Rect & blitRect, uint8_t
alpha)

Blits a 2D indexed 8-bit source to the framebuffer performing
alpha-blending per pixel as specified if L8_RGB565 is not
supported by the DMA a software blend is performed.

void
blitCopyL8_RGB888(const uint8_t sourceData, const uint8_t
clutData, const Rect & source, const Rect & blitRect, uint8_t
alpha)
Blits a 2D indexed 8-bit source to the framebuffer performing
alpha-blending per pixel as specified if L8_RGB888 is not
supported by the DMA a software blend is performed.

int nextLine(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to the
next line.

int nextPixel(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to the
next pixel.

Additional inherited members
Public Classes inherited from LCD

struct StringVisuals
The visual elements when writing a string.

Protected Classes inherited from LCD
class DrawTextureMapScanLineBase

Base class for drawing scanline by the texture mapper.

Public Functions inherited from LCD

void
drawString(Rect widgetArea, const Rect & invalidatedArea, const
StringVisuals & stringVisuals, const Unicode::UnicodeChar * format, ...
)
Draws the specified Unicode string.

virtual void
drawTextureMapTriangle(const DrawingSurface & dest, const
Point3D * vertices, const TextureSurface & texture, const Rect &
absoluteRect, const Rect & dirtyAreaAbsolute, RenderingVariant
renderVariant, uint8_t alpha =255, uint16_t subDivisionSize =12)
Texture map triangle.

colortype getDefaultColor() const
Gets default color previously set using setDefaultColor.

void setDefaultColor(colortype color)
Sets default color as used by alpha level only bitmap formats, e.g.

virtual ~LCD()
Finalizes an instance of the LCD class.

FORCE_INLINE_FUNCTION uint8_t div255(uint16_t num)
Approximates an integer division of a 16bit value by 255.

FORCE_INLINE_FUNCTION uint32_t div255g(uint32_t pixelxAlpha)
Divides the green component of pixelxAlpha by 255.

FORCE_INLINE_FUNCTION uint32_t div255rb(uint32_t pixelxAlpha)
Divides the red and blue components of pixelxAlpha by 255.

Protected Functions inherited from LCD

void
drawStringLTR(const Rect & widgetArea, const Rect & invalidatedArea,
const StringVisuals & visuals, const Unicode::UnicodeChar * format,
va_list pArg)
Draws the specified Unicode string.

void
drawStringRTL(const Rect & widgetArea, const Rect & invalidatedArea,
const StringVisuals & visuals, const Unicode::UnicodeChar * format,
va_list pArg)
Draws the specified Unicode string.

virtual void

drawTextureMapScanLine(const DrawingSurface & dest, const
Gradients & gradients, const Edge leftEdge, const Edge rightEdge, const
TextureSurface & texture, const Rect & absoluteRect, const Rect &
dirtyAreaAbsolute, RenderingVariant renderVariant, uint8_t alpha,
uint16_t subDivisionSize)
Draw scan line.

FORCE_INLINE_FUNCTION uint8_t getAlphaFromA4(const uint16_t * data, uint32_t offset)
Gets alpha from A4 image at given offset.

uint16_t
getNumLines(TextProvider & textProvider, WideTextAction
wideTextAction, TextDirection textDirection, const Font * font, int16_t
width)
Gets number of lines for a given text taking word wrap into
consideration.

int realX(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute x coordinate of a point inside a widget with
regards to rotation.

int realY(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute y coordinate of a point inside a widget with
regards to rotation.

void rotateRect(Rect & rect, const Rect & canvas, const TextRotation
rotation)
Rotate a rectangle inside another rectangle.

uint16_t stringWidth(TextProvider & textProvider, const Font & font, const int
numChars, TextDirection textDirection)
Find string width of the given number of ligatures read from the given
TextProvider.

Protected Attributes inherited from LCD
colortype defaultColor

Default Color to use when displaying transparency-only elements, e.g. A4 bitmaps.

const uint16_t newLine
NewLine value.

Public Functions Documentation
bitDepth

virtual uint8_t bitDepth () const

Number of bits per pixel used by the display.

Returns:

The number of bits per pixel.

Reimplements: touchgfx::LCD::bitDepth

blitCopy
virtual void blitCopy (const uint16_t * sourceData ,

const Rect & source ,

const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and tranparency
keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha != 255 (solid).

Parameters:
sourceData The source array pointer (points to the beginning of the data). The sourceData

must be stored in a format suitable for the selected display.
source The position and dimensions of the source. The x and y of this rect should both

be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to the

framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to 255=solid=no

blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware support

for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

blitCopy
virtual void blitCopy (const uint8_t * sourceData ,

Bitmap::BitmapFormat sourceFormat ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and tranparency
keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha < 255 (solid).

If the display does not support the specified sourceFormat, an assert will be raised.

Parameters:
sourceData The source array pointer (points to the beginning of the data). The sourceData

must be stored in a format suitable for the selected display.
sourceFormat The bitmap format used in the source data.
source The position and dimensions of the source. The x and y of this rect should both

be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to the

framebuffer.

alpha The alpha value to use for blending ranging from 0=invisible to 255=solid=no
blending.

hasTransparentPixels If true, this data copy contains transparent pixels and require hardware support
for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

copyFrameBufferRegionToMemory
virtual uint16_t * copyFrameBufferRegionToMemory (const Rect & visRegion ,

const Rect & absRegion ,
const BitmapId bitmapId
)

Copies part of the framebuffer to the data section of a bitmap.

The bitmap must be a dynamic bitmap or animation storage (BITMAP_ANIMATION_STORAGE). The two
regions given are the visible region and the absolute region on screen. This is used to copy only a part of
the framebuffer. This might be the case if a SnapshotWidget is placed inside a Container where parts of
the SnapshowWidget is outside the area defined by the Container. The visible region must be completely
inside the absolute region.

Parameters:
visRegion The visible region.
absRegion The absolute region.
bitmapId Identifier for the bitmap.

Returns:

Null if it fails, else a pointer to the data in the given bitmap.

NOTE

There is only one instance of animation storage. The content of the bitmap data /animation storage outside the
given region is left untouched.

See also:

blitCopy

Reimplements: touchgfx::LCD::copyFrameBufferRegionToMemory

drawPartialBitmap
virtual void drawPartialBitmap (const Bitmap & bitmap ,

int16_t x ,
int16_t y ,
const Rect & rect ,

uint8_t alpha =255,
bool useOptimized =true
)

Draws all (or a part) of a bitmap.

The coordinates of the corner of the bitmap is given in (x, y) and rect describes which part of the bitmap
should be drawn. The bitmap can be drawn as it is or more or less transparent depending on the value of
alpha. The value of alpha is independent of the transparency of the individual pixels of the given bitmap.

Parameters:
bitmap The bitmap to draw.
x The absolute x coordinate to place (0, 0) of the bitmap on the screen.
y The absolute y coordinate to place (0, 0) of the bitmap on the screen.
rect A rectangle describing what region of the bitmap is to be drawn.
alpha (Optional) Optional alpha value ranging from 0=invisible to 255=solid. Default is 255

(solid).
useOptimized (Optional) if false, do not attempt to substitute (parts of) this bitmap with faster fillrects.

Reimplements: touchgfx::LCD::drawPartialBitmap

enableTextureMapperA4
void enableTextureMapperA4 ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperA4_BilinearInterpolation, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_BilinearInterpolation
void enableTextureMapperA4_BilinearInterpolation ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_NearestNeighbor
void enableTextureMapperA4_NearestNeighbor ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_BilinearInterpolation

enableTextureMapperAll
void enableTextureMapperAll ()

Enables the texture mappers for all image formats.

This allows drawing any image using Bilinear Interpolation and Nearest Neighbor algorithms, but might
use a lot of memory for the drawing algorithms.

enableTextureMapperARGB8888
void enableTextureMapperARGB8888 ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperARGB8888_BilinearInterpolation,
enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_BilinearInterpolation
void enableTextureMapperARGB8888_BilinearInterpolation ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_NearestNeighbor
void enableTextureMapperARGB8888_NearestNeighbor ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_BilinearInterpolation

enableTextureMapperL8_ARGB8888
void enableTextureMapperL8_ARGB8888 ()

Enables the texture mappers for L8_ARGB8888 image format.

This allows drawing L8_ARGB8888 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperL8_ARGB8888_BilinearInterpolation,
enableTextureMapperL8_ARGB8888_NearestNeighbor

enableTextureMapperL8_ARGB8888_BilinearInterpolation
void enableTextureMapperL8_ARGB8888_BilinearInterpolation ()

Enables the texture mappers for L8_ARGB8888 image format.

This allows drawing L8_ARGB8888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperL8_ARGB8888, enableTextureMapperL8_ARGB8888_NearestNeighbor

enableTextureMapperL8_ARGB8888_NearestNeighbor
void enableTextureMapperL8_ARGB8888_NearestNeighbor ()

Enables the texture mappers for L8_ARGB8888 image format.

This allows drawing L8_ARGB8888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperL8_ARGB8888, enableTextureMapperL8_ARGB8888_BilinearInterpolation

enableTextureMapperL8_RGB565
void enableTextureMapperL8_RGB565 ()

Enables the texture mappers for L8_RGB565 image format.

This allows drawing L8_RGB565 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperL8_RGB565_BilinearInterpolation,
enableTextureMapperL8_RGB565_NearestNeighbor

enableTextureMapperL8_RGB565_BilinearInterpolation
void enableTextureMapperL8_RGB565_BilinearInterpolation ()

Enables the texture mappers for L8_RGB565 image format.

This allows drawing L8_RGB565 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperL8_RGB565, enableTextureMapperL8_RGB565_NearestNeighbor

enableTextureMapperL8_RGB565_NearestNeighbor
void enableTextureMapperL8_RGB565_NearestNeighbor ()

Enables the texture mappers for L8_RGB565 image format.

This allows drawing L8_RGB565 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperL8_RGB565, enableTextureMapperL8_RGB565_BilinearInterpolation

enableTextureMapperL8_RGB888
void enableTextureMapperL8_RGB888 ()

Enables the texture mappers for L8_RGB888 image format.

This allows drawing L8_RGB888 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperL8_RGB888_BilinearInterpolation,
enableTextureMapperL8_RGB888_NearestNeighbor

enableTextureMapperL8_RGB888_BilinearInterpolation
void enableTextureMapperL8_RGB888_BilinearInterpolation ()

Enables the texture mappers for L8_RGB888 image format.

This allows drawing L8_RGB888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperL8_RGB888, enableTextureMapperL8_RGB888_NearestNeighbor

enableTextureMapperL8_RGB888_NearestNeighbor
void enableTextureMapperL8_RGB888_NearestNeighbor ()

Enables the texture mappers for L8_RGB888 image format.

This allows drawing L8_RGB888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperL8_RGB888, enableTextureMapperL8_RGB888_BilinearInterpolation

enableTextureMapperRGB565
void enableTextureMapperRGB565 ()

Enables the texture mappers for RGB565 image format.

This allows drawing RGB565 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperRGB565_Opaque_BilinearInterpolation,
enableTextureMapperRGB565_Opaque_NearestNeighbor,
enableTextureMapperRGB565_NonOpaque_BilinearInterpolation,
enableTextureMapperRGB565_NonOpaque_NearestNeighbor

enableTextureMapperRGB565_NonOpaque_BilinearInterpolation
void enableTextureMapperRGB565_NonOpaque_BilinearInterpolation ()

Enables the texture mappers for NonOpaque RGB565 image format.

This allows drawing RGB565 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperRGB565

enableTextureMapperRGB565_NonOpaque_NearestNeighbor
void enableTextureMapperRGB565_NonOpaque_NearestNeighbor ()

Enables the texture mappers for NonOpaque RGB565 image format.

This allows drawing RGB565 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperRGB565

enableTextureMapperRGB565_Opaque_BilinearInterpolation
void enableTextureMapperRGB565_Opaque_BilinearInterpolation ()

Enables the texture mappers for Opaque RGB565 image format.

This allows drawing RGB565 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperRGB565

enableTextureMapperRGB565_Opaque_NearestNeighbor
void enableTextureMapperRGB565_Opaque_NearestNeighbor ()

Enables the texture mappers for Opaque RGB565 image format.

This allows drawing RGB565 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperRGB565

fillRect
virtual void fillRect (const Rect & rect ,

colortype color ,
uint8_t alpha =255
)

Draws a filled rectangle in the framebuffer in the specified color and opacity.

By default the rectangle will be drawn as a solid box. The rectangle can be drawn with transparency by
specifying alpha from 0=invisible to 255=solid.

Parameters:
rect The rectangle to draw in absolute display coordinates.
color The rectangle color.
alpha (Optional) The rectangle opacity, from 0=invisible to 255=solid.

Reimplements: touchgfx::LCD::fillRect

framebufferFormat
virtual Bitmap::BitmapFormat framebufferFormat () const

Framebuffer format used by the display.

Returns:

A Bitmap::BitmapFormat.

Reimplements: touchgfx::LCD::framebufferFormat

framebufferStride
virtual uint16_t framebufferStride () const

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

Reimplements: touchgfx::LCD::framebufferStride

getBlueColor
virtual uint8_t getBlueColor (colortype color)

Gets the blue color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical sections.
Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The blue part of the color.

Reimplements: touchgfx::LCD::getBlueColor

getColorFrom24BitRGB

virtual colortype getColorFrom24BitRGB (uint8_t red , const
uint8_t green , const
uint8_t blue const
) const

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Depending on your chosen color bit depth, the color will be interpreted internally as either a 16 bit or 24
bit color value. This function can be safely used regardless of whether your application is configured for 16
or 24 bit colors.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

Reimplements: touchgfx::LCD::getColorFrom24BitRGB

getGreenColor
virtual uint8_t getGreenColor (colortype color)

Gets the green color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical sections.
Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The green part of the color.

Reimplements: touchgfx::LCD::getGreenColor

getRedColor
virtual uint8_t getRedColor (colortype color)

Gets the red color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical sections.
Consider finding the color in another way, if possible.

Parameters:

color The color value.

Returns:

The red part of the color.

Reimplements: touchgfx::LCD::getRedColor

LCD16bpp
LCD16bpp ()

getBlueFromColor
static FORCE_INLINE_FUNCTION uint8_t getBlueFromColor (colortype color)

Gets blue from color.

Parameters:
color The color.

Returns:

The blue from color.

getColorFromRGB
static FORCE_INLINE_FUNCTION colortype getColorFromRGB (uint8_t red ,

uint8_t green ,
uint8_t blue
)

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

getFramebufferStride
static FORCE_INLINE_FUNCTION uint16_t getFramebufferStride ()

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

getGreenFromColor
static FORCE_INLINE_FUNCTION uint8_t getGreenFromColor (colortype color)

Gets green from color.

Parameters:
color The color.

Returns:

The green from color.

getRedFromColor
static FORCE_INLINE_FUNCTION uint8_t getRedFromColor (colortype color)

Gets red from color.

Parameters:
color The color.

Returns:

The red from color.

Protected Functions Documentation
drawGlyph

virtual void drawGlyph (uint16_t * wbuf16 ,
Rect widgetArea ,
int16_t x ,
int16_t y ,
uint16_t offsetX ,
uint16_t offsetY ,
const Rect & invalidatedArea ,
const GlyphNode * glyph ,

const uint8_t * glyphData ,
uint8_t byteAlignRow ,
colortype color ,
uint8_t bitsPerPixel ,
uint8_t alpha ,
TextRotation rotation
)

Private version of draw-glyph with explicit destination buffer pointer argument.

For all parameters (except the buffer pointer) see the public function drawString().

Parameters:
wbuf16 The destination (frame) buffer to draw to.
widgetArea The canvas to draw the glyph inside.
x Horizontal offset to start drawing the glyph.
y Vertical offset to start drawing the glyph.
offsetX Horizontal offset in the glyph to start drawing from.
offsetY Vertical offset in the glyph to start drawing from.
invalidatedArea The area to draw inside.
glyph Specifications of the glyph to draw.
glyphData Data containing the actual glyph (dense format)
byteAlignRow Each row of glyph data starts in a new byte.
color The color of the glyph.
bitsPerPixel Bit depth of the glyph.
alpha The transparency of the glyph.
rotation Rotation to do before drawing the glyph.

Reimplements: touchgfx::LCD::drawGlyph

getTextureMapperDrawScanLine
virtual DrawTextureMapScanLineBase
* getTextureMapperDrawScanLine (const TextureSurface

& texture ,

RenderingVariant renderVariant
,

uint8_t alpha
)

Gets pointer to object that can draw a scan line which allows for highly specialized and optimized
implementation.

Parameters:
texture The texture Surface.
renderVariant The render variant.
alpha The global alpha.

Returns:

Null if it fails, else the pointer to the texture mapper draw scan line object.

Reimplements: touchgfx::LCD::getTextureMapperDrawScanLine

blitCopyAlphaPerPixel
static void blitCopyAlphaPerPixel (const uint16_t * sourceData ,

const uint8_t * alphaData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D source-array to the framebuffer performing alpha-blending per pixel as specified.

Always performs a software blend.

Parameters:
sourceData The source-array pointer (points to the beginning of the data). The sourceData must be

stored as 16- bits RGB565 values.
alphaData The alpha channel array pointer (points to the beginning of the data)
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no blending)

blitCopyARGB8888
static void blitCopyARGB8888 (const uint32_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D source-array to the framebuffer performing alpha-blending per pixel as specified.

If ARGB8888 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-array pointer (points to the beginning of the data). The sourceData must be

stored as 32- bits ARGB8888 values.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no blending)

blitCopyL8

static void blitCopyL8 (const uint8_t * sourceData ,
const uint8_t * clutData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-blending per pixel as specified if
indexed format is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-indexes pointer (points to the beginning of the data). The sourceData must be

stored as 8- bits indexes.
clutData The source-clut pointer (points to the beginning of the CLUT color format and size data

followed by colors entries.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no blending)

blitCopyL8_ARGB8888
static void blitCopyL8_ARGB8888 (const uint8_t * sourceData ,

const uint8_t * clutData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-blending per pixel as specified if
L8_ARGB8888 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-indexes pointer (points to the beginning of the data). The sourceData must be

stored as 8- bits indexes.
clutData The source-clut pointer (points to the beginning of the CLUT color format and size data

followed by colors entries stored as 32- bits (ARGB8888) format.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no blending)

blitCopyL8_RGB565
static void blitCopyL8_RGB565 (const uint8_t * sourceData ,

const uint8_t * clutData ,
const Rect & source ,
const Rect & blitRect ,

uint8_t alpha
)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-blending per pixel as specified if
L8_RGB565 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-indexes pointer (points to the beginning of the data). The sourceData must be

stored as 8- bits indexes.
clutData The source-clut pointer points to the beginning of the CLUT color format and size data

followed by colors entries stored as 16- bits (RGB565) format. If the source have per pixel
alpha channel, then alpha channel data will be following the clut entries data.

source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no blending)

blitCopyL8_RGB888
static void blitCopyL8_RGB888 (const uint8_t * sourceData ,

const uint8_t * clutData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-blending per pixel as specified if
L8_RGB888 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-indexes pointer (points to the beginning of the data). The sourceData must be

stored as 8- bits indexes.
clutData The source-clut pointer (points to the beginning of the CLUT color format and size data

followed by colors entries stored as 32- bits (ARGB8888) format.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no blending)

nextLine
static int nextLine (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next line.

Parameters:
rotatedDisplay Is the display running in portrait mode?

textRotation Rotation to perform.

Returns:

How much to advance to get to the next line.

nextPixel
static int nextPixel (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next pixel.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next pixel.

Version: 4.16

LCD16bppSerialFlash
This class contains the various low-level drawing routines for drawing bitmaps, texts and rectangles on 16 bits
per pixel displays.

See: LCD

Note: All coordinates are expected to be in absolute coordinates!

Inherits from: LCD

Public Functions
virtual uint8_t bitDepth() const

Number of bits per pixel used by the display.

virtual void blitCopy(const uint16_t * sourceData, const Rect & source, const
Rect & blitRect, uint8_t alpha, bool hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer, performing
alpha blending (and tranparency keying) as specified.

virtual void
blitCopy(const uint8_t * sourceData, Bitmap::BitmapFormat
sourceFormat, const Rect & source, const Rect & blitRect, uint8_t
alpha, bool hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer, performing
alpha blending (and tranparency keying) as specified.

virtual uint16_t * copyFrameBufferRegionToMemory(const Rect & visRegion, const
Rect & absRegion, const BitmapId bitmapId)
Copies part of the framebuffer to the data section of a bitmap.

virtual void drawPartialBitmap(const Bitmap & bitmap, int16_t x, int16_t y, const
Rect & rect, uint8_t alpha =255, bool useOptimized =true)
Draws all (or a part) of a bitmap.

void enableTextureMapperA4()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_BilinearInterpolation()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_NearestNeighbor()
Enables the texture mappers for A4 image format.

void enableTextureMapperAll()
Enables the texture mappers for all image formats.

void enableTextureMapperARGB8888()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_BilinearInterpolation()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_NearestNeighbor()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperL8_ARGB8888()
Enables the texture mappers for L8_ARGB8888 image format.

void enableTextureMapperL8_ARGB8888_BilinearInterpolation()
Enables the texture mappers for L8_ARGB8888 image format.

void enableTextureMapperL8_ARGB8888_NearestNeighbor()
Enables the texture mappers for L8_ARGB8888 image format.

void enableTextureMapperL8_RGB565()
Enables the texture mappers for L8_RGB565 image format.

void enableTextureMapperL8_RGB565_BilinearInterpolation()
Enables the texture mappers for L8_RGB565 image format.

void enableTextureMapperL8_RGB565_NearestNeighbor()
Enables the texture mappers for L8_RGB565 image format.

void enableTextureMapperL8_RGB888()
Enables the texture mappers for L8_RGB888 image format.

void enableTextureMapperL8_RGB888_BilinearInterpolation()
Enables the texture mappers for L8_RGB888 image format.

void enableTextureMapperL8_RGB888_NearestNeighbor()
Enables the texture mappers for L8_RGB888 image format.

void enableTextureMapperRGB565()
Enables the texture mappers for RGB565 image format.

void enableTextureMapperRGB565_NonOpaque_BilinearInterpolation()
Enables the texture mappers for NonOpaque RGB565 image format.

void enableTextureMapperRGB565_NonOpaque_NearestNeighbor()

Enables the texture mappers for NonOpaque RGB565 image format.

void enableTextureMapperRGB565_Opaque_BilinearInterpolation()
Enables the texture mappers for Opaque RGB565 image format.

void enableTextureMapperRGB565_Opaque_NearestNeighbor()
Enables the texture mappers for Opaque RGB565 image format.

virtual void fillRect(const Rect & rect, colortype color, uint8_t alpha =255)
Draws a filled rectangle in the framebuffer in the specified color and
opacity.

virtual Bitmap::BitmapFormat framebufferFormat() const
Framebuffer format used by the display.

virtual uint16_t framebufferStride() const
Framebuffer stride in bytes.

virtual uint8_t getBlueColor(colortype color) const
Gets the blue color part of a color.

virtual colortype getColorFrom24BitRGB(uint8_t red, uint8_t green, uint8_t blue)
const
Generates a color representation to be used on the LCD, based on 24
bit RGB values.

virtual uint8_t getGreenColor(colortype color) const
Gets the green color part of a color.

virtual uint8_t getRedColor(colortype color) const
Gets the red color part of a color.

LCD16bppSerialFlash(FlashDataReader & flashReader)
Creates a LCD16bppSerialFlash object.

FORCE_INLINE_FUNCTION uint8_t getBlueFromColor(colortype color)
Gets blue from color.

FORCE_INLINE_FUNCTION colortype getColorFromRGB(uint8_t red, uint8_t green, uint8_t blue)
Generates a color representation to be used on the LCD, based on 24
bit RGB values.

FORCE_INLINE_FUNCTION uint16_t getFramebufferStride()
Framebuffer stride in bytes.

FORCE_INLINE_FUNCTION uint8_t getGreenFromColor(colortype color)
Gets green from color.

FORCE_INLINE_FUNCTION uint8_t getRedFromColor(colortype color)
Gets red from color.

Protected Functions
void blitCopyARGB8888(const uint32_t * sourceData, const Rect &

source, const Rect & blitRect, uint8_t alpha)
Blits a 2D source-array to the framebuffer performing alpha-
blending per pixel as specified.

void blitCopyL8(const uint8_t sourceData, const uint8_t clutData, const
Rect & source, const Rect & blitRect, uint8_t alpha)
Blits a 2D indexed 8-bit source to the framebuffer performing alpha-
blending per pixel as specified if indexed format is not supported by
the DMA a software blend is performed.

void blitCopyL8_ARGB8888(const uint8_t sourceData, const uint8_t
clutData, const Rect & source, const Rect & blitRect, uint8_t alpha)
Blits a 2D indexed 8-bit source to the framebuffer performing alpha-
blending per pixel as specified if L8_ARGB8888 is not supported by
the DMA a software blend is performed.

void blitCopyL8_RGB565(const uint8_t sourceData, const uint8_t
clutData, const Rect & source, const Rect & blitRect, uint8_t alpha)
Blits a 2D indexed 8-bit source to the framebuffer performing alpha-
blending per pixel as specified if L8_RGB565 is not supported by the
DMA a software blend is performed.

virtual void

drawGlyph(uint16_t wbuf16, Rect widgetArea, int16_t x, int16_t y,
uint16_t offsetX, uint16_t offsetY, const Rect & invalidatedArea, const
GlyphNode glyph, const uint8_t * glyphData, uint8_t byteAlignRow,
colortype color, uint8_t bitsPerPixel, uint8_t alpha, TextRotation
rotation)
Private version of draw-glyph with explicit destination buffer pointer
argument.

virtual DrawTextureMapScanLineBase * getTextureMapperDrawScanLine(const TextureSurface & texture,
RenderingVariant renderVariant, uint8_t alpha)
Gets pointer to object that can draw a scan line which allows for
highly specialized and optimized implementation.

int nextLine(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to the
next line.

int nextPixel(bool rotatedDisplay, TextRotation textRotation)

Find out how much to advance in the display buffer to get to the
next pixel.

Protected Attributes
FlashDataReader & flashReader

Flash reader. Used by routines to read pixel data from the flash.

Additional inherited members
Public Classes inherited from LCD

struct StringVisuals
The visual elements when writing a string.

Protected Classes inherited from LCD
class DrawTextureMapScanLineBase

Base class for drawing scanline by the texture mapper.

Public Functions inherited from LCD

void
drawString(Rect widgetArea, const Rect & invalidatedArea, const
StringVisuals & stringVisuals, const Unicode::UnicodeChar * format, ...
)
Draws the specified Unicode string.

virtual void
drawTextureMapTriangle(const DrawingSurface & dest, const
Point3D * vertices, const TextureSurface & texture, const Rect &
absoluteRect, const Rect & dirtyAreaAbsolute, RenderingVariant
renderVariant, uint8_t alpha =255, uint16_t subDivisionSize =12)
Texture map triangle.

colortype getDefaultColor() const
Gets default color previously set using setDefaultColor.

void setDefaultColor(colortype color)
Sets default color as used by alpha level only bitmap formats, e.g.

virtual ~LCD()

Finalizes an instance of the LCD class.

FORCE_INLINE_FUNCTION uint8_t div255(uint16_t num)
Approximates an integer division of a 16bit value by 255.

FORCE_INLINE_FUNCTION uint32_t div255g(uint32_t pixelxAlpha)
Divides the green component of pixelxAlpha by 255.

FORCE_INLINE_FUNCTION uint32_t div255rb(uint32_t pixelxAlpha)
Divides the red and blue components of pixelxAlpha by 255.

Protected Functions inherited from LCD

void
drawStringLTR(const Rect & widgetArea, const Rect & invalidatedArea,
const StringVisuals & visuals, const Unicode::UnicodeChar * format,
va_list pArg)
Draws the specified Unicode string.

void
drawStringRTL(const Rect & widgetArea, const Rect & invalidatedArea,
const StringVisuals & visuals, const Unicode::UnicodeChar * format,
va_list pArg)
Draws the specified Unicode string.

virtual void

drawTextureMapScanLine(const DrawingSurface & dest, const
Gradients & gradients, const Edge leftEdge, const Edge rightEdge, const
TextureSurface & texture, const Rect & absoluteRect, const Rect &
dirtyAreaAbsolute, RenderingVariant renderVariant, uint8_t alpha,
uint16_t subDivisionSize)
Draw scan line.

FORCE_INLINE_FUNCTION uint8_t getAlphaFromA4(const uint16_t * data, uint32_t offset)
Gets alpha from A4 image at given offset.

uint16_t
getNumLines(TextProvider & textProvider, WideTextAction
wideTextAction, TextDirection textDirection, const Font * font, int16_t
width)
Gets number of lines for a given text taking word wrap into
consideration.

int realX(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute x coordinate of a point inside a widget with
regards to rotation.

int realY(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)

Find the real, absolute y coordinate of a point inside a widget with
regards to rotation.

void rotateRect(Rect & rect, const Rect & canvas, const TextRotation
rotation)
Rotate a rectangle inside another rectangle.

uint16_t stringWidth(TextProvider & textProvider, const Font & font, const int
numChars, TextDirection textDirection)
Find string width of the given number of ligatures read from the given
TextProvider.

Protected Attributes inherited from LCD
colortype defaultColor

Default Color to use when displaying transparency-only elements, e.g. A4 bitmaps.

const uint16_t newLine
NewLine value.

Public Functions Documentation
bitDepth

virtual uint8_t bitDepth () const

Number of bits per pixel used by the display.

Returns:

The number of bits per pixel.

Reimplements: touchgfx::LCD::bitDepth

blitCopy
virtual void blitCopy (const uint16_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and tranparency
keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha != 255 (solid).

Parameters:
sourceData The source array pointer (points to the beginning of the data). The sourceData

must be stored in a format suitable for the selected display.
source The position and dimensions of the source. The x and y of this rect should both

be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to the

framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to 255=solid=no

blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware support

for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

blitCopy
virtual void blitCopy (const uint8_t * sourceData ,

Bitmap::BitmapFormat sourceFormat ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and tranparency
keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha < 255 (solid).

If the display does not support the specified sourceFormat, an assert will be raised.

Parameters:
sourceData The source array pointer (points to the beginning of the data). The sourceData

must be stored in a format suitable for the selected display.
sourceFormat The bitmap format used in the source data.
source The position and dimensions of the source. The x and y of this rect should both

be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to the

framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to 255=solid=no

blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware support

for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

copyFrameBufferRegionToMemory
virtual uint16_t * copyFrameBufferRegionToMemory (const Rect & visRegion ,

const Rect & absRegion ,
const BitmapId bitmapId
)

Copies part of the framebuffer to the data section of a bitmap.

The bitmap must be a dynamic bitmap or animation storage (BITMAP_ANIMATION_STORAGE). The two
regions given are the visible region and the absolute region on screen. This is used to copy only a part of
the framebuffer. This might be the case if a SnapshotWidget is placed inside a Container where parts of
the SnapshowWidget is outside the area defined by the Container. The visible region must be completely
inside the absolute region.

Parameters:
visRegion The visible region.
absRegion The absolute region.
bitmapId Identifier for the bitmap.

Returns:

Null if it fails, else a pointer to the data in the given bitmap.

NOTE

There is only one instance of animation storage. The content of the bitmap data /animation storage outside the
given region is left untouched.

See also:

blitCopy

Reimplements: touchgfx::LCD::copyFrameBufferRegionToMemory

drawPartialBitmap
virtual void drawPartialBitmap (const Bitmap & bitmap ,

int16_t x ,
int16_t y ,
const Rect & rect ,
uint8_t alpha =255,
bool useOptimized =true
)

Draws all (or a part) of a bitmap.

The coordinates of the corner of the bitmap is given in (x, y) and rect describes which part of the bitmap
should be drawn. The bitmap can be drawn as it is or more or less transparent depending on the value of

alpha. The value of alpha is independent of the transparency of the individual pixels of the given bitmap.

Parameters:
bitmap The bitmap to draw.
x The absolute x coordinate to place (0, 0) of the bitmap on the screen.
y The absolute y coordinate to place (0, 0) of the bitmap on the screen.
rect A rectangle describing what region of the bitmap is to be drawn.
alpha (Optional) Optional alpha value ranging from 0=invisible to 255=solid. Default is 255

(solid).
useOptimized (Optional) if false, do not attempt to substitute (parts of) this bitmap with faster fillrects.

Reimplements: touchgfx::LCD::drawPartialBitmap

enableTextureMapperA4
void enableTextureMapperA4 ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperA4_BilinearInterpolation, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_BilinearInterpolation
void enableTextureMapperA4_BilinearInterpolation ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_NearestNeighbor
void enableTextureMapperA4_NearestNeighbor ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_BilinearInterpolation

enableTextureMapperAll
void enableTextureMapperAll ()

Enables the texture mappers for all image formats.

This allows drawing any image using Bilinear Interpolation and Nearest Neighbor algorithms, but might
use a lot of memory for the drawing algorithms.

enableTextureMapperARGB8888
void enableTextureMapperARGB8888 ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperARGB8888_BilinearInterpolation,
enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_BilinearInterpolation
void enableTextureMapperARGB8888_BilinearInterpolation ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_NearestNeighbor
void enableTextureMapperARGB8888_NearestNeighbor ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_BilinearInterpolation

enableTextureMapperL8_ARGB8888

void enableTextureMapperL8_ARGB8888 ()

Enables the texture mappers for L8_ARGB8888 image format.

This allows drawing L8_ARGB8888 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperL8_ARGB8888_BilinearInterpolation,
enableTextureMapperL8_ARGB8888_NearestNeighbor

enableTextureMapperL8_ARGB8888_BilinearInterpolation
void enableTextureMapperL8_ARGB8888_BilinearInterpolation ()

Enables the texture mappers for L8_ARGB8888 image format.

This allows drawing L8_ARGB8888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperL8_ARGB8888, enableTextureMapperL8_ARGB8888_NearestNeighbor

enableTextureMapperL8_ARGB8888_NearestNeighbor
void enableTextureMapperL8_ARGB8888_NearestNeighbor ()

Enables the texture mappers for L8_ARGB8888 image format.

This allows drawing L8_ARGB8888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperL8_ARGB8888, enableTextureMapperL8_ARGB8888_BilinearInterpolation

enableTextureMapperL8_RGB565
void enableTextureMapperL8_RGB565 ()

Enables the texture mappers for L8_RGB565 image format.

This allows drawing L8_RGB565 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperL8_RGB565_BilinearInterpolation,
enableTextureMapperL8_RGB565_NearestNeighbor

enableTextureMapperL8_RGB565_BilinearInterpolation

void enableTextureMapperL8_RGB565_BilinearInterpolation ()

Enables the texture mappers for L8_RGB565 image format.

This allows drawing L8_RGB565 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperL8_RGB565, enableTextureMapperL8_RGB565_NearestNeighbor

enableTextureMapperL8_RGB565_NearestNeighbor
void enableTextureMapperL8_RGB565_NearestNeighbor ()

Enables the texture mappers for L8_RGB565 image format.

This allows drawing L8_RGB565 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperL8_RGB565, enableTextureMapperL8_RGB565_BilinearInterpolation

enableTextureMapperL8_RGB888
void enableTextureMapperL8_RGB888 ()

Enables the texture mappers for L8_RGB888 image format.

This allows drawing L8_RGB888 images using Bilinear Interpolation and NearestNeighbor algorithms.

See also:

enableTextureMapperL8_RGB888_BilinearInterpolation,
enableTextureMapperL8_RGB888_NearestNeighbor

enableTextureMapperL8_RGB888_BilinearInterpolation
void enableTextureMapperL8_RGB888_BilinearInterpolation ()

Enables the texture mappers for L8_RGB888 image format.

This allows drawing L8_RGB888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperL8_RGB888, enableTextureMapperL8_RGB888_NearestNeighbor

enableTextureMapperL8_RGB888_NearestNeighbor

void enableTextureMapperL8_RGB888_NearestNeighbor ()

Enables the texture mappers for L8_RGB888 image format.

This allows drawing L8_RGB888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperL8_RGB888, enableTextureMapperL8_RGB888_BilinearInterpolation

enableTextureMapperRGB565
void enableTextureMapperRGB565 ()

Enables the texture mappers for RGB565 image format.

This allows drawing RGB565 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperRGB565_Opaque_BilinearInterpolation,
enableTextureMapperRGB565_Opaque_NearestNeighbor,
enableTextureMapperRGB565_NonOpaque_BilinearInterpolation,
enableTextureMapperRGB565_NonOpaque_NearestNeighbor

enableTextureMapperRGB565_NonOpaque_BilinearInterpolation
void enableTextureMapperRGB565_NonOpaque_BilinearInterpolation ()

Enables the texture mappers for NonOpaque RGB565 image format.

This allows drawing RGB565 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperRGB565

enableTextureMapperRGB565_NonOpaque_NearestNeighbor
void enableTextureMapperRGB565_NonOpaque_NearestNeighbor ()

Enables the texture mappers for NonOpaque RGB565 image format.

This allows drawing RGB565 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperRGB565

enableTextureMapperRGB565_Opaque_BilinearInterpolation
void enableTextureMapperRGB565_Opaque_BilinearInterpolation ()

Enables the texture mappers for Opaque RGB565 image format.

This allows drawing RGB565 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperRGB565

enableTextureMapperRGB565_Opaque_NearestNeighbor
void enableTextureMapperRGB565_Opaque_NearestNeighbor ()

Enables the texture mappers for Opaque RGB565 image format.

This allows drawing RGB565 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperRGB565

fillRect
virtual void fillRect (const Rect & rect ,

colortype color ,
uint8_t alpha =255
)

Draws a filled rectangle in the framebuffer in the specified color and opacity.

By default the rectangle will be drawn as a solid box. The rectangle can be drawn with transparency by
specifying alpha from 0=invisible to 255=solid.

Parameters:
rect The rectangle to draw in absolute display coordinates.
color The rectangle color.
alpha (Optional) The rectangle opacity, from 0=invisible to 255=solid.

Reimplements: touchgfx::LCD::fillRect

framebufferFormat
virtual Bitmap::BitmapFormat framebufferFormat () const

Framebuffer format used by the display.

Returns:

A Bitmap::BitmapFormat.

Reimplements: touchgfx::LCD::framebufferFormat

framebufferStride
virtual uint16_t framebufferStride () const

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

Reimplements: touchgfx::LCD::framebufferStride

getBlueColor
virtual uint8_t getBlueColor (colortype color)

Gets the blue color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical sections.
Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The blue part of the color.

Reimplements: touchgfx::LCD::getBlueColor

getColorFrom24BitRGB
virtual colortype getColorFrom24BitRGB (uint8_t red , const

uint8_t green , const
uint8_t blue const
) const

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Depending on your chosen color bit depth, the color will be interpreted internally as either a 16 bit or 24
bit color value. This function can be safely used regardless of whether your application is configured for 16

or 24 bit colors.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

Reimplements: touchgfx::LCD::getColorFrom24BitRGB

getGreenColor
virtual uint8_t getGreenColor (colortype color)

Gets the green color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical sections.
Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The green part of the color.

Reimplements: touchgfx::LCD::getGreenColor

getRedColor
virtual uint8_t getRedColor (colortype color)

Gets the red color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical sections.
Consider finding the color in another way, if possible.

Parameters:
color The color value.

Returns:

The red part of the color.

Reimplements: touchgfx::LCD::getRedColor

LCD16bppSerialFlash
LCD16bppSerialFlash (FlashDataReader & flashReader)

Creates a LCD16bppSerialFlash object.

The FlashDataReader object is used to fetch data from the external flash.

Parameters:
flashReader Reference to a FlashDataReader object.

getBlueFromColor
static FORCE_INLINE_FUNCTION uint8_t getBlueFromColor (colortype color)

Gets blue from color.

Parameters:
color The color.

Returns:

The blue from color.

getColorFromRGB
static FORCE_INLINE_FUNCTION colortype getColorFromRGB (uint8_t red ,

uint8_t green ,
uint8_t blue
)

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

getFramebufferStride
static FORCE_INLINE_FUNCTION uint16_t getFramebufferStride ()

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

getGreenFromColor
static FORCE_INLINE_FUNCTION uint8_t getGreenFromColor (colortype color)

Gets green from color.

Parameters:
color The color.

Returns:

The green from color.

getRedFromColor
static FORCE_INLINE_FUNCTION uint8_t getRedFromColor (colortype color)

Gets red from color.

Parameters:
color The color.

Returns:

The red from color.

Protected Functions Documentation
blitCopyARGB8888

void blitCopyARGB8888 (const uint32_t * sourceData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D source-array to the framebuffer performing alpha-blending per pixel as specified.

If ARGB8888 is not supported by the DMA a software blend is performed.

Parameters:

sourceData The source-array pointer (points to the beginning of the data). The sourceData must be
stored as 32- bits ARGB8888 values.

source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no blending)

blitCopyL8
void blitCopyL8 (const uint8_t * sourceData ,

const uint8_t * clutData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-blending per pixel as specified if
indexed format is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-indexes pointer (points to the beginning of the data). The sourceData must be

stored as 8- bits indexes.
clutData The source-clut pointer (points to the beginning of the CLUT color format and size data

followed by colors entries.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no blending)

blitCopyL8_ARGB8888
void blitCopyL8_ARGB8888 (const uint8_t * sourceData ,

const uint8_t * clutData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-blending per pixel as specified if
L8_ARGB8888 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-indexes pointer (points to the beginning of the data). The sourceData must be

stored as 8- bits indexes.
clutData The source-clut pointer (points to the beginning of the CLUT color format and size data

followed by colors entries stored as 32- bits (ARGB8888) format.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no blending)

blitCopyL8_RGB565
void blitCopyL8_RGB565 (const uint8_t * sourceData ,

const uint8_t * clutData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-blending per pixel as specified if
L8_RGB565 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-indexes pointer (points to the beginning of the data). The sourceData must be

stored as 8- bits indexes.
clutData The source-clut pointer points to the beginning of the CLUT color format and size data

followed by colors entries stored as 16- bits (RGB565) format. If the source have per pixel
alpha channel, then alpha channel data will be following the clut entries data.

source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no blending)

drawGlyph
virtual void drawGlyph (uint16_t * wbuf16 ,

Rect widgetArea ,
int16_t x ,
int16_t y ,
uint16_t offsetX ,
uint16_t offsetY ,
const Rect & invalidatedArea ,
const GlyphNode * glyph ,
const uint8_t * glyphData ,
uint8_t byteAlignRow ,
colortype color ,
uint8_t bitsPerPixel ,
uint8_t alpha ,
TextRotation rotation
)

Private version of draw-glyph with explicit destination buffer pointer argument.

For all parameters (except the buffer pointer) see the public function drawString().

Parameters:

wbuf16 The destination (frame) buffer to draw to.
widgetArea The canvas to draw the glyph inside.
x Horizontal offset to start drawing the glyph.
y Vertical offset to start drawing the glyph.
offsetX Horizontal offset in the glyph to start drawing from.
offsetY Vertical offset in the glyph to start drawing from.
invalidatedArea The area to draw inside.
glyph Specifications of the glyph to draw.
glyphData Data containing the actual glyph (dense format)
byteAlignRow Each row of glyph data starts in a new byte.
color The color of the glyph.
bitsPerPixel Bit depth of the glyph.
alpha The transparency of the glyph.
rotation Rotation to do before drawing the glyph.

Reimplements: touchgfx::LCD::drawGlyph

getTextureMapperDrawScanLine
virtual DrawTextureMapScanLineBase
* getTextureMapperDrawScanLine (const TextureSurface

& texture ,

RenderingVariant renderVariant
,

uint8_t alpha
)

Gets pointer to object that can draw a scan line which allows for highly specialized and optimized
implementation.

Parameters:
texture The texture Surface.
renderVariant The render variant.
alpha The global alpha.

Returns:

Null if it fails, else the pointer to the texture mapper draw scan line object.

Reimplements: touchgfx::LCD::getTextureMapperDrawScanLine

nextLine
static int nextLine (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next line.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next line.

nextPixel
static int nextPixel (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next pixel.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next pixel.

Protected Attributes Documentation
flashReader

FlashDataReader & flashReader

Flash reader. Used by routines to read pixel data from the flash.

Version: 4.16

LCD16DebugPrinter
The class LCD16DebugPrinter implements the DebugPrinter interface for printing debug messages on
top of 16bit framebuffer.

See: DebugPrinter

Inherits from: DebugPrinter

Public Functions
virtual void draw(const Rect & rect) const

Draws the debug string on top of the framebuffer content.

Additional inherited members
Public Functions inherited from DebugPrinter

DebugPrinter()
Initializes a new instance of the DebugPrinter class.

const Rect & getRegion() const
Returns the region where the debug string is displayed.

void setColor(colortype fg)
Sets the foreground color of the debug string.

void setPosition(uint16_t x, uint16_t y, uint16_t w, uint16_t h)
Sets the position onscreen where the debug string will be displayed.

void setScale(uint8_t scale)
Sets the font scale of the debug string.

void setString(const char * string)
Sets the debug string to be displayed on top of the framebuffer.

virtual ~DebugPrinter()

Finalizes an instance of the DebugPrinter class.

Protected Functions inherited from DebugPrinter
uint16_t getGlyph(uint8_t c) const

Gets a glyph (15 bits) arranged with 3 bits wide, 5 bits high in a single uint16_t value.

Protected Attributes inherited from DebugPrinter
colortype debugForegroundColor

Font color to use when displaying the debug string.

Rect debugRegion
Region onscreen where the debug message is displayed.

uint8_t debugScale
Font scaling factor to use when displaying the debug string.

const char * debugString
Debug string to be displayed onscreen.

Public Functions Documentation
draw

virtual void draw (const Rect & rect)

Draws the debug string on top of the framebuffer content.

Parameters:
rect The rect to draw inside.

Reimplements: touchgfx::DebugPrinter::draw

Version: 4.16

LCD1bpp
This class contains the various low-level drawing routines for drawing bitmaps, texts and rectangles on
1 bits per pixel displays.

See: LCD

Note: All coordinates are expected to be in absolute coordinates!

Inherits from: LCD

Public Functions
virtual uint8_t bitDepth() const

Number of bits per pixel used by the display.

virtual void
blitCopy(const uint16_t * sourceData, const Rect & source,
const Rect & blitRect, uint8_t alpha, bool
hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual void
blitCopy(const uint8_t * sourceData, Bitmap::BitmapFormat
sourceFormat, const Rect & source, const Rect & blitRect,
uint8_t alpha, bool hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual uint16_t * copyFrameBufferRegionToMemory(const Rect & visRegion,
const Rect & absRegion, const BitmapId bitmapId)
Copies part of the framebuffer to the data section of a bitmap.

virtual void
drawPartialBitmap(const Bitmap & bitmap, int16_t x, int16_t
y, const Rect & rect, uint8_t alpha =255, bool useOptimized
=true)
Draws all (or a part) of a bitmap.

void enableTextureMapperAll()
Enables the texture mappers for all image formats.

virtual void fillRect(const Rect & rect, colortype color, uint8_t alpha
=255)
Draws a filled rectangle in the framebuffer in the specified
color and opacity.

virtual Bitmap::BitmapFormat framebufferFormat() const
Framebuffer format used by the display.

virtual uint16_t framebufferStride() const
Framebuffer stride in bytes.

virtual uint8_t getBlueColor(colortype color) const
Gets the blue color part of a color.

virtual colortype getColorFrom24BitRGB(uint8_t red, uint8_t green, uint8_t
blue) const
Generates a color representation to be used on the LCD,
based on 24 bit RGB values.

virtual uint8_t getGreenColor(colortype color) const
Gets the green color part of a color.

virtual uint8_t getRedColor(colortype color) const
Gets the red color part of a color.

FORCE_INLINE_FUNCTION uint8_t getBlueFromColor(colortype color)
Gets blue from color.

FORCE_INLINE_FUNCTION colortype getColorFromRGB(uint8_t red, uint8_t green, uint8_t blue)
Generates a color representation to be used on the LCD,
based on 24 bit RGB values.

FORCE_INLINE_FUNCTION uint16_t getFramebufferStride()
Framebuffer stride in bytes.

FORCE_INLINE_FUNCTION uint8_t getGreenFromColor(colortype color)
Gets green from color.

FORCE_INLINE_FUNCTION uint8_t getRedFromColor(colortype color)
Gets red from color.

Protected Functions

virtual void blitCopyRLE(const uint16_t * _sourceData, const Rect & source, const Rect & blitRect,
uint8_t alpha)
Blits a run-length encoded2D source-array to the framebuffer if alpha > zero.

void
copyRect(const uint8_t srcAddress, uint16_t srcStride, uint8_t srcPixelOffset, uint8_t
RESTRICT dstAddress, uint16_t dstStride, uint8_t dstPixelOffset, uint16_t width, uint16_t
height) const
Copies a rectangular area from the framebuffer til a givene memory address, which is
typically in the animation storage or a dynamic bitmap.

virtual void
drawGlyph(uint16_t wbuf16, Rect widgetArea, int16_t x, int16_t y, uint16_t offsetX,
uint16_t offsetY, const Rect & invalidatedArea, const GlyphNode glyph, const uint8_t *
glyphData, uint8_t byteAlignRow, colortype color, uint8_t bitsPerPixel, uint8_t alpha,
TextRotation rotation)
Private version of draw-glyph with explicit destination buffer pointer argument.

virtual void
drawTextureMapScanLine(const DrawingSurface & dest, const Gradients &
gradients, const Edge leftEdge, const Edge rightEdge, const TextureSurface & texture,
const Rect & absoluteRect, const Rect & dirtyAreaAbsolute, RenderingVariant
renderVariant, uint8_t alpha, uint16_t subDivisionSize)
Draw scan line.

void fillMemory(void *RESTRICT dst, colortype color, uint16_t bytesToFill)
Fill memory efficiently.

int nextLine(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to the next line.

int nextPixel(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to the next pixel.

Additional inherited members
Public Classes inherited from LCD

struct StringVisuals
The visual elements when writing a string.

Protected Classes inherited from LCD
class DrawTextureMapScanLineBase

Base class for drawing scanline by the texture mapper.

Public Functions inherited from LCD

void
drawString(Rect widgetArea, const Rect & invalidatedArea,
const StringVisuals & stringVisuals, const
Unicode::UnicodeChar * format, ...)
Draws the specified Unicode string.

virtual void

drawTextureMapTriangle(const DrawingSurface & dest, const
Point3D * vertices, const TextureSurface & texture, const Rect
& absoluteRect, const Rect & dirtyAreaAbsolute,
RenderingVariant renderVariant, uint8_t alpha =255, uint16_t
subDivisionSize =12)
Texture map triangle.

colortype getDefaultColor() const
Gets default color previously set using setDefaultColor.

void setDefaultColor(colortype color)
Sets default color as used by alpha level only bitmap formats,
e.g.

virtual ~LCD()
Finalizes an instance of the LCD class.

FORCE_INLINE_FUNCTION uint8_t div255(uint16_t num)
Approximates an integer division of a 16bit value by 255.

FORCE_INLINE_FUNCTION uint32_t div255g(uint32_t pixelxAlpha)
Divides the green component of pixelxAlpha by 255.

FORCE_INLINE_FUNCTION uint32_t div255rb(uint32_t pixelxAlpha)
Divides the red and blue components of pixelxAlpha by 255.

Protected Functions inherited from LCD

void
drawStringLTR(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

void
drawStringRTL(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

virtual DrawTextureMapScanLineBase * getTextureMapperDrawScanLine(const TextureSurface
& texture, RenderingVariant renderVariant, uint8_t alpha)
Gets pointer to object that can draw a scan line which
allows for highly specialized and optimized
implementation.

FORCE_INLINE_FUNCTION uint8_t getAlphaFromA4(const uint16_t * data, uint32_t offset)
Gets alpha from A4 image at given offset.

uint16_t
getNumLines(TextProvider & textProvider,
WideTextAction wideTextAction, TextDirection
textDirection, const Font * font, int16_t width)
Gets number of lines for a given text taking word wrap
into consideration.

int realX(const Rect & widgetArea, int16_t x, int16_t y,
TextRotation rotation)
Find the real, absolute x coordinate of a point inside a
widget with regards to rotation.

int realY(const Rect & widgetArea, int16_t x, int16_t y,
TextRotation rotation)
Find the real, absolute y coordinate of a point inside a
widget with regards to rotation.

void rotateRect(Rect & rect, const Rect & canvas, const
TextRotation rotation)
Rotate a rectangle inside another rectangle.

uint16_t stringWidth(TextProvider & textProvider, const Font &
font, const int numChars, TextDirection textDirection)
Find string width of the given number of ligatures read
from the given TextProvider.

Protected Attributes inherited from LCD
colortype defaultColor

Default Color to use when displaying transparency-only elements, e.g. A4 bitmaps.

const uint16_t newLine
NewLine value.

Public Functions Documentation
bitDepth

virtual uint8_t bitDepth () const

Number of bits per pixel used by the display.

Returns:

The number of bits per pixel.

Reimplements: touchgfx::LCD::bitDepth

blitCopy
virtual void blitCopy (const uint16_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha != 255
(solid).

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

blitCopy
virtual void blitCopy (const uint8_t * sourceData ,

Bitmap::BitmapFormat sourceFormat ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha < 255
(solid).

If the display does not support the specified sourceFormat, an assert will be raised.

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
sourceFormat The bitmap format used in the source data.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

copyFrameBufferRegionToMemory
virtual uint16_t * copyFrameBufferRegionToMemory (const Rect & visRegion ,

const Rect & absRegion ,
const BitmapId bitmapId
)

Copies part of the framebuffer to the data section of a bitmap.

The bitmap must be a dynamic bitmap or animation storage (BITMAP_ANIMATION_STORAGE). The
two regions given are the visible region and the absolute region on screen. This is used to copy
only a part of the framebuffer. This might be the case if a SnapshotWidget is placed inside a
Container where parts of the SnapshowWidget is outside the area defined by the Container. The
visible region must be completely inside the absolute region.

Parameters:
visRegion The visible region.
absRegion The absolute region.
bitmapId Identifier for the bitmap.

Returns:

Null if it fails, else a pointer to the data in the given bitmap.

NOTE

There is only one instance of animation storage. The content of the bitmap data /animation storage
outside the given region is left untouched.

See also:

blitCopy

Reimplements: touchgfx::LCD::copyFrameBufferRegionToMemory

drawPartialBitmap
virtual void drawPartialBitmap (const Bitmap & bitmap ,

int16_t x ,
int16_t y ,
const Rect & rect ,
uint8_t alpha =255,
bool useOptimized =true
)

Draws all (or a part) of a bitmap.

The coordinates of the corner of the bitmap is given in (x, y) and rect describes which part of the
bitmap should be drawn. The bitmap can be drawn as it is or more or less transparent depending
on the value of alpha. The value of alpha is independent of the transparency of the individual pixels
of the given bitmap.

Parameters:
bitmap The bitmap to draw.

x The absolute x coordinate to place (0, 0) of the bitmap on the screen.
y The absolute y coordinate to place (0, 0) of the bitmap on the screen.
rect A rectangle describing what region of the bitmap is to be drawn.
alpha (Optional) Optional alpha value ranging from 0=invisible to 255=solid. Default is

255 (solid).
useOptimized (Optional) if false, do not attempt to substitute (parts of) this bitmap with faster

fillrects.

Reimplements: touchgfx::LCD::drawPartialBitmap

enableTextureMapperAll
void enableTextureMapperAll ()

Enables the texture mappers for all image formats.

Currently texture mapping is not supported on 1bpp displays, so this function does not do
anything. It is merely included to allow function enableTextureMapperAll() to be called on any
subclass of LCD.

fillRect
virtual void fillRect (const Rect & rect ,

colortype color ,
uint8_t alpha =255
)

Draws a filled rectangle in the framebuffer in the specified color and opacity.

By default the rectangle will be drawn as a solid box. The rectangle can be drawn with transparency
by specifying alpha from 0=invisible to 255=solid.

Parameters:
rect The rectangle to draw in absolute display coordinates.
color The rectangle color.
alpha (Optional) The rectangle opacity, from 0=invisible to 255=solid.

Reimplements: touchgfx::LCD::fillRect

framebufferFormat
virtual Bitmap::BitmapFormat framebufferFormat () const

Framebuffer format used by the display.

Returns:

A Bitmap::BitmapFormat.

Reimplements: touchgfx::LCD::framebufferFormat

framebufferStride
virtual uint16_t framebufferStride () const

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

Reimplements: touchgfx::LCD::framebufferStride

getBlueColor
virtual uint8_t getBlueColor (colortype color)

Gets the blue color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The blue part of the color.

Reimplements: touchgfx::LCD::getBlueColor

getColorFrom24BitRGB
virtual colortype getColorFrom24BitRGB (uint8_t red , const

uint8_t green , const
uint8_t blue const

) const

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Depending on your chosen color bit depth, the color will be interpreted internally as either a 16 bit
or 24 bit color value. This function can be safely used regardless of whether your application is
configured for 16 or 24 bit colors.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

Reimplements: touchgfx::LCD::getColorFrom24BitRGB

getGreenColor
virtual uint8_t getGreenColor (colortype color)

Gets the green color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The green part of the color.

Reimplements: touchgfx::LCD::getGreenColor

getRedColor
virtual uint8_t getRedColor (colortype color)

Gets the red color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The color value.

Returns:

The red part of the color.

Reimplements: touchgfx::LCD::getRedColor

getBlueFromColor
static FORCE_INLINE_FUNCTION uint8_t getBlueFromColor (colortype color)

Gets blue from color.

Parameters:
color The color.

Returns:

The blue from color.

getColorFromRGB
static FORCE_INLINE_FUNCTION colortype getColorFromRGB (uint8_t red ,

uint8_t green ,
uint8_t blue
)

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

getFramebufferStride
static FORCE_INLINE_FUNCTION uint16_t getFramebufferStride ()

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

getGreenFromColor
static FORCE_INLINE_FUNCTION uint8_t getGreenFromColor (colortype color)

Gets green from color.

Parameters:
color The color.

Returns:

The green from color.

getRedFromColor
static FORCE_INLINE_FUNCTION uint8_t getRedFromColor (colortype color)

Gets red from color.

Parameters:
color The color.

Returns:

The red from color.

Protected Functions Documentation
blitCopyRLE

virtual void blitCopyRLE (const uint16_t * _sourceData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha

)

Blits a run-length encoded2D source-array to the framebuffer if alpha > zero.

Parameters:
_sourceData The source-array pointer (points to the beginning of the data). Data stored in RLE

format, where each byte indicates number of pixels with certain color, alternating
between black and white. First byte represents black.

source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending (0 = invisible, otherwise solid).

copyRect
void copyRect (const uint8_t * srcAddress , const

uint16_t srcStride , const
uint8_t srcPixelOffset , const
uint8_t *RESTRICT dstAddress , const
uint16_t dstStride , const
uint8_t dstPixelOffset , const
uint16_t width , const
uint16_t height const
) const

Copies a rectangular area from the framebuffer til a givene memory address, which is typically in
the animation storage or a dynamic bitmap.

Parameters:
srcAddress Source address (byte address).
srcStride Source stride (number of bytes to advance to next line).
srcPixelOffset Source pixel offset (first pixel in first source byte).
dstAddress If destination address (byte address).
dstStride Destination stride (number of bytes to advance to next line).
dstPixelOffset Destination pixel offset (first pixel in destination byte).
width The width of area (in pixels).
height The height of area (in pixels).

drawGlyph
virtual void drawGlyph (uint16_t * wbuf16 ,

Rect widgetArea ,
int16_t x ,
int16_t y ,

uint16_t offsetX ,
uint16_t offsetY ,
const Rect & invalidatedArea ,
const GlyphNode * glyph ,
const uint8_t * glyphData ,
uint8_t byteAlignRow ,
colortype color ,
uint8_t bitsPerPixel ,
uint8_t alpha ,
TextRotation rotation
)

Private version of draw-glyph with explicit destination buffer pointer argument.

For all parameters (except the buffer pointer) see the public function drawString().

Parameters:
wbuf16 The destination (frame) buffer to draw to.
widgetArea The canvas to draw the glyph inside.
x Horizontal offset to start drawing the glyph.
y Vertical offset to start drawing the glyph.
offsetX Horizontal offset in the glyph to start drawing from.
offsetY Vertical offset in the glyph to start drawing from.
invalidatedArea The area to draw inside.
glyph Specifications of the glyph to draw.
glyphData Data containing the actual glyph (dense format)
byteAlignRow Each row of glyph data starts in a new byte.
color The color of the glyph.
bitsPerPixel Bit depth of the glyph.
alpha The transparency of the glyph.
rotation Rotation to do before drawing the glyph.

Reimplements: touchgfx::LCD::drawGlyph

drawTextureMapScanLine
virtual void drawTextureMapScanLine (const DrawingSurface & dest ,

const Gradients & gradients ,
const Edge * leftEdge ,
const Edge * rightEdge ,
const TextureSurface & texture ,
const Rect & absoluteRect ,
const Rect & dirtyAreaAbsolute ,
RenderingVariant renderVariant ,

uint8_t alpha ,
uint16_t subDivisionSize
)

Draw scan line.

Draw one horizontal line of the texture map on screen. The scan line will be drawn using
perspective correct texture mapping. The appearance of the line is determined by the left and right
edge and the gradients structure. The edges contain the information about the x,y,z coordinates of
the left and right side respectively and also information about the u,v coordinates of the texture
map used. The gradients structure contains information about how to interpolate all the values
across the scan line. The data drawn should be present in the texture argument.

The scan line will be drawn using the additional arguments. The scan line will be placed and clipped
using the absolute and dirty rectangles The alpha will determine how the scan line should be alpha
blended. The subDivisionSize will determine the size of the piecewise affine texture mapped lines.

Parameters:
dest The description of where the texture is drawn - can be used to issue a draw

off screen.
gradients The gradients using in interpolation across the scan line.
leftEdge The left edge of the scan line.
rightEdge The right edge of the scan line.
texture The texture.
absoluteRect The containing rectangle in absolute coordinates.
dirtyAreaAbsolute The dirty area in absolute coordinates.
renderVariant The render variant - includes the algorithm and the pixel format.
alpha The alpha.
subDivisionSize The size of the subdivisions of the scan line. A value of 1 will give a

completely perspective correct texture mapped scan line. A large value will
give an affine texture mapped scan line.

Reimplements: touchgfx::LCD::drawTextureMapScanLine

fillMemory
static void fillMemory (void *RESTRICT dst ,

colortype color ,
uint16_t bytesToFill
)

Fill memory efficiently.

Try to get 32bit aligned or 16bit aligned and then copy as quickly as possible.

Parameters:
dst Pointer to memory to fill.
color Color to write to memory, either 0 => 0x00000000 or 1 => 0xFFFFFFFF.
bytesToFill Number of bytes to fill.

nextLine
static int nextLine (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next line.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next line.

nextPixel
static int nextPixel (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next pixel.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next pixel.

Version: 4.16

LCD1DebugPrinter
The class LCD1DebugPrinter implements the DebugPrinter interface for printing debug messages on
top of 24bit framebuffer.

See: DebugPrinter

Inherits from: DebugPrinter

Public Functions
virtual void draw(const Rect & rect) const

Draws the debug string on top of the framebuffer content.

Additional inherited members
Public Functions inherited from DebugPrinter

DebugPrinter()
Initializes a new instance of the DebugPrinter class.

const Rect & getRegion() const
Returns the region where the debug string is displayed.

void setColor(colortype fg)
Sets the foreground color of the debug string.

void setPosition(uint16_t x, uint16_t y, uint16_t w, uint16_t h)
Sets the position onscreen where the debug string will be displayed.

void setScale(uint8_t scale)
Sets the font scale of the debug string.

void setString(const char * string)
Sets the debug string to be displayed on top of the framebuffer.

virtual ~DebugPrinter()

Finalizes an instance of the DebugPrinter class.

Protected Functions inherited from DebugPrinter
uint16_t getGlyph(uint8_t c) const

Gets a glyph (15 bits) arranged with 3 bits wide, 5 bits high in a single uint16_t value.

Protected Attributes inherited from DebugPrinter
colortype debugForegroundColor

Font color to use when displaying the debug string.

Rect debugRegion
Region onscreen where the debug message is displayed.

uint8_t debugScale
Font scaling factor to use when displaying the debug string.

const char * debugString
Debug string to be displayed onscreen.

Public Functions Documentation
draw

virtual void draw (const Rect & rect)

Draws the debug string on top of the framebuffer content.

Parameters:
rect The rect to draw inside.

Reimplements: touchgfx::DebugPrinter::draw

Version: 4.16

LCD24bpp
This class contains the various low-level drawing routines for drawing bitmaps, texts and rectangles on
16 bits per pixel displays.

See: LCD

Note: All coordinates are expected to be in absolute coordinates!

Inherits from: LCD

Public Functions
virtual uint8_t bitDepth() const

Number of bits per pixel used by the display.

virtual void
blitCopy(const uint16_t * sourceData, const Rect & source,
const Rect & blitRect, uint8_t alpha, bool
hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual void
blitCopy(const uint8_t * sourceData, Bitmap::BitmapFormat
sourceFormat, const Rect & source, const Rect & blitRect,
uint8_t alpha, bool hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual uint16_t * copyFrameBufferRegionToMemory(const Rect & visRegion,
const Rect & absRegion, const BitmapId bitmapId)
Copies part of the framebuffer to the data section of a bitmap.

virtual void
drawPartialBitmap(const Bitmap & bitmap, int16_t x, int16_t
y, const Rect & rect, uint8_t alpha =255, bool useOptimized
=true)
Draws all (or a part) of a bitmap.

void enableTextureMapperA4()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_BilinearInterpolation()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_NearestNeighbor()
Enables the texture mappers for A4 image format.

void enableTextureMapperAll()
Enables the texture mappers for all image formats.

void enableTextureMapperARGB8888()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_BilinearInterpolation()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_NearestNeighbor()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperL8_ARGB8888()
Enables the texture mappers for L8_ARGB8888 image format.

void enableTextureMapperL8_ARGB8888_BilinearInterpolation()
Enables the texture mappers for L8_ARGB8888 image format.

void enableTextureMapperL8_ARGB8888_NearestNeighbor()
Enables the texture mappers for L8_ARGB8888 image format.

void enableTextureMapperL8_RGB888()
Enables the texture mappers for L8_RGB888 image format.

void enableTextureMapperL8_RGB888_BilinearInterpolation()
Enables the texture mappers for L8_RGB888 image format.

void enableTextureMapperL8_RGB888_NearestNeighbor()
Enables the texture mappers for L8_RGB888 image format.

void enableTextureMapperRGB888()
Enables the texture mappers for RGB888 image format.

void enableTextureMapperRGB888_BilinearInterpolation()
Enables the texture mappers for RGB888 image format.

void enableTextureMapperRGB888_NearestNeighbor()

Enables the texture mappers for RGB888 image format.

virtual void fillRect(const Rect & rect, colortype color, uint8_t alpha
=255)
Draws a filled rectangle in the framebuffer in the specified
color and opacity.

virtual Bitmap::BitmapFormat framebufferFormat() const
Framebuffer format used by the display.

virtual uint16_t framebufferStride() const
Framebuffer stride in bytes.

virtual uint8_t getBlueColor(colortype color) const
Gets the blue color part of a color.

virtual colortype getColorFrom24BitRGB(uint8_t red, uint8_t green, uint8_t
blue) const
Generates a color representation to be used on the LCD,
based on 24 bit RGB values.

virtual uint8_t getGreenColor(colortype color) const
Gets the green color part of a color.

virtual uint8_t getRedColor(colortype color) const
Gets the red color part of a color.

LCD24bpp()

FORCE_INLINE_FUNCTION uint8_t getBlueFromColor(colortype color)
Gets blue from color.

FORCE_INLINE_FUNCTION colortype getColorFromRGB(uint8_t red, uint8_t green, uint8_t blue)
Gets color from RGB.

FORCE_INLINE_FUNCTION uint16_t getFramebufferStride()
Framebuffer stride in bytes.

FORCE_INLINE_FUNCTION uint8_t getGreenFromColor(colortype color)
Gets green from color.

FORCE_INLINE_FUNCTION uint8_t getRedFromColor(colortype color)
Gets red from color.

Protected Functions

virtual void

drawGlyph(uint16_t wbuf16, Rect widgetArea, int16_t x,
int16_t y, uint16_t offsetX, uint16_t offsetY, const Rect &
invalidatedArea, const GlyphNode glyph, const uint8_t *
glyphData, uint8_t byteAlignRow, colortype color, uint8_t
bitsPerPixel, uint8_t alpha, TextRotation rotation)
Private version of draw-glyph with explicit destination buffer
pointer argument.

virtual DrawTextureMapScanLineBase * getTextureMapperDrawScanLine(const TextureSurface &
texture, RenderingVariant renderVariant, uint8_t alpha)
Gets pointer to object that can draw a scan line which allows
for highly specialized and optimized implementation.

void blitCopyARGB8888(const uint32_t * sourceData, const Rect
& source, const Rect & blitRect, uint8_t alpha)
Blits a 2D source-array to the framebuffer performing alpha-
blending per pixel as specified if ARGB8888 is not supported
by the DMA a software blend is performed.

void blitCopyL8(const uint8_t sourceData, const uint8_t clutData,
const Rect & source, const Rect & blitRect, uint8_t alpha)
Blits a 2D indexed 8-bit source to the framebuffer
performing alpha-blending per pixel as specified if indexed
format is not supported by the DMA a software blend is
performed.

void
blitCopyL8_ARGB8888(const uint8_t sourceData, const
uint8_t clutData, const Rect & source, const Rect & blitRect,
uint8_t alpha)
Blits a 2D indexed 8-bit source to the framebuffer
performing alpha-blending per pixel as specified if
L8_ARGB8888 is not supported by the DMA a software blend
is performed.

void
blitCopyL8_RGB888(const uint8_t sourceData, const uint8_t
clutData, const Rect & source, const Rect & blitRect, uint8_t
alpha)
Blits a 2D indexed 8-bit source to the framebuffer
performing alpha-blending per pixel as specified if
L8_RGB888 is not supported by the DMA a software blend is
performed.

void blitCopyRGB565(const uint16_t * sourceData16, const Rect
& source, const Rect & blitRect, uint8_t alpha)

Blits a 2D source-array to the framebuffer.

int nextLine(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to
the next line.

int nextPixel(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to
the next pixel.

Additional inherited members
Public Classes inherited from LCD

struct StringVisuals
The visual elements when writing a string.

Protected Classes inherited from LCD
class DrawTextureMapScanLineBase

Base class for drawing scanline by the texture mapper.

Public Functions inherited from LCD

void
drawString(Rect widgetArea, const Rect & invalidatedArea,
const StringVisuals & stringVisuals, const
Unicode::UnicodeChar * format, ...)
Draws the specified Unicode string.

virtual void

drawTextureMapTriangle(const DrawingSurface & dest, const
Point3D * vertices, const TextureSurface & texture, const Rect
& absoluteRect, const Rect & dirtyAreaAbsolute,
RenderingVariant renderVariant, uint8_t alpha =255, uint16_t
subDivisionSize =12)
Texture map triangle.

colortype getDefaultColor() const
Gets default color previously set using setDefaultColor.

void setDefaultColor(colortype color)

Sets default color as used by alpha level only bitmap formats,
e.g.

virtual ~LCD()
Finalizes an instance of the LCD class.

FORCE_INLINE_FUNCTION uint8_t div255(uint16_t num)
Approximates an integer division of a 16bit value by 255.

FORCE_INLINE_FUNCTION uint32_t div255g(uint32_t pixelxAlpha)
Divides the green component of pixelxAlpha by 255.

FORCE_INLINE_FUNCTION uint32_t div255rb(uint32_t pixelxAlpha)
Divides the red and blue components of pixelxAlpha by 255.

Protected Functions inherited from LCD

void
drawStringLTR(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

void
drawStringRTL(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

virtual void

drawTextureMapScanLine(const DrawingSurface & dest, const
Gradients & gradients, const Edge leftEdge, const Edge
rightEdge, const TextureSurface & texture, const Rect &
absoluteRect, const Rect & dirtyAreaAbsolute, RenderingVariant
renderVariant, uint8_t alpha, uint16_t subDivisionSize)
Draw scan line.

FORCE_INLINE_FUNCTION uint8_t getAlphaFromA4(const uint16_t * data, uint32_t offset)
Gets alpha from A4 image at given offset.

uint16_t
getNumLines(TextProvider & textProvider, WideTextAction
wideTextAction, TextDirection textDirection, const Font * font,
int16_t width)
Gets number of lines for a given text taking word wrap into
consideration.

int realX(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute x coordinate of a point inside a widget with
regards to rotation.

int realY(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute y coordinate of a point inside a widget
with regards to rotation.

void rotateRect(Rect & rect, const Rect & canvas, const TextRotation
rotation)
Rotate a rectangle inside another rectangle.

uint16_t stringWidth(TextProvider & textProvider, const Font & font,
const int numChars, TextDirection textDirection)
Find string width of the given number of ligatures read from the
given TextProvider.

Protected Attributes inherited from LCD
colortype defaultColor

Default Color to use when displaying transparency-only elements, e.g. A4 bitmaps.

const uint16_t newLine
NewLine value.

Public Functions Documentation
bitDepth

virtual uint8_t bitDepth () const

Number of bits per pixel used by the display.

Returns:

The number of bits per pixel.

Reimplements: touchgfx::LCD::bitDepth

blitCopy
virtual void blitCopy (const uint16_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha != 255
(solid).

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

blitCopy
virtual void blitCopy (const uint8_t * sourceData ,

Bitmap::BitmapFormat sourceFormat ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha < 255
(solid).

If the display does not support the specified sourceFormat, an assert will be raised.

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
sourceFormat The bitmap format used in the source data.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

copyFrameBufferRegionToMemory
virtual uint16_t * copyFrameBufferRegionToMemory (const Rect & visRegion ,

const Rect & absRegion ,
const BitmapId bitmapId
)

Copies part of the framebuffer to the data section of a bitmap.

The bitmap must be a dynamic bitmap or animation storage (BITMAP_ANIMATION_STORAGE). The
two regions given are the visible region and the absolute region on screen. This is used to copy
only a part of the framebuffer. This might be the case if a SnapshotWidget is placed inside a
Container where parts of the SnapshowWidget is outside the area defined by the Container. The
visible region must be completely inside the absolute region.

Parameters:
visRegion The visible region.
absRegion The absolute region.
bitmapId Identifier for the bitmap.

Returns:

Null if it fails, else a pointer to the data in the given bitmap.

NOTE

There is only one instance of animation storage. The content of the bitmap data /animation storage outside
the given region is left untouched.

See also:

blitCopy

Reimplements: touchgfx::LCD::copyFrameBufferRegionToMemory

drawPartialBitmap
virtual void drawPartialBitmap (const Bitmap & bitmap ,

int16_t x ,
int16_t y ,
const Rect & rect ,
uint8_t alpha =255,
bool useOptimized =true
)

Draws all (or a part) of a bitmap.

The coordinates of the corner of the bitmap is given in (x, y) and rect describes which part of the
bitmap should be drawn. The bitmap can be drawn as it is or more or less transparent depending
on the value of alpha. The value of alpha is independent of the transparency of the individual pixels
of the given bitmap.

Parameters:
bitmap The bitmap to draw.
x The absolute x coordinate to place (0, 0) of the bitmap on the screen.
y The absolute y coordinate to place (0, 0) of the bitmap on the screen.
rect A rectangle describing what region of the bitmap is to be drawn.
alpha (Optional) Optional alpha value ranging from 0=invisible to 255=solid. Default is

255 (solid).
useOptimized (Optional) if false, do not attempt to substitute (parts of) this bitmap with faster

fillrects.

Reimplements: touchgfx::LCD::drawPartialBitmap

enableTextureMapperA4
void enableTextureMapperA4 ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperA4_BilinearInterpolation, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_BilinearInterpolation
void enableTextureMapperA4_BilinearInterpolation ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_NearestNeighbor
void enableTextureMapperA4_NearestNeighbor ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_BilinearInterpolation

enableTextureMapperAll
void enableTextureMapperAll ()

Enables the texture mappers for all image formats.

This allows drawing any image using Bilinear Interpolation and Nearest Neighbor algorithms, but
might use a lot of memory for the drawing algorithms.

enableTextureMapperARGB8888
void enableTextureMapperARGB8888 ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation and Nearest Neighbor
algorithms.

See also:

enableTextureMapperARGB8888_BilinearInterpolation,
enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_BilinearInterpolation
void enableTextureMapperARGB8888_BilinearInterpolation ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_NearestNeighbor
void enableTextureMapperARGB8888_NearestNeighbor ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_BilinearInterpolation

enableTextureMapperL8_ARGB8888
void enableTextureMapperL8_ARGB8888 ()

Enables the texture mappers for L8_ARGB8888 image format.

This allows drawing L8_ARGB8888 images using Bilinear Interpolation and Nearest Neighbor
algorithms.

See also:

enableTextureMapperL8_ARGB8888_BilinearInterpolation,
enableTextureMapperL8_ARGB8888_NearestNeighbor

enableTextureMapperL8_ARGB8888_BilinearInterpolation

void enableTextureMapperL8_ARGB8888_BilinearInterpolation ()

Enables the texture mappers for L8_ARGB8888 image format.

This allows drawing L8_ARGB8888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperL8_ARGB8888, enableTextureMapperL8_ARGB8888_NearestNeighbor

enableTextureMapperL8_ARGB8888_NearestNeighbor
void enableTextureMapperL8_ARGB8888_NearestNeighbor ()

Enables the texture mappers for L8_ARGB8888 image format.

This allows drawing L8_ARGB8888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperL8_ARGB8888,
enableTextureMapperL8_ARGB8888_BilinearInterpolation

enableTextureMapperL8_RGB888
void enableTextureMapperL8_RGB888 ()

Enables the texture mappers for L8_RGB888 image format.

This allows drawing L8_RGB888 images using Bilinear Interpolation and Nearest Neighbor
algorithms.

See also:

enableTextureMapperL8_RGB888_BilinearInterpolation,
enableTextureMapperL8_RGB888_NearestNeighbor

enableTextureMapperL8_RGB888_BilinearInterpolation
void enableTextureMapperL8_RGB888_BilinearInterpolation ()

Enables the texture mappers for L8_RGB888 image format.

This allows drawing L8_RGB888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperL8_RGB888, enableTextureMapperL8_RGB888_NearestNeighbor

enableTextureMapperL8_RGB888_NearestNeighbor
void enableTextureMapperL8_RGB888_NearestNeighbor ()

Enables the texture mappers for L8_RGB888 image format.

This allows drawing L8_RGB888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperL8_RGB888, enableTextureMapperL8_RGB888_BilinearInterpolation

enableTextureMapperRGB888
void enableTextureMapperRGB888 ()

Enables the texture mappers for RGB888 image format.

This allows drawing RGB888 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperRGB888_BilinearInterpolation,
enableTextureMapperRGB888_NearestNeighbor

enableTextureMapperRGB888_BilinearInterpolation
void enableTextureMapperRGB888_BilinearInterpolation ()

Enables the texture mappers for RGB888 image format.

This allows drawing RGB888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperRGB888, enableTextureMapperRGB888_NearestNeighbor

enableTextureMapperRGB888_NearestNeighbor
void enableTextureMapperRGB888_NearestNeighbor ()

Enables the texture mappers for RGB888 image format.

This allows drawing RGB888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperRGB888, enableTextureMapperRGB888_BilinearInterpolation

fillRect
virtual void fillRect (const Rect & rect ,

colortype color ,
uint8_t alpha =255
)

Draws a filled rectangle in the framebuffer in the specified color and opacity.

By default the rectangle will be drawn as a solid box. The rectangle can be drawn with transparency
by specifying alpha from 0=invisible to 255=solid.

Parameters:
rect The rectangle to draw in absolute display coordinates.
color The rectangle color.
alpha (Optional) The rectangle opacity, from 0=invisible to 255=solid.

Reimplements: touchgfx::LCD::fillRect

framebufferFormat
virtual Bitmap::BitmapFormat framebufferFormat () const

Framebuffer format used by the display.

Returns:

A Bitmap::BitmapFormat.

Reimplements: touchgfx::LCD::framebufferFormat

framebufferStride
virtual uint16_t framebufferStride () const

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

Reimplements: touchgfx::LCD::framebufferStride

getBlueColor
virtual uint8_t getBlueColor (colortype color)

Gets the blue color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The blue part of the color.

Reimplements: touchgfx::LCD::getBlueColor

getColorFrom24BitRGB
virtual colortype getColorFrom24BitRGB (uint8_t red , const

uint8_t green , const
uint8_t blue const
) const

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Depending on your chosen color bit depth, the color will be interpreted internally as either a 16 bit
or 24 bit color value. This function can be safely used regardless of whether your application is
configured for 16 or 24 bit colors.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

Reimplements: touchgfx::LCD::getColorFrom24BitRGB

getGreenColor
virtual uint8_t getGreenColor (colortype color)

Gets the green color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The green part of the color.

Reimplements: touchgfx::LCD::getGreenColor

getRedColor
virtual uint8_t getRedColor (colortype color)

Gets the red color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The color value.

Returns:

The red part of the color.

Reimplements: touchgfx::LCD::getRedColor

LCD24bpp
LCD24bpp ()

getBlueFromColor

static FORCE_INLINE_FUNCTION uint8_t getBlueFromColor (colortype color)

Gets blue from color.

Parameters:
color The color.

Returns:

The blue from color.

getColorFromRGB
static FORCE_INLINE_FUNCTION colortype getColorFromRGB (uint8_t red ,

uint8_t green ,
uint8_t blue
)

Gets color from RGB.

Parameters:
red The red.
green The green.
blue The blue.

Returns:

The color from RGB.

getFramebufferStride
static FORCE_INLINE_FUNCTION uint16_t getFramebufferStride ()

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

getGreenFromColor
static FORCE_INLINE_FUNCTION uint8_t getGreenFromColor (colortype color)

Gets green from color.

Parameters:
color The color.

Returns:

The green from color.

getRedFromColor
static FORCE_INLINE_FUNCTION uint8_t getRedFromColor (colortype color)

Gets red from color.

Parameters:
color The color.

Returns:

The red from color.

Protected Functions Documentation
drawGlyph

virtual void drawGlyph (uint16_t * wbuf16 ,
Rect widgetArea ,
int16_t x ,
int16_t y ,
uint16_t offsetX ,
uint16_t offsetY ,
const Rect & invalidatedArea ,
const GlyphNode * glyph ,
const uint8_t * glyphData ,
uint8_t byteAlignRow ,
colortype color ,
uint8_t bitsPerPixel ,
uint8_t alpha ,
TextRotation rotation
)

Private version of draw-glyph with explicit destination buffer pointer argument.

For all parameters (except the buffer pointer) see the public function drawString().

Parameters:
wbuf16 The destination (frame) buffer to draw to.
widgetArea The canvas to draw the glyph inside.
x Horizontal offset to start drawing the glyph.
y Vertical offset to start drawing the glyph.
offsetX Horizontal offset in the glyph to start drawing from.
offsetY Vertical offset in the glyph to start drawing from.
invalidatedArea The area to draw inside.
glyph Specifications of the glyph to draw.
glyphData Data containing the actual glyph (dense format)
byteAlignRow Each row of glyph data starts in a new byte.
color The color of the glyph.
bitsPerPixel Bit depth of the glyph.
alpha The transparency of the glyph.
rotation Rotation to do before drawing the glyph.

Reimplements: touchgfx::LCD::drawGlyph

getTextureMapperDrawScanLine
virtual DrawTextureMapScanLineBase
* getTextureMapperDrawScanLine (const

TextureSurface & texture ,

RenderingVariant renderVariant
,

uint8_t alpha
)

Gets pointer to object that can draw a scan line which allows for highly specialized and optimized
implementation.

Parameters:
texture The texture Surface.
renderVariant The render variant.
alpha The global alpha.

Returns:

Null if it fails, else the pointer to the texture mapper draw scan line object.

Reimplements: touchgfx::LCD::getTextureMapperDrawScanLine

blitCopyARGB8888
static void blitCopyARGB8888 (const uint32_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D source-array to the framebuffer performing alpha-blending per pixel as specified if
ARGB8888 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-array pointer (points to the beginning of the data). The sourceData

must be stored as 32- bits ARGB8888 values.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

blitCopyL8
static void blitCopyL8 (const uint8_t * sourceData ,

const uint8_t * clutData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-blending per pixel as specified
if indexed format is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-indexes pointer (points to the beginning of the data). The sourceData

must be stored as 8- bits indexes.
clutData The source-clut pointer (points to the beginning of the CLUT color format and size

data followed by colors entries.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

blitCopyL8_ARGB8888

static void blitCopyL8_ARGB8888 (const uint8_t * sourceData ,
const uint8_t * clutData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-blending per pixel as specified
if L8_ARGB8888 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-indexes pointer (points to the beginning of the data). The sourceData

must be stored as 8- bits indexes.
clutData The source-clut pointer (points to the beginning of the CLUT color format and size

data followed by colors entries stored as 32- bits (ARGB8888) format.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

blitCopyL8_RGB888
static void blitCopyL8_RGB888 (const uint8_t * sourceData ,

const uint8_t * clutData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-blending per pixel as specified
if L8_RGB888 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-indexes pointer (points to the beginning of the data). The sourceData

must be stored as 8- bits indexes.
clutData The source-clut pointer (points to the beginning of the CLUT color format and size

data followed by colors entries stored as 32- bits (RGB888) format.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

blitCopyRGB565

static void blitCopyRGB565 (const uint16_t * sourceData16 ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D source-array to the framebuffer.

Per pixel alpha is not supported, only global alpha.

Parameters:
sourceData16 The source-array pointer (points to the beginning of the data). The sourceData

must be stored as 16- bits RGB565 values.
source The location and dimension of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

nextLine
static int nextLine (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next line.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next line.

nextPixel
static int nextPixel (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next pixel.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next pixel.

Version: 4.16

LCD24DebugPrinter
The class LCD24DebugPrinter implements the DebugPrinter interface for printing debug messages on
top of 24bit framebuffer.

See: DebugPrinter

Inherits from: DebugPrinter

Public Functions
virtual void draw(const Rect & rect) const

Draws the debug string on top of the framebuffer content.

Additional inherited members
Public Functions inherited from DebugPrinter

DebugPrinter()
Initializes a new instance of the DebugPrinter class.

const Rect & getRegion() const
Returns the region where the debug string is displayed.

void setColor(colortype fg)
Sets the foreground color of the debug string.

void setPosition(uint16_t x, uint16_t y, uint16_t w, uint16_t h)
Sets the position onscreen where the debug string will be displayed.

void setScale(uint8_t scale)
Sets the font scale of the debug string.

void setString(const char * string)
Sets the debug string to be displayed on top of the framebuffer.

virtual ~DebugPrinter()

Finalizes an instance of the DebugPrinter class.

Protected Functions inherited from DebugPrinter
uint16_t getGlyph(uint8_t c) const

Gets a glyph (15 bits) arranged with 3 bits wide, 5 bits high in a single uint16_t value.

Protected Attributes inherited from DebugPrinter
colortype debugForegroundColor

Font color to use when displaying the debug string.

Rect debugRegion
Region onscreen where the debug message is displayed.

uint8_t debugScale
Font scaling factor to use when displaying the debug string.

const char * debugString
Debug string to be displayed onscreen.

Public Functions Documentation
draw

virtual void draw (const Rect & rect)

Draws the debug string on top of the framebuffer content.

Parameters:
rect The rect to draw inside.

Reimplements: touchgfx::DebugPrinter::draw

Version: 4.16

LCD2bpp
This class contains the various low-level drawing routines for drawing bitmaps, texts and rectangles on
2 bits per pixel grayscale displays.

See: LCD

Note: All coordinates are expected to be in absolute coordinates!

Inherits from: LCD

Public Functions
virtual uint8_t bitDepth() const

Number of bits per pixel used by the display.

virtual void
blitCopy(const uint16_t * sourceData, const Rect & source,
const Rect & blitRect, uint8_t alpha, bool
hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual void
blitCopy(const uint8_t * sourceData, Bitmap::BitmapFormat
sourceFormat, const Rect & source, const Rect & blitRect,
uint8_t alpha, bool hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual uint16_t * copyFrameBufferRegionToMemory(const Rect & visRegion,
const Rect & absRegion, const BitmapId bitmapId)
Copies part of the framebuffer to the data section of a bitmap.

virtual void
drawPartialBitmap(const Bitmap & bitmap, int16_t x, int16_t
y, const Rect & rect, uint8_t alpha =255, bool useOptimized
=true)
Draws all (or a part) of a bitmap.

void enableTextureMapperAll()
Enables the texture mappers for all image formats.

void enableTextureMapperGRAY2()
Enables the texture mappers for GRAY2 image format.

void enableTextureMapperGRAY2_BilinearInterpolation()
Enables the texture mappers for GRAY2 image format.

void enableTextureMapperGRAY2_NearestNeighbor()
Enables the texture mappers for GRAY2 image format.

virtual void fillRect(const Rect & rect, colortype color, uint8_t alpha
=255)
Draws a filled rectangle in the framebuffer in the specified
color and opacity.

virtual Bitmap::BitmapFormat framebufferFormat() const
Framebuffer format used by the display.

virtual uint16_t framebufferStride() const
Framebuffer stride in bytes.

virtual uint8_t getBlueColor(colortype color) const
Gets the blue color part of a color.

virtual colortype getColorFrom24BitRGB(uint8_t red, uint8_t green, uint8_t
blue) const
Generates a color representation to be used on the LCD,
based on 24 bit RGB values.

virtual uint8_t getGreenColor(colortype color) const
Gets the green color part of a color.

virtual uint8_t getRedColor(colortype color) const
Gets the red color part of a color.

LCD2bpp()

FORCE_INLINE_FUNCTION uint8_t getBlueFromColor(colortype color)
Gets blue from color.

FORCE_INLINE_FUNCTION colortype getColorFromRGB(uint8_t red, uint8_t green, uint8_t blue)
Generates a color representation to be used on the LCD,
based on 24 bit RGB values.

FORCE_INLINE_FUNCTION uint16_t getFramebufferStride()

Framebuffer stride in bytes.

FORCE_INLINE_FUNCTION uint8_t getGreenFromColor(colortype color)
Gets green from color.

FORCE_INLINE_FUNCTION uint8_t getPixel(const uint16_t * addr, int offset)
Get pixel from buffer/image.

FORCE_INLINE_FUNCTION uint8_t getPixel(const uint8_t * addr, int offset)
Get pixel from buffer/image.

FORCE_INLINE_FUNCTION uint8_t getRedFromColor(colortype color)
Gets red from color.

FORCE_INLINE_FUNCTION void setPixel(uint16_t * addr, int offset, uint8_t value)
Set pixel in buffer.

FORCE_INLINE_FUNCTION void setPixel(uint8_t * addr, int offset, uint8_t value)
Set pixel in buffer.

FORCE_INLINE_FUNCTION int shiftVal(int offset)
Shift value to get the right pixel in a byte.

Protected Functions

void
copyRect(const uint8_t srcAddress, uint16_t srcStride, uint8_t
srcPixelOffset, uint8_t RESTRICT dstAddress, uint16_t
dstStride, uint8_t dstPixelOffset, uint16_t width, uint16_t
height) const
Copies a rectangular area.

virtual void

drawGlyph(uint16_t wbuf16, Rect widgetArea, int16_t x,
int16_t y, uint16_t offsetX, uint16_t offsetY, const Rect &
invalidatedArea, const GlyphNode glyph, const uint8_t *
glyphData, uint8_t byteAlignRow, colortype color, uint8_t
bitsPerPixel, uint8_t alpha, TextRotation rotation)
Private version of draw-glyph with explicit destination buffer
pointer argument.

virtual DrawTextureMapScanLineBase * getTextureMapperDrawScanLine(const TextureSurface &
texture, RenderingVariant renderVariant, uint8_t alpha)
Gets pointer to object that can draw a scan line which allows
for highly specialized and optimized implementation.

void
blitCopyAlphaPerPixel(const uint16_t sourceData16, const
uint8_t sourceAlphaData, const Rect & source, const Rect &
blitRect, uint8_t alpha)
Blit a 2D source-array to the framebuffer performing alpha-
blending per pixel as specified Performs always a software
blend.

int nextLine(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to
the next line.

int nextPixel(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to
the next pixel.

Protected Attributes
const uint8_t alphaTable2bpp

The alpha lookup table to avoid arithmetics when alpha blending.

Additional inherited members
Public Classes inherited from LCD

struct StringVisuals
The visual elements when writing a string.

Protected Classes inherited from LCD
class DrawTextureMapScanLineBase

Base class for drawing scanline by the texture mapper.

Public Functions inherited from LCD

void
drawString(Rect widgetArea, const Rect & invalidatedArea,
const StringVisuals & stringVisuals, const
Unicode::UnicodeChar * format, ...)

Draws the specified Unicode string.

virtual void

drawTextureMapTriangle(const DrawingSurface & dest, const
Point3D * vertices, const TextureSurface & texture, const Rect
& absoluteRect, const Rect & dirtyAreaAbsolute,
RenderingVariant renderVariant, uint8_t alpha =255, uint16_t
subDivisionSize =12)
Texture map triangle.

colortype getDefaultColor() const
Gets default color previously set using setDefaultColor.

void setDefaultColor(colortype color)
Sets default color as used by alpha level only bitmap formats,
e.g.

virtual ~LCD()
Finalizes an instance of the LCD class.

FORCE_INLINE_FUNCTION uint8_t div255(uint16_t num)
Approximates an integer division of a 16bit value by 255.

FORCE_INLINE_FUNCTION uint32_t div255g(uint32_t pixelxAlpha)
Divides the green component of pixelxAlpha by 255.

FORCE_INLINE_FUNCTION uint32_t div255rb(uint32_t pixelxAlpha)
Divides the red and blue components of pixelxAlpha by 255.

Protected Functions inherited from LCD

void
drawStringLTR(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

void
drawStringRTL(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

virtual void

drawTextureMapScanLine(const DrawingSurface & dest, const
Gradients & gradients, const Edge leftEdge, const Edge
rightEdge, const TextureSurface & texture, const Rect &
absoluteRect, const Rect & dirtyAreaAbsolute, RenderingVariant
renderVariant, uint8_t alpha, uint16_t subDivisionSize)
Draw scan line.

FORCE_INLINE_FUNCTION uint8_t getAlphaFromA4(const uint16_t * data, uint32_t offset)
Gets alpha from A4 image at given offset.

uint16_t
getNumLines(TextProvider & textProvider, WideTextAction
wideTextAction, TextDirection textDirection, const Font * font,
int16_t width)
Gets number of lines for a given text taking word wrap into
consideration.

int realX(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute x coordinate of a point inside a widget
with regards to rotation.

int realY(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute y coordinate of a point inside a widget
with regards to rotation.

void rotateRect(Rect & rect, const Rect & canvas, const TextRotation
rotation)
Rotate a rectangle inside another rectangle.

uint16_t stringWidth(TextProvider & textProvider, const Font & font,
const int numChars, TextDirection textDirection)
Find string width of the given number of ligatures read from the
given TextProvider.

Protected Attributes inherited from LCD
colortype defaultColor

Default Color to use when displaying transparency-only elements, e.g. A4 bitmaps.

const uint16_t newLine
NewLine value.

Public Functions Documentation
bitDepth

virtual uint8_t bitDepth () const

Number of bits per pixel used by the display.

Returns:

The number of bits per pixel.

Reimplements: touchgfx::LCD::bitDepth

blitCopy
virtual void blitCopy (const uint16_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha != 255
(solid).

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

blitCopy

virtual void blitCopy (const uint8_t * sourceData ,
Bitmap::BitmapFormat sourceFormat ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha < 255
(solid).

If the display does not support the specified sourceFormat, an assert will be raised.

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
sourceFormat The bitmap format used in the source data.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

copyFrameBufferRegionToMemory
virtual uint16_t * copyFrameBufferRegionToMemory (const Rect & visRegion ,

const Rect & absRegion ,
const BitmapId bitmapId
)

Copies part of the framebuffer to the data section of a bitmap.

The bitmap must be a dynamic bitmap or animation storage (BITMAP_ANIMATION_STORAGE). The
two regions given are the visible region and the absolute region on screen. This is used to copy
only a part of the framebuffer. This might be the case if a SnapshotWidget is placed inside a
Container where parts of the SnapshowWidget is outside the area defined by the Container. The
visible region must be completely inside the absolute region.

Parameters:
visRegion The visible region.
absRegion The absolute region.
bitmapId Identifier for the bitmap.

Returns:

Null if it fails, else a pointer to the data in the given bitmap.

NOTE

There is only one instance of animation storage. The content of the bitmap data /animation storage
outside the given region is left untouched.

See also:

blitCopy

Reimplements: touchgfx::LCD::copyFrameBufferRegionToMemory

drawPartialBitmap
virtual void drawPartialBitmap (const Bitmap & bitmap ,

int16_t x ,
int16_t y ,
const Rect & rect ,
uint8_t alpha =255,
bool useOptimized =true
)

Draws all (or a part) of a bitmap.

The coordinates of the corner of the bitmap is given in (x, y) and rect describes which part of the
bitmap should be drawn. The bitmap can be drawn as it is or more or less transparent depending
on the value of alpha. The value of alpha is independent of the transparency of the individual pixels
of the given bitmap.

Parameters:
bitmap The bitmap to draw.
x The absolute x coordinate to place (0, 0) of the bitmap on the screen.
y The absolute y coordinate to place (0, 0) of the bitmap on the screen.
rect A rectangle describing what region of the bitmap is to be drawn.
alpha (Optional) Optional alpha value ranging from 0=invisible to 255=solid. Default is

255 (solid).
useOptimized (Optional) if false, do not attempt to substitute (parts of) this bitmap with faster

fillrects.

Reimplements: touchgfx::LCD::drawPartialBitmap

enableTextureMapperAll
void enableTextureMapperAll ()

Enables the texture mappers for all image formats.

This allows drawing any image using Bilinear Interpolation and Nearest Neighbor algorithms, but
might use a lot of memory for the drawing algorithms.

enableTextureMapperGRAY2
void enableTextureMapperGRAY2 ()

Enables the texture mappers for GRAY2 image format.

This allows drawing GRAY2 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperGRAY2_BilinearInterpolation,
enableTextureMapperGRAY2_NearestNeighbor

enableTextureMapperGRAY2_BilinearInterpolation
void enableTextureMapperGRAY2_BilinearInterpolation ()

Enables the texture mappers for GRAY2 image format.

This allows drawing GRAY2 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperGRAY2, enableTextureMapperGRAY2_NearestNeighbor

enableTextureMapperGRAY2_NearestNeighbor
void enableTextureMapperGRAY2_NearestNeighbor ()

Enables the texture mappers for GRAY2 image format.

This allows drawing GRAY2 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperGRAY2, enableTextureMapperGRAY2_BilinearInterpolation

fillRect
virtual void fillRect (const Rect & rect ,

colortype color ,
uint8_t alpha =255
)

Draws a filled rectangle in the framebuffer in the specified color and opacity.

By default the rectangle will be drawn as a solid box. The rectangle can be drawn with transparency
by specifying alpha from 0=invisible to 255=solid.

Parameters:
rect The rectangle to draw in absolute display coordinates.
color The rectangle color.
alpha (Optional) The rectangle opacity, from 0=invisible to 255=solid.

Reimplements: touchgfx::LCD::fillRect

framebufferFormat
virtual Bitmap::BitmapFormat framebufferFormat () const

Framebuffer format used by the display.

Returns:

A Bitmap::BitmapFormat.

Reimplements: touchgfx::LCD::framebufferFormat

framebufferStride
virtual uint16_t framebufferStride () const

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

Reimplements: touchgfx::LCD::framebufferStride

getBlueColor
virtual uint8_t getBlueColor (colortype color)

Gets the blue color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The blue part of the color.

Reimplements: touchgfx::LCD::getBlueColor

getColorFrom24BitRGB
virtual colortype getColorFrom24BitRGB (uint8_t red , const

uint8_t green , const
uint8_t blue const
) const

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Depending on your chosen color bit depth, the color will be interpreted internally as either a 16 bit
or 24 bit color value. This function can be safely used regardless of whether your application is
configured for 16 or 24 bit colors.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

Reimplements: touchgfx::LCD::getColorFrom24BitRGB

getGreenColor
virtual uint8_t getGreenColor (colortype color)

Gets the green color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The green part of the color.

Reimplements: touchgfx::LCD::getGreenColor

getRedColor
virtual uint8_t getRedColor (colortype color)

Gets the red color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The color value.

Returns:

The red part of the color.

Reimplements: touchgfx::LCD::getRedColor

LCD2bpp
LCD2bpp ()

getBlueFromColor
static FORCE_INLINE_FUNCTION uint8_t getBlueFromColor (colortype color)

Gets blue from color.

Parameters:
color The color.

Returns:

The blue from color.

getColorFromRGB
static FORCE_INLINE_FUNCTION colortype getColorFromRGB (uint8_t red ,

uint8_t green ,
uint8_t blue
)

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

getFramebufferStride
static FORCE_INLINE_FUNCTION uint16_t getFramebufferStride ()

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

getGreenFromColor
static FORCE_INLINE_FUNCTION uint8_t getGreenFromColor (colortype color)

Gets green from color.

Parameters:
color The color.

Returns:

The green from color.

getPixel
static FORCE_INLINE_FUNCTION uint8_t getPixel (const uint16_t * addr ,

int offset
)

Get pixel from buffer/image.

Parameters:
addr The address.
offset The offset.

Returns:

The pixel value.

getPixel
static FORCE_INLINE_FUNCTION uint8_t getPixel (const uint8_t * addr ,

int offset
)

Get pixel from buffer/image.

Parameters:
addr The address.
offset The offset.

Returns:

The pixel value.

getRedFromColor
static FORCE_INLINE_FUNCTION uint8_t getRedFromColor (colortype color)

Gets red from color.

Parameters:
color The color.

Returns:

The red from color.

setPixel
static FORCE_INLINE_FUNCTION void setPixel (uint16_t * addr ,

int offset ,
uint8_t value
)

Set pixel in buffer.

Parameters:
addr The address.
offset The offset.
value The value.

setPixel
static FORCE_INLINE_FUNCTION void setPixel (uint8_t * addr ,

int offset ,
uint8_t value
)

Set pixel in buffer.

Parameters:
addr The address.
offset The offset.
value The value.

shiftVal
static FORCE_INLINE_FUNCTION int shiftVal (int offset)

Shift value to get the right pixel in a byte.

Parameters:

offset The offset.

Returns:

The shift value.

Protected Functions Documentation
copyRect

void copyRect (const uint8_t * srcAddress , const
uint16_t srcStride , const
uint8_t srcPixelOffset , const
uint8_t *RESTRICT dstAddress , const
uint16_t dstStride , const
uint8_t dstPixelOffset , const
uint16_t width , const
uint16_t height const
) const

Copies a rectangular area.

Parameters:
srcAddress Source address (byte address).
srcStride Source stride (number of bytes to advance to next line).
srcPixelOffset Source pixel offset (first pixel in first source byte).
dstAddress If destination address (byte address).
dstStride Destination stride (number of bytes to advance to next line).
dstPixelOffset Destination pixel offset (first pixel in destination byte).
width The width of area (in pixels).
height The height of area (in pixels).

drawGlyph
virtual void drawGlyph (uint16_t * wbuf16 ,

Rect widgetArea ,
int16_t x ,
int16_t y ,
uint16_t offsetX ,
uint16_t offsetY ,
const Rect & invalidatedArea ,

const GlyphNode * glyph ,
const uint8_t * glyphData ,
uint8_t byteAlignRow ,
colortype color ,
uint8_t bitsPerPixel ,
uint8_t alpha ,
TextRotation rotation
)

Private version of draw-glyph with explicit destination buffer pointer argument.

For all parameters (except the buffer pointer) see the public function drawString().

Parameters:
wbuf16 The destination (frame) buffer to draw to.
widgetArea The canvas to draw the glyph inside.
x Horizontal offset to start drawing the glyph.
y Vertical offset to start drawing the glyph.
offsetX Horizontal offset in the glyph to start drawing from.
offsetY Vertical offset in the glyph to start drawing from.
invalidatedArea The area to draw inside.
glyph Specifications of the glyph to draw.
glyphData Data containing the actual glyph (dense format)
byteAlignRow Each row of glyph data starts in a new byte.
color The color of the glyph.
bitsPerPixel Bit depth of the glyph.
alpha The transparency of the glyph.
rotation Rotation to do before drawing the glyph.

Reimplements: touchgfx::LCD::drawGlyph

getTextureMapperDrawScanLine
virtual DrawTextureMapScanLineBase
* getTextureMapperDrawScanLine (const

TextureSurface & texture ,

RenderingVariant renderVariant
,

uint8_t alpha
)

Gets pointer to object that can draw a scan line which allows for highly specialized and optimized
implementation.

Parameters:
texture The texture Surface.

renderVariant The render variant.
alpha The global alpha.

Returns:

Null if it fails, else the pointer to the texture mapper draw scan line object.

Reimplements: touchgfx::LCD::getTextureMapperDrawScanLine

blitCopyAlphaPerPixel
static void blitCopyAlphaPerPixel (const uint16_t * sourceData16 ,

const uint8_t * sourceAlphaData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blit a 2D source-array to the framebuffer performing alpha-blending per pixel as specified Performs
always a software blend.

Parameters:
sourceData16 The source-array pointer (points to the beginning of the data). The

sourceData must be stored as 2bpp GRAY2 values.
sourceAlphaData The alpha channel array pointer (points to the beginning of the data)
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid,

no blending)

nextLine
static int nextLine (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next line.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next line.

nextPixel
static int nextPixel (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next pixel.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next pixel.

Protected Attributes Documentation
alphaTable2bpp

const uint8_t alphaTable2bpp

The alpha lookup table to avoid arithmetics when alpha blending.

Version: 4.16

LCD2DebugPrinter
The class LCD2DebugPrinter implements the DebugPrinter interface for printing debug messages on
top of 24bit framebuffer.

See: DebugPrinter

Inherits from: DebugPrinter

Public Functions
virtual void draw(const Rect & rect) const

Draws the debug string on top of the framebuffer content.

Additional inherited members
Public Functions inherited from DebugPrinter

DebugPrinter()
Initializes a new instance of the DebugPrinter class.

const Rect & getRegion() const
Returns the region where the debug string is displayed.

void setColor(colortype fg)
Sets the foreground color of the debug string.

void setPosition(uint16_t x, uint16_t y, uint16_t w, uint16_t h)
Sets the position onscreen where the debug string will be displayed.

void setScale(uint8_t scale)
Sets the font scale of the debug string.

void setString(const char * string)
Sets the debug string to be displayed on top of the framebuffer.

virtual ~DebugPrinter()

Finalizes an instance of the DebugPrinter class.

Protected Functions inherited from DebugPrinter
uint16_t getGlyph(uint8_t c) const

Gets a glyph (15 bits) arranged with 3 bits wide, 5 bits high in a single uint16_t value.

Protected Attributes inherited from DebugPrinter
colortype debugForegroundColor

Font color to use when displaying the debug string.

Rect debugRegion
Region onscreen where the debug message is displayed.

uint8_t debugScale
Font scaling factor to use when displaying the debug string.

const char * debugString
Debug string to be displayed onscreen.

Public Functions Documentation
draw

virtual void draw (const Rect & rect)

Draws the debug string on top of the framebuffer content.

Parameters:
rect The rect to draw inside.

Reimplements: touchgfx::DebugPrinter::draw

Version: 4.16

LCD32bpp
This class contains the various low-level drawing routines for drawing bitmaps, texts and rectangles on 16 bits
per pixel displays.

See: LCD

Note: All coordinates are expected to be in absolute coordinates!

Inherits from: LCD

Public Functions
virtual uint8_t bitDepth() const

Number of bits per pixel used by the display.

virtual void blitCopy(const uint16_t * sourceData, const Rect & source, const
Rect & blitRect, uint8_t alpha, bool hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer, performing
alpha blending (and tranparency keying) as specified.

virtual void
blitCopy(const uint8_t * sourceData, Bitmap::BitmapFormat
sourceFormat, const Rect & source, const Rect & blitRect, uint8_t
alpha, bool hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer, performing
alpha blending (and tranparency keying) as specified.

virtual uint16_t * copyFrameBufferRegionToMemory(const Rect & visRegion, const
Rect & absRegion, const BitmapId bitmapId)
Copies part of the framebuffer to the data section of a bitmap.

virtual void drawPartialBitmap(const Bitmap & bitmap, int16_t x, int16_t y, const
Rect & rect, uint8_t alpha =255, bool useOptimized =true)
Draws all (or a part) of a bitmap.

void enableTextureMapperA4()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_BilinearInterpolation()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_NearestNeighbor()
Enables the texture mappers for A4 image format.

void enableTextureMapperAll()
Enables the texture mappers for all image formats.

void enableTextureMapperARGB8888()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_BilinearInterpolation()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_NearestNeighbor()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperL8_ARGB8888()
Enables the texture mappers for L8_ARGB8888 image format.

void enableTextureMapperL8_ARGB8888_BilinearInterpolation()
Enables the texture mappers for L8_ARGB8888 image format.

void enableTextureMapperL8_ARGB8888_NearestNeighbor()
Enables the texture mappers for L8_ARGB8888 image format.

void enableTextureMapperL8_RGB565()
Enables the texture mappers for L8_RGB565 image format.

void enableTextureMapperL8_RGB565_BilinearInterpolation()
Enables the texture mappers for L8_RGB565 image format.

void enableTextureMapperL8_RGB565_NearestNeighbor()
Enables the texture mappers for L8_RGB565 image format.

void enableTextureMapperL8_RGB888()
Enables the texture mappers for L8_RGB888 image format.

void enableTextureMapperL8_RGB888_BilinearInterpolation()
Enables the texture mappers for L8_RGB888 image format.

void enableTextureMapperL8_RGB888_NearestNeighbor()
Enables the texture mappers for L8_RGB888 image format.

void enableTextureMapperRGB565()
Enables the texture mappers for RGB565 image format.

void enableTextureMapperRGB565_NonOpaque_BilinearInterpolation()
Enables the texture mappers for NonOpaque RGB565 image format.

void enableTextureMapperRGB565_NonOpaque_NearestNeighbor()

Enables the texture mappers for NonOpaque RGB565 image format.

void enableTextureMapperRGB565_Opaque_BilinearInterpolation()
Enables the texture mappers for Opaque RGB565 image format.

void enableTextureMapperRGB565_Opaque_NearestNeighbor()
Enables the texture mappers for Opaque RGB565 image format.

void enableTextureMapperRGB888()
Enables the texture mappers for RGB888 image format.

void enableTextureMapperRGB888_BilinearInterpolation()
Enables the texture mappers for RGB888 image format.

void enableTextureMapperRGB888_NearestNeighbor()
Enables the texture mappers for RGB888 image format.

virtual void fillRect(const Rect & rect, colortype color, uint8_t alpha =255)
Draws a filled rectangle in the framebuffer in the specified color and
opacity.

virtual Bitmap::BitmapFormat framebufferFormat() const
Framebuffer format used by the display.

virtual uint16_t framebufferStride() const
Framebuffer stride in bytes.

virtual uint8_t getBlueColor(colortype color) const
Gets the blue color part of a color.

virtual colortype getColorFrom24BitRGB(uint8_t red, uint8_t green, uint8_t blue)
const
Generates a color representation to be used on the LCD, based on 24
bit RGB values.

virtual uint8_t getGreenColor(colortype color) const
Gets the green color part of a color.

virtual uint8_t getRedColor(colortype color) const
Gets the red color part of a color.

LCD32bpp()

FORCE_INLINE_FUNCTION uint8_t getBlueFromColor(colortype color)
Gets blue from color.

FORCE_INLINE_FUNCTION colortype getColorFromRGB(uint8_t red, uint8_t green, uint8_t blue)

Generates a color representation to be used on the LCD, based on 24
bit RGB values.

FORCE_INLINE_FUNCTION uint16_t getFramebufferStride()
Framebuffer stride in bytes.

FORCE_INLINE_FUNCTION uint8_t getGreenFromColor(colortype color)
Gets green from color.

FORCE_INLINE_FUNCTION uint8_t getRedFromColor(colortype color)
Gets red from color.

Protected Functions

virtual void

drawGlyph(uint16_t wbuf16, Rect widgetArea, int16_t x, int16_t y,
uint16_t offsetX, uint16_t offsetY, const Rect & invalidatedArea, const
GlyphNode glyph, const uint8_t * glyphData, uint8_t byteAlignRow,
colortype color, uint8_t bitsPerPixel, uint8_t alpha, TextRotation
rotation)
Private version of draw-glyph with explicit destination buffer pointer
argument.

virtual DrawTextureMapScanLineBase * getTextureMapperDrawScanLine(const TextureSurface & texture,
RenderingVariant renderVariant, uint8_t alpha)
Gets pointer to object that can draw a scan line which allows for
highly specialized and optimized implementation.

void blitCopyL8(const uint8_t sourceData, const uint8_t clutData, const
Rect & source, const Rect & blitRect, uint8_t alpha)
Blits a 2D indexed 8-bit source to the framebuffer performing alpha-
blending per pixel as specified if indexed format is not supported by
the DMA a software blend is performed.

void blitCopyL8_ARGB8888(const uint8_t sourceData, const uint8_t
clutData, const Rect & source, const Rect & blitRect, uint8_t alpha)
Blits a 2D indexed 8-bit source to the framebuffer performing alpha-
blending per pixel as specified if L8_ARGB8888 is not supported by
the DMA a software blend is performed.

void blitCopyL8_RGB565(const uint8_t sourceData, const uint8_t
clutData, const Rect & source, const Rect & blitRect, uint8_t alpha)
Blits a 2D indexed 8-bit source to the framebuffer performing alpha-
blending per pixel as specified if L8_RGB565 is not supported by the
DMA a software blend is performed.

void blitCopyL8_RGB888(const uint8_t sourceData, const uint8_t
clutData, const Rect & source, const Rect & blitRect, uint8_t alpha)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-
blending per pixel as specified if L8_RGB888 is not supported by the
DMA a software blend is performed.

void blitCopyRGB565(const uint16_t * sourceData16, const Rect &
source, const Rect & blitRect, uint8_t alpha)
Blits a 2D source-array to the framebuffer performing alpha-
blending per pixel as specified.

void blitCopyRGB888(const uint16_t * sourceData16, const Rect &
source, const Rect & blitRect, uint8_t alpha)
Blits a 2D source-array to the framebuffer performing alpha-
blending per pixel as specified.

int nextLine(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to the
next line.

int nextPixel(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to the
next pixel.

Additional inherited members
Public Classes inherited from LCD

struct StringVisuals
The visual elements when writing a string.

Protected Classes inherited from LCD
class DrawTextureMapScanLineBase

Base class for drawing scanline by the texture mapper.

Public Functions inherited from LCD

void
drawString(Rect widgetArea, const Rect & invalidatedArea, const
StringVisuals & stringVisuals, const Unicode::UnicodeChar * format, ...
)
Draws the specified Unicode string.

virtual void
drawTextureMapTriangle(const DrawingSurface & dest, const
Point3D * vertices, const TextureSurface & texture, const Rect &
absoluteRect, const Rect & dirtyAreaAbsolute, RenderingVariant
renderVariant, uint8_t alpha =255, uint16_t subDivisionSize =12)
Texture map triangle.

colortype getDefaultColor() const
Gets default color previously set using setDefaultColor.

void setDefaultColor(colortype color)
Sets default color as used by alpha level only bitmap formats, e.g.

virtual ~LCD()
Finalizes an instance of the LCD class.

FORCE_INLINE_FUNCTION uint8_t div255(uint16_t num)
Approximates an integer division of a 16bit value by 255.

FORCE_INLINE_FUNCTION uint32_t div255g(uint32_t pixelxAlpha)
Divides the green component of pixelxAlpha by 255.

FORCE_INLINE_FUNCTION uint32_t div255rb(uint32_t pixelxAlpha)
Divides the red and blue components of pixelxAlpha by 255.

Protected Functions inherited from LCD

void
drawStringLTR(const Rect & widgetArea, const Rect & invalidatedArea,
const StringVisuals & visuals, const Unicode::UnicodeChar * format,
va_list pArg)
Draws the specified Unicode string.

void
drawStringRTL(const Rect & widgetArea, const Rect & invalidatedArea,
const StringVisuals & visuals, const Unicode::UnicodeChar * format,
va_list pArg)
Draws the specified Unicode string.

virtual void

drawTextureMapScanLine(const DrawingSurface & dest, const
Gradients & gradients, const Edge leftEdge, const Edge rightEdge, const
TextureSurface & texture, const Rect & absoluteRect, const Rect &
dirtyAreaAbsolute, RenderingVariant renderVariant, uint8_t alpha,
uint16_t subDivisionSize)
Draw scan line.

FORCE_INLINE_FUNCTION uint8_t getAlphaFromA4(const uint16_t * data, uint32_t offset)
Gets alpha from A4 image at given offset.

uint16_t
getNumLines(TextProvider & textProvider, WideTextAction
wideTextAction, TextDirection textDirection, const Font * font, int16_t
width)
Gets number of lines for a given text taking word wrap into
consideration.

int realX(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute x coordinate of a point inside a widget with
regards to rotation.

int realY(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute y coordinate of a point inside a widget with
regards to rotation.

void rotateRect(Rect & rect, const Rect & canvas, const TextRotation
rotation)
Rotate a rectangle inside another rectangle.

uint16_t stringWidth(TextProvider & textProvider, const Font & font, const int
numChars, TextDirection textDirection)
Find string width of the given number of ligatures read from the given
TextProvider.

Protected Attributes inherited from LCD
colortype defaultColor

Default Color to use when displaying transparency-only elements, e.g. A4 bitmaps.

const uint16_t newLine
NewLine value.

Public Functions Documentation
bitDepth

virtual uint8_t bitDepth () const

Number of bits per pixel used by the display.

Returns:

The number of bits per pixel.

Reimplements: touchgfx::LCD::bitDepth

blitCopy
virtual void blitCopy (const uint16_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and tranparency
keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha != 255 (solid).

Parameters:
sourceData The source array pointer (points to the beginning of the data). The sourceData

must be stored in a format suitable for the selected display.
source The position and dimensions of the source. The x and y of this rect should both

be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to the

framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to 255=solid=no

blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware support

for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

blitCopy
virtual void blitCopy (const uint8_t * sourceData ,

Bitmap::BitmapFormat sourceFormat ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and tranparency
keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha < 255 (solid).

If the display does not support the specified sourceFormat, an assert will be raised.

Parameters:

sourceData The source array pointer (points to the beginning of the data). The sourceData
must be stored in a format suitable for the selected display.

sourceFormat The bitmap format used in the source data.
source The position and dimensions of the source. The x and y of this rect should both

be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to the

framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to 255=solid=no

blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware support

for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

copyFrameBufferRegionToMemory
virtual uint16_t * copyFrameBufferRegionToMemory (const Rect & visRegion ,

const Rect & absRegion ,
const BitmapId bitmapId
)

Copies part of the framebuffer to the data section of a bitmap.

The bitmap must be a dynamic bitmap or animation storage (BITMAP_ANIMATION_STORAGE). The two
regions given are the visible region and the absolute region on screen. This is used to copy only a part of
the framebuffer. This might be the case if a SnapshotWidget is placed inside a Container where parts of
the SnapshowWidget is outside the area defined by the Container. The visible region must be completely
inside the absolute region.

Parameters:
visRegion The visible region.
absRegion The absolute region.
bitmapId Identifier for the bitmap.

Returns:

Null if it fails, else a pointer to the data in the given bitmap.

NOTE

There is only one instance of animation storage. The content of the bitmap data /animation storage outside the
given region is left untouched.

See also:

blitCopy

Reimplements: touchgfx::LCD::copyFrameBufferRegionToMemory

drawPartialBitmap
virtual void drawPartialBitmap (const Bitmap & bitmap ,

int16_t x ,
int16_t y ,
const Rect & rect ,
uint8_t alpha =255,
bool useOptimized =true
)

Draws all (or a part) of a bitmap.

The coordinates of the corner of the bitmap is given in (x, y) and rect describes which part of the bitmap
should be drawn. The bitmap can be drawn as it is or more or less transparent depending on the value of
alpha. The value of alpha is independent of the transparency of the individual pixels of the given bitmap.

Parameters:
bitmap The bitmap to draw.
x The absolute x coordinate to place (0, 0) of the bitmap on the screen.
y The absolute y coordinate to place (0, 0) of the bitmap on the screen.
rect A rectangle describing what region of the bitmap is to be drawn.
alpha (Optional) Optional alpha value ranging from 0=invisible to 255=solid. Default is 255

(solid).
useOptimized (Optional) if false, do not attempt to substitute (parts of) this bitmap with faster fillrects.

Reimplements: touchgfx::LCD::drawPartialBitmap

enableTextureMapperA4
void enableTextureMapperA4 ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperA4_BilinearInterpolation, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_BilinearInterpolation
void enableTextureMapperA4_BilinearInterpolation ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_NearestNeighbor
void enableTextureMapperA4_NearestNeighbor ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_BilinearInterpolation

enableTextureMapperAll
void enableTextureMapperAll ()

Enables the texture mappers for all image formats.

This allows drawing any image using Bilinear Interpolation and Nearest Neighbor algorithms, but might
use a lot of memory for the drawing algorithms.

enableTextureMapperARGB8888
void enableTextureMapperARGB8888 ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperARGB8888_BilinearInterpolation,
enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_BilinearInterpolation
void enableTextureMapperARGB8888_BilinearInterpolation ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_NearestNeighbor
void enableTextureMapperARGB8888_NearestNeighbor ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_BilinearInterpolation

enableTextureMapperL8_ARGB8888
void enableTextureMapperL8_ARGB8888 ()

Enables the texture mappers for L8_ARGB8888 image format.

This allows drawing L8_ARGB8888 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperL8_ARGB8888_BilinearInterpolation,
enableTextureMapperL8_ARGB8888_NearestNeighbor

enableTextureMapperL8_ARGB8888_BilinearInterpolation
void enableTextureMapperL8_ARGB8888_BilinearInterpolation ()

Enables the texture mappers for L8_ARGB8888 image format.

This allows drawing L8_ARGB8888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperL8_ARGB8888, enableTextureMapperL8_ARGB8888_NearestNeighbor

enableTextureMapperL8_ARGB8888_NearestNeighbor
void enableTextureMapperL8_ARGB8888_NearestNeighbor ()

Enables the texture mappers for L8_ARGB8888 image format.

This allows drawing L8_ARGB8888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperL8_ARGB8888, enableTextureMapperL8_ARGB8888_BilinearInterpolation

enableTextureMapperL8_RGB565
void enableTextureMapperL8_RGB565 ()

Enables the texture mappers for L8_RGB565 image format.

This allows drawing L8_RGB565 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperL8_RGB565_BilinearInterpolation,
enableTextureMapperL8_RGB565_NearestNeighbor

enableTextureMapperL8_RGB565_BilinearInterpolation
void enableTextureMapperL8_RGB565_BilinearInterpolation ()

Enables the texture mappers for L8_RGB565 image format.

This allows drawing L8_RGB565 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperL8_RGB565, enableTextureMapperL8_RGB565_NearestNeighbor

enableTextureMapperL8_RGB565_NearestNeighbor
void enableTextureMapperL8_RGB565_NearestNeighbor ()

Enables the texture mappers for L8_RGB565 image format.

This allows drawing L8_RGB565 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperL8_RGB565, enableTextureMapperL8_RGB565_BilinearInterpolation

enableTextureMapperL8_RGB888
void enableTextureMapperL8_RGB888 ()

Enables the texture mappers for L8_RGB888 image format.

This allows drawing L8_RGB888 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperL8_RGB888_BilinearInterpolation,
enableTextureMapperL8_RGB888_NearestNeighbor

enableTextureMapperL8_RGB888_BilinearInterpolation
void enableTextureMapperL8_RGB888_BilinearInterpolation ()

Enables the texture mappers for L8_RGB888 image format.

This allows drawing L8_RGB888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperL8_RGB888, enableTextureMapperL8_RGB888_NearestNeighbor

enableTextureMapperL8_RGB888_NearestNeighbor
void enableTextureMapperL8_RGB888_NearestNeighbor ()

Enables the texture mappers for L8_RGB888 image format.

This allows drawing L8_RGB888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperL8_RGB888, enableTextureMapperL8_RGB888_BilinearInterpolation

enableTextureMapperRGB565
void enableTextureMapperRGB565 ()

Enables the texture mappers for RGB565 image format.

This allows drawing RGB565 images using Bilinear Interpolation and Nearest Neighbor algorithms.

enableTextureMapperRGB565_NonOpaque_BilinearInterpolation
void enableTextureMapperRGB565_NonOpaque_BilinearInterpolation ()

Enables the texture mappers for NonOpaque RGB565 image format.

This allows drawing RGB565 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperRGB565, enableTextureMapperRGB565_Opaque_BilinearInterpolation

enableTextureMapperRGB565_NonOpaque_NearestNeighbor
void enableTextureMapperRGB565_NonOpaque_NearestNeighbor ()

Enables the texture mappers for NonOpaque RGB565 image format.

This allows drawing RGB565 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperRGB565, enableTextureMapperRGB565_Opaque_NearestNeighbor

enableTextureMapperRGB565_Opaque_BilinearInterpolation
void enableTextureMapperRGB565_Opaque_BilinearInterpolation ()

Enables the texture mappers for Opaque RGB565 image format.

This allows drawing RGB565 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperRGB565, enableTextureMapperRGB565_NonOpaque_BilinearInterpolation

enableTextureMapperRGB565_Opaque_NearestNeighbor
void enableTextureMapperRGB565_Opaque_NearestNeighbor ()

Enables the texture mappers for Opaque RGB565 image format.

This allows drawing RGB565 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperRGB565, enableTextureMapperRGB565_NonOpaque_NearestNeighbor

enableTextureMapperRGB888
void enableTextureMapperRGB888 ()

Enables the texture mappers for RGB888 image format.

This allows drawing RGB888 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperRGB888_BilinearInterpolation,
enableTextureMapperRGB888_NearestNeighbor

enableTextureMapperRGB888_BilinearInterpolation
void enableTextureMapperRGB888_BilinearInterpolation ()

Enables the texture mappers for RGB888 image format.

This allows drawing RGB888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperRGB888, enableTextureMapperRGB888_NearestNeighbor

enableTextureMapperRGB888_NearestNeighbor
void enableTextureMapperRGB888_NearestNeighbor ()

Enables the texture mappers for RGB888 image format.

This allows drawing RGB888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperRGB888, enableTextureMapperRGB888_BilinearInterpolation

fillRect
virtual void fillRect (const Rect & rect ,

colortype color ,
uint8_t alpha =255
)

Draws a filled rectangle in the framebuffer in the specified color and opacity.

By default the rectangle will be drawn as a solid box. The rectangle can be drawn with transparency by
specifying alpha from 0=invisible to 255=solid.

Parameters:
rect The rectangle to draw in absolute display coordinates.
color The rectangle color.
alpha (Optional) The rectangle opacity, from 0=invisible to 255=solid.

Reimplements: touchgfx::LCD::fillRect

framebufferFormat
virtual Bitmap::BitmapFormat framebufferFormat () const

Framebuffer format used by the display.

Returns:

A Bitmap::BitmapFormat.

Reimplements: touchgfx::LCD::framebufferFormat

framebufferStride
virtual uint16_t framebufferStride () const

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

Reimplements: touchgfx::LCD::framebufferStride

getBlueColor
virtual uint8_t getBlueColor (colortype color)

Gets the blue color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical sections.
Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The blue part of the color.

Reimplements: touchgfx::LCD::getBlueColor

getColorFrom24BitRGB
virtual colortype getColorFrom24BitRGB (uint8_t red , const

uint8_t green , const
uint8_t blue const
) const

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Depending on your chosen color bit depth, the color will be interpreted internally as either a 16 bit or 24
bit color value. This function can be safely used regardless of whether your application is configured for 16
or 24 bit colors.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

Reimplements: touchgfx::LCD::getColorFrom24BitRGB

getGreenColor
virtual uint8_t getGreenColor (colortype color)

Gets the green color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical sections.
Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The green part of the color.

Reimplements: touchgfx::LCD::getGreenColor

getRedColor
virtual uint8_t getRedColor (colortype color)

Gets the red color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical sections.
Consider finding the color in another way, if possible.

Parameters:
color The color value.

Returns:

The red part of the color.

Reimplements: touchgfx::LCD::getRedColor

LCD32bpp
LCD32bpp ()

getBlueFromColor

static FORCE_INLINE_FUNCTION uint8_t getBlueFromColor (colortype color)

Gets blue from color.

Parameters:
color The color.

Returns:

The blue from color.

getColorFromRGB
static FORCE_INLINE_FUNCTION colortype getColorFromRGB (uint8_t red ,

uint8_t green ,
uint8_t blue
)

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color from RGB.

getFramebufferStride
static FORCE_INLINE_FUNCTION uint16_t getFramebufferStride ()

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

getGreenFromColor
static FORCE_INLINE_FUNCTION uint8_t getGreenFromColor (colortype color)

Gets green from color.

Parameters:
color The color.

Returns:

The green from color.

getRedFromColor
static FORCE_INLINE_FUNCTION uint8_t getRedFromColor (colortype color)

Gets red from color.

Parameters:
color The color.

Returns:

The red from color.

Protected Functions Documentation
drawGlyph

virtual void drawGlyph (uint16_t * wbuf16 ,
Rect widgetArea ,
int16_t x ,
int16_t y ,
uint16_t offsetX ,
uint16_t offsetY ,
const Rect & invalidatedArea ,
const GlyphNode * glyph ,
const uint8_t * glyphData ,
uint8_t byteAlignRow ,
colortype color ,
uint8_t bitsPerPixel ,
uint8_t alpha ,
TextRotation rotation
)

Private version of draw-glyph with explicit destination buffer pointer argument.

For all parameters (except the buffer pointer) see the public function drawString().

Parameters:
wbuf16 The destination (frame) buffer to draw to.
widgetArea The canvas to draw the glyph inside.
x Horizontal offset to start drawing the glyph.
y Vertical offset to start drawing the glyph.

offsetX Horizontal offset in the glyph to start drawing from.
offsetY Vertical offset in the glyph to start drawing from.
invalidatedArea The area to draw inside.
glyph Specifications of the glyph to draw.
glyphData Data containing the actual glyph (dense format)
byteAlignRow Each row of glyph data starts in a new byte.
color The color of the glyph.
bitsPerPixel Bit depth of the glyph.
alpha The transparency of the glyph.
rotation Rotation to do before drawing the glyph.

Reimplements: touchgfx::LCD::drawGlyph

getTextureMapperDrawScanLine
virtual DrawTextureMapScanLineBase
* getTextureMapperDrawScanLine (const TextureSurface

& texture ,

RenderingVariant renderVariant
,

uint8_t alpha
)

Gets pointer to object that can draw a scan line which allows for highly specialized and optimized
implementation.

Parameters:
texture The texture Surface.
renderVariant The render variant.
alpha The global alpha.

Returns:

Null if it fails, else the pointer to the texture mapper draw scan line object.

Reimplements: touchgfx::LCD::getTextureMapperDrawScanLine

blitCopyL8
static void blitCopyL8 (const uint8_t * sourceData ,

const uint8_t * clutData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-blending per pixel as specified if
indexed format is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-indexes pointer (points to the beginning of the data). The sourceData must be

stored as 8- bits indexes.
clutData The source-clut pointer (points to the beginning of the CLUT color format and size data

followed by colors entries.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no blending)

blitCopyL8_ARGB8888
static void blitCopyL8_ARGB8888 (const uint8_t * sourceData ,

const uint8_t * clutData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-blending per pixel as specified if
L8_ARGB8888 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-indexes pointer (points to the beginning of the data). The sourceData must be

stored as 8- bits indexes.
clutData The source-clut pointer (points to the beginning of the CLUT color format and size data

followed by colors entries stored as 32- bits (ARGB8888) format.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no blending)

blitCopyL8_RGB565
static void blitCopyL8_RGB565 (const uint8_t * sourceData ,

const uint8_t * clutData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-blending per pixel as specified if
L8_RGB565 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-indexes pointer (points to the beginning of the data). The sourceData must be

stored as 8- bits indexes.

clutData The source-clut pointer (points to the beginning of the CLUT color format and size data
followed by colors entries stored as 16- bits (RGB565) format.

source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no blending)

blitCopyL8_RGB888
static void blitCopyL8_RGB888 (const uint8_t * sourceData ,

const uint8_t * clutData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D indexed 8-bit source to the framebuffer performing alpha-blending per pixel as specified if
L8_RGB888 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-indexes pointer (points to the beginning of the data). The sourceData must be

stored as 8- bits indexes.
clutData The source-clut pointer (points to the beginning of the CLUT color format and size data

followed by colors entries stored as 32- bits (RGB888) format.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no blending)

blitCopyRGB565
static void blitCopyRGB565 (const uint16_t * sourceData16 ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D source-array to the framebuffer performing alpha-blending per pixel as specified.

If! RGB565 is not supported by the DMA a software blend is performed.

Parameters:
sourceData16 The source-array pointer (points to the beginning of the data). The sourceData must be

stored as 16- bits RGB565 values.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

blitCopyRGB888
static void blitCopyRGB888 (const uint16_t * sourceData16 ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blits a 2D source-array to the framebuffer performing alpha-blending per pixel as specified.

If RGB888 is not supported by the DMA a software blend is performed.

Parameters:
sourceData16 The source-array pointer (points to the beginning of the data). The sourceData must be

stored as 24- bits RGB888 values.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

nextLine
static int nextLine (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next line.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next line.

nextPixel
static int nextPixel (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next pixel.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next pixel.

Version: 4.16

LCD32DebugPrinter
The class LCD32DebugPrinter implements the DebugPrinter interface for printing debug messages on
top of 32bit framebuffer.

See: DebugPrinter

Inherits from: DebugPrinter

Public Functions
virtual void draw(const Rect & rect) const

Draws the debug string on top of the framebuffer content.

Additional inherited members
Public Functions inherited from DebugPrinter

DebugPrinter()
Initializes a new instance of the DebugPrinter class.

const Rect & getRegion() const
Returns the region where the debug string is displayed.

void setColor(colortype fg)
Sets the foreground color of the debug string.

void setPosition(uint16_t x, uint16_t y, uint16_t w, uint16_t h)
Sets the position onscreen where the debug string will be displayed.

void setScale(uint8_t scale)
Sets the font scale of the debug string.

void setString(const char * string)
Sets the debug string to be displayed on top of the framebuffer.

virtual ~DebugPrinter()

Finalizes an instance of the DebugPrinter class.

Protected Functions inherited from DebugPrinter
uint16_t getGlyph(uint8_t c) const

Gets a glyph (15 bits) arranged with 3 bits wide, 5 bits high in a single uint16_t value.

Protected Attributes inherited from DebugPrinter
colortype debugForegroundColor

Font color to use when displaying the debug string.

Rect debugRegion
Region onscreen where the debug message is displayed.

uint8_t debugScale
Font scaling factor to use when displaying the debug string.

const char * debugString
Debug string to be displayed onscreen.

Public Functions Documentation
draw

virtual void draw (const Rect & rect)

Draws the debug string on top of the framebuffer content.

Parameters:
rect The rect to draw inside.

Reimplements: touchgfx::DebugPrinter::draw

Version: 4.16

LCD4bpp
This class contains the various low-level drawing routines for drawing bitmaps, texts and rectangles on
4 bits per pixel grayscale displays.

See: LCD

Note: All coordinates are expected to be in absolute coordinates!

Inherits from: LCD

Public Functions
virtual uint8_t bitDepth() const

Number of bits per pixel used by the display.

virtual void
blitCopy(const uint16_t * sourceData, const Rect & source,
const Rect & blitRect, uint8_t alpha, bool
hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual void
blitCopy(const uint8_t * sourceData, Bitmap::BitmapFormat
sourceFormat, const Rect & source, const Rect & blitRect,
uint8_t alpha, bool hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual uint16_t * copyFrameBufferRegionToMemory(const Rect & visRegion,
const Rect & absRegion, const BitmapId bitmapId)
Copies part of the framebuffer to the data section of a bitmap.

virtual void
drawPartialBitmap(const Bitmap & bitmap, int16_t x, int16_t
y, const Rect & rect, uint8_t alpha =255, bool useOptimized
=true)
Draws all (or a part) of a bitmap.

void enableTextureMapperA4()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_BilinearInterpolation()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_NearestNeighbor()
Enables the texture mappers for A4 image format.

void enableTextureMapperAll()
Enables the texture mappers for all image formats.

void enableTextureMapperGRAY4()
Enables the texture mappers for GRAY4 image format.

void enableTextureMapperGRAY4_BilinearInterpolation()
Enables the texture mappers for GRAY4 image format.

void enableTextureMapperGRAY4_NearestNeighbor()
Enables the texture mappers for GRAY4 image format.

virtual void fillRect(const Rect & rect, colortype color, uint8_t alpha
=255)
Draws a filled rectangle in the framebuffer in the specified
color and opacity.

virtual Bitmap::BitmapFormat framebufferFormat() const
Framebuffer format used by the display.

virtual uint16_t framebufferStride() const
Framebuffer stride in bytes.

virtual uint8_t getBlueColor(colortype color) const
Gets the blue color part of a color.

virtual colortype getColorFrom24BitRGB(uint8_t red, uint8_t green, uint8_t
blue) const
Generates a color representation to be used on the LCD,
based on 24 bit RGB values.

virtual uint8_t getGreenColor(colortype color) const
Gets the green color part of a color.

virtual uint8_t getRedColor(colortype color) const
Gets the red color part of a color.

LCD4bpp()

FORCE_INLINE_FUNCTION uint8_t getBlueFromColor(colortype color)
Gets blue from color.

FORCE_INLINE_FUNCTION colortype getColorFromRGB(uint8_t red, uint8_t green, uint8_t blue)
Generates a color representation to be used on the LCD,
based on 24 bit RGB values.

FORCE_INLINE_FUNCTION uint16_t getFramebufferStride()
Framebuffer stride in bytes.

FORCE_INLINE_FUNCTION uint8_t getGreenFromColor(colortype color)
Gets green from color.

FORCE_INLINE_FUNCTION uint8_t getPixel(const uint16_t * addr, int offset)
Get pixel from buffer/image.

FORCE_INLINE_FUNCTION uint8_t getPixel(const uint8_t * addr, int offset)
Get pixel from buffer/image.

FORCE_INLINE_FUNCTION uint8_t getRedFromColor(colortype color)
Gets red from color.

FORCE_INLINE_FUNCTION void setPixel(uint16_t * addr, int offset, uint8_t value)
Set pixel in buffer.

FORCE_INLINE_FUNCTION void setPixel(uint8_t * addr, int offset, uint8_t value)
Set pixel in buffer.

Protected Functions

void
copyRect(const uint8_t srcAddress, uint16_t srcStride, uint8_t
srcPixelOffset, uint8_t RESTRICT dstAddress, uint16_t
dstStride, uint8_t dstPixelOffset, uint16_t width, uint16_t
height) const
Copies a rectangular area.

virtual void

drawGlyph(uint16_t wbuf16, Rect widgetArea, int16_t x,
int16_t y, uint16_t offsetX, uint16_t offsetY, const Rect &
invalidatedArea, const GlyphNode glyph, const uint8_t *
glyphData, uint8_t byteAlignRow, colortype color, uint8_t
bitsPerPixel, uint8_t alpha, TextRotation rotation)

Private version of draw-glyph with explicit destination buffer
pointer argument.

virtual DrawTextureMapScanLineBase * getTextureMapperDrawScanLine(const TextureSurface &
texture, RenderingVariant renderVariant, uint8_t alpha)
Gets pointer to object that can draw a scan line which allows
for highly specialized and optimized implementation.

void
blitCopyAlphaPerPixel(const uint16_t sourceData16, const
uint8_t sourceAlphaData, const Rect & source, const Rect &
blitRect, uint8_t alpha)
Blit a 2D source-array to the framebuffer performing alpha-
blending per pixel as specified Performs always a software
blend.

int nextLine(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to
the next line.

int nextPixel(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to
the next pixel.

Additional inherited members
Public Classes inherited from LCD

struct StringVisuals
The visual elements when writing a string.

Protected Classes inherited from LCD
class DrawTextureMapScanLineBase

Base class for drawing scanline by the texture mapper.

Public Functions inherited from LCD

void
drawString(Rect widgetArea, const Rect & invalidatedArea,
const StringVisuals & stringVisuals, const
Unicode::UnicodeChar * format, ...)

Draws the specified Unicode string.

virtual void

drawTextureMapTriangle(const DrawingSurface & dest, const
Point3D * vertices, const TextureSurface & texture, const Rect
& absoluteRect, const Rect & dirtyAreaAbsolute,
RenderingVariant renderVariant, uint8_t alpha =255, uint16_t
subDivisionSize =12)
Texture map triangle.

colortype getDefaultColor() const
Gets default color previously set using setDefaultColor.

void setDefaultColor(colortype color)
Sets default color as used by alpha level only bitmap formats,
e.g.

virtual ~LCD()
Finalizes an instance of the LCD class.

FORCE_INLINE_FUNCTION uint8_t div255(uint16_t num)
Approximates an integer division of a 16bit value by 255.

FORCE_INLINE_FUNCTION uint32_t div255g(uint32_t pixelxAlpha)
Divides the green component of pixelxAlpha by 255.

FORCE_INLINE_FUNCTION uint32_t div255rb(uint32_t pixelxAlpha)
Divides the red and blue components of pixelxAlpha by 255.

Protected Functions inherited from LCD

void
drawStringLTR(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

void
drawStringRTL(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

virtual void

drawTextureMapScanLine(const DrawingSurface & dest, const
Gradients & gradients, const Edge leftEdge, const Edge
rightEdge, const TextureSurface & texture, const Rect &
absoluteRect, const Rect & dirtyAreaAbsolute, RenderingVariant
renderVariant, uint8_t alpha, uint16_t subDivisionSize)
Draw scan line.

FORCE_INLINE_FUNCTION uint8_t getAlphaFromA4(const uint16_t * data, uint32_t offset)
Gets alpha from A4 image at given offset.

uint16_t
getNumLines(TextProvider & textProvider, WideTextAction
wideTextAction, TextDirection textDirection, const Font * font,
int16_t width)
Gets number of lines for a given text taking word wrap into
consideration.

int realX(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute x coordinate of a point inside a widget
with regards to rotation.

int realY(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute y coordinate of a point inside a widget
with regards to rotation.

void rotateRect(Rect & rect, const Rect & canvas, const TextRotation
rotation)
Rotate a rectangle inside another rectangle.

uint16_t stringWidth(TextProvider & textProvider, const Font & font,
const int numChars, TextDirection textDirection)
Find string width of the given number of ligatures read from the
given TextProvider.

Protected Attributes inherited from LCD
colortype defaultColor

Default Color to use when displaying transparency-only elements, e.g. A4 bitmaps.

const uint16_t newLine
NewLine value.

Public Functions Documentation
bitDepth

virtual uint8_t bitDepth () const

Number of bits per pixel used by the display.

Returns:

The number of bits per pixel.

Reimplements: touchgfx::LCD::bitDepth

blitCopy
virtual void blitCopy (const uint16_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha != 255
(solid).

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

blitCopy

virtual void blitCopy (const uint8_t * sourceData ,
Bitmap::BitmapFormat sourceFormat ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha < 255
(solid).

If the display does not support the specified sourceFormat, an assert will be raised.

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
sourceFormat The bitmap format used in the source data.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

copyFrameBufferRegionToMemory
virtual uint16_t * copyFrameBufferRegionToMemory (const Rect & visRegion ,

const Rect & absRegion ,
const BitmapId bitmapId
)

Copies part of the framebuffer to the data section of a bitmap.

The bitmap must be a dynamic bitmap or animation storage (BITMAP_ANIMATION_STORAGE). The
two regions given are the visible region and the absolute region on screen. This is used to copy
only a part of the framebuffer. This might be the case if a SnapshotWidget is placed inside a
Container where parts of the SnapshowWidget is outside the area defined by the Container. The
visible region must be completely inside the absolute region.

Parameters:
visRegion The visible region.
absRegion The absolute region.
bitmapId Identifier for the bitmap.

Returns:

Null if it fails, else a pointer to the data in the given bitmap.

NOTE

There is only one instance of animation storage. The content of the bitmap data /animation storage
outside the given region is left untouched.

See also:

blitCopy

Reimplements: touchgfx::LCD::copyFrameBufferRegionToMemory

drawPartialBitmap
virtual void drawPartialBitmap (const Bitmap & bitmap ,

int16_t x ,
int16_t y ,
const Rect & rect ,
uint8_t alpha =255,
bool useOptimized =true
)

Draws all (or a part) of a bitmap.

The coordinates of the corner of the bitmap is given in (x, y) and rect describes which part of the
bitmap should be drawn. The bitmap can be drawn as it is or more or less transparent depending
on the value of alpha. The value of alpha is independent of the transparency of the individual pixels
of the given bitmap.

Parameters:
bitmap The bitmap to draw.
x The absolute x coordinate to place (0, 0) of the bitmap on the screen.
y The absolute y coordinate to place (0, 0) of the bitmap on the screen.
rect A rectangle describing what region of the bitmap is to be drawn.
alpha (Optional) Optional alpha value ranging from 0=invisible to 255=solid. Default is

255 (solid).
useOptimized (Optional) if false, do not attempt to substitute (parts of) this bitmap with faster

fillrects.

Reimplements: touchgfx::LCD::drawPartialBitmap

enableTextureMapperA4
void enableTextureMapperA4 ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperA4_BilinearInterpolation, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_BilinearInterpolation
void enableTextureMapperA4_BilinearInterpolation ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_NearestNeighbor
void enableTextureMapperA4_NearestNeighbor ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_BilinearInterpolation

enableTextureMapperAll
void enableTextureMapperAll ()

Enables the texture mappers for all image formats.

This allows drawing any image using Bilinear Interpolation and Nearest Neighbor algorithms, but
might use a lot of memory for the drawing algorithms.

enableTextureMapperGRAY4
void enableTextureMapperGRAY4 ()

Enables the texture mappers for GRAY4 image format.

This allows drawing GRAY4 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperGRAY4_BilinearInterpolation,
enableTextureMapperGRAY4_NearestNeighbor

enableTextureMapperGRAY4_BilinearInterpolation
void enableTextureMapperGRAY4_BilinearInterpolation ()

Enables the texture mappers for GRAY4 image format.

This allows drawing GRAY4 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperGRAY4, enableTextureMapperGRAY4_NearestNeighbor

enableTextureMapperGRAY4_NearestNeighbor
void enableTextureMapperGRAY4_NearestNeighbor ()

Enables the texture mappers for GRAY4 image format.

This allows drawing GRAY4 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperGRAY4, enableTextureMapperGRAY4_BilinearInterpolation

fillRect
virtual void fillRect (const Rect & rect ,

colortype color ,

uint8_t alpha =255
)

Draws a filled rectangle in the framebuffer in the specified color and opacity.

By default the rectangle will be drawn as a solid box. The rectangle can be drawn with transparency
by specifying alpha from 0=invisible to 255=solid.

Parameters:
rect The rectangle to draw in absolute display coordinates.
color The rectangle color.
alpha (Optional) The rectangle opacity, from 0=invisible to 255=solid.

Reimplements: touchgfx::LCD::fillRect

framebufferFormat
virtual Bitmap::BitmapFormat framebufferFormat () const

Framebuffer format used by the display.

Returns:

A Bitmap::BitmapFormat.

Reimplements: touchgfx::LCD::framebufferFormat

framebufferStride
virtual uint16_t framebufferStride () const

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

Reimplements: touchgfx::LCD::framebufferStride

getBlueColor
virtual uint8_t getBlueColor (colortype color)

Gets the blue color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The blue part of the color.

Reimplements: touchgfx::LCD::getBlueColor

getColorFrom24BitRGB
virtual colortype getColorFrom24BitRGB (uint8_t red , const

uint8_t green , const
uint8_t blue const
) const

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Depending on your chosen color bit depth, the color will be interpreted internally as either a 16 bit
or 24 bit color value. This function can be safely used regardless of whether your application is
configured for 16 or 24 bit colors.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

Reimplements: touchgfx::LCD::getColorFrom24BitRGB

getGreenColor
virtual uint8_t getGreenColor (colortype color)

Gets the green color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The green part of the color.

Reimplements: touchgfx::LCD::getGreenColor

getRedColor
virtual uint8_t getRedColor (colortype color)

Gets the red color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The color value.

Returns:

The red part of the color.

Reimplements: touchgfx::LCD::getRedColor

LCD4bpp
LCD4bpp ()

getBlueFromColor
static FORCE_INLINE_FUNCTION uint8_t getBlueFromColor (colortype color)

Gets blue from color.

Parameters:
color The color.

Returns:

The blue from color.

getColorFromRGB
static FORCE_INLINE_FUNCTION colortype getColorFromRGB (uint8_t red ,

uint8_t green ,
uint8_t blue
)

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

getFramebufferStride
static FORCE_INLINE_FUNCTION uint16_t getFramebufferStride ()

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

getGreenFromColor
static FORCE_INLINE_FUNCTION uint8_t getGreenFromColor (colortype color)

Gets green from color.

Parameters:
color The color.

Returns:

The green from color.

getPixel
static FORCE_INLINE_FUNCTION uint8_t getPixel (const uint16_t * addr ,

int offset
)

Get pixel from buffer/image.

Parameters:
addr The address.
offset The offset.

Returns:

The pixel value.

getPixel
static FORCE_INLINE_FUNCTION uint8_t getPixel (const uint8_t * addr ,

int offset
)

Get pixel from buffer/image.

Parameters:
addr The address.
offset The offset.

Returns:

The pixel value.

getRedFromColor
static FORCE_INLINE_FUNCTION uint8_t getRedFromColor (colortype color)

Gets red from color.

Parameters:
color The color.

Returns:

The red from color.

setPixel
static FORCE_INLINE_FUNCTION void setPixel (uint16_t * addr ,

int offset ,
uint8_t value
)

Set pixel in buffer.

Parameters:
addr The address.
offset The offset.
value The value.

setPixel
static FORCE_INLINE_FUNCTION void setPixel (uint8_t * addr ,

int offset ,
uint8_t value
)

Set pixel in buffer.

Parameters:
addr The address.
offset The offset.
value The value.

Protected Functions Documentation
copyRect

void copyRect (const uint8_t * srcAddress , const
uint16_t srcStride , const
uint8_t srcPixelOffset , const
uint8_t *RESTRICT dstAddress , const
uint16_t dstStride , const
uint8_t dstPixelOffset , const
uint16_t width , const
uint16_t height const
) const

Copies a rectangular area.

Parameters:
srcAddress Source address (byte address).
srcStride Source stride (number of bytes to advance to next line).
srcPixelOffset Source pixel offset (first pixel in first source byte).
dstAddress If destination address (byte address).
dstStride Destination stride (number of bytes to advance to next line).
dstPixelOffset Destination pixel offset (first pixel in destination byte).
width The width of area (in pixels).
height The height of area (in pixels).

drawGlyph
virtual void drawGlyph (uint16_t * wbuf16 ,

Rect widgetArea ,
int16_t x ,
int16_t y ,
uint16_t offsetX ,
uint16_t offsetY ,
const Rect & invalidatedArea ,
const GlyphNode * glyph ,
const uint8_t * glyphData ,
uint8_t byteAlignRow ,
colortype color ,
uint8_t bitsPerPixel ,
uint8_t alpha ,
TextRotation rotation
)

Private version of draw-glyph with explicit destination buffer pointer argument.

For all parameters (except the buffer pointer) see the public function drawString().

Parameters:
wbuf16 The destination (frame) buffer to draw to.
widgetArea The canvas to draw the glyph inside.
x Horizontal offset to start drawing the glyph.
y Vertical offset to start drawing the glyph.
offsetX Horizontal offset in the glyph to start drawing from.
offsetY Vertical offset in the glyph to start drawing from.
invalidatedArea The area to draw inside.
glyph Specifications of the glyph to draw.
glyphData Data containing the actual glyph (dense format)

byteAlignRow Each row of glyph data starts in a new byte.
color The color of the glyph.
bitsPerPixel Bit depth of the glyph.
alpha The transparency of the glyph.
rotation Rotation to do before drawing the glyph.

Reimplements: touchgfx::LCD::drawGlyph

getTextureMapperDrawScanLine
virtual DrawTextureMapScanLineBase
* getTextureMapperDrawScanLine (const

TextureSurface & texture ,

RenderingVariant renderVariant
,

uint8_t alpha
)

Gets pointer to object that can draw a scan line which allows for highly specialized and optimized
implementation.

Parameters:
texture The texture Surface.
renderVariant The render variant.
alpha The global alpha.

Returns:

Null if it fails, else the pointer to the texture mapper draw scan line object.

Reimplements: touchgfx::LCD::getTextureMapperDrawScanLine

blitCopyAlphaPerPixel
static void blitCopyAlphaPerPixel (const uint16_t * sourceData16 ,

const uint8_t * sourceAlphaData ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blit a 2D source-array to the framebuffer performing alpha-blending per pixel as specified Performs
always a software blend.

Parameters:

sourceData16 The source-array pointer (points to the beginning of the data). The
sourceData must be stored as 4bpp GRAY4 values.

sourceAlphaData The alpha channel array pointer (points to the beginning of the data)
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid,

no blending)

nextLine
static int nextLine (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next line.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next line.

nextPixel
static int nextPixel (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next pixel.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next pixel.

Version: 4.16

LCD4DebugPrinter
The class LCD4DebugPrinter implements the DebugPrinter interface for printing debug messages on
top of 8bit framebuffer.

See: DebugPrinter

Inherits from: DebugPrinter

Public Functions
virtual void draw(const Rect & rect) const

Draws the debug string on top of the framebuffer content.

Additional inherited members
Public Functions inherited from DebugPrinter

DebugPrinter()
Initializes a new instance of the DebugPrinter class.

const Rect & getRegion() const
Returns the region where the debug string is displayed.

void setColor(colortype fg)
Sets the foreground color of the debug string.

void setPosition(uint16_t x, uint16_t y, uint16_t w, uint16_t h)
Sets the position onscreen where the debug string will be displayed.

void setScale(uint8_t scale)
Sets the font scale of the debug string.

void setString(const char * string)
Sets the debug string to be displayed on top of the framebuffer.

virtual ~DebugPrinter()

Finalizes an instance of the DebugPrinter class.

Protected Functions inherited from DebugPrinter
uint16_t getGlyph(uint8_t c) const

Gets a glyph (15 bits) arranged with 3 bits wide, 5 bits high in a single uint16_t value.

Protected Attributes inherited from DebugPrinter
colortype debugForegroundColor

Font color to use when displaying the debug string.

Rect debugRegion
Region onscreen where the debug message is displayed.

uint8_t debugScale
Font scaling factor to use when displaying the debug string.

const char * debugString
Debug string to be displayed onscreen.

Public Functions Documentation
draw

virtual void draw (const Rect & rect)

Draws the debug string on top of the framebuffer content.

Parameters:
rect The rect to draw inside.

Reimplements: touchgfx::DebugPrinter::draw

Version: 4.16

LCD8ABGR2222DebugPrinter
The class LCD8ABGR2222DebugPrinter implements the DebugPrinter interface for printing debug
messages on top of 8bit framebuffer.

See: DebugPrinter

Inherits from: DebugPrinter

Public Functions
virtual void draw(const Rect & rect) const

Draws the debug string on top of the framebuffer content.

Additional inherited members
Public Functions inherited from DebugPrinter

DebugPrinter()
Initializes a new instance of the DebugPrinter class.

const Rect & getRegion() const
Returns the region where the debug string is displayed.

void setColor(colortype fg)
Sets the foreground color of the debug string.

void setPosition(uint16_t x, uint16_t y, uint16_t w, uint16_t h)
Sets the position onscreen where the debug string will be displayed.

void setScale(uint8_t scale)
Sets the font scale of the debug string.

void setString(const char * string)
Sets the debug string to be displayed on top of the framebuffer.

virtual ~DebugPrinter()

Finalizes an instance of the DebugPrinter class.

Protected Functions inherited from DebugPrinter
uint16_t getGlyph(uint8_t c) const

Gets a glyph (15 bits) arranged with 3 bits wide, 5 bits high in a single uint16_t value.

Protected Attributes inherited from DebugPrinter
colortype debugForegroundColor

Font color to use when displaying the debug string.

Rect debugRegion
Region onscreen where the debug message is displayed.

uint8_t debugScale
Font scaling factor to use when displaying the debug string.

const char * debugString
Debug string to be displayed onscreen.

Public Functions Documentation
draw

virtual void draw (const Rect & rect)

Draws the debug string on top of the framebuffer content.

Parameters:
rect The rect to draw inside.

Reimplements: touchgfx::DebugPrinter::draw

Version: 4.16

LCD8ARGB2222DebugPrinter
The class LCD8ARGB2222DebugPrinter implements the DebugPrinter interface for printing debug
messages on top of 8bit framebuffer.

See: DebugPrinter

Inherits from: DebugPrinter

Public Functions
virtual void draw(const Rect & rect) const

Draws the debug string on top of the framebuffer content.

Additional inherited members
Public Functions inherited from DebugPrinter

DebugPrinter()
Initializes a new instance of the DebugPrinter class.

const Rect & getRegion() const
Returns the region where the debug string is displayed.

void setColor(colortype fg)
Sets the foreground color of the debug string.

void setPosition(uint16_t x, uint16_t y, uint16_t w, uint16_t h)
Sets the position onscreen where the debug string will be displayed.

void setScale(uint8_t scale)
Sets the font scale of the debug string.

void setString(const char * string)
Sets the debug string to be displayed on top of the framebuffer.

virtual ~DebugPrinter()

Finalizes an instance of the DebugPrinter class.

Protected Functions inherited from DebugPrinter
uint16_t getGlyph(uint8_t c) const

Gets a glyph (15 bits) arranged with 3 bits wide, 5 bits high in a single uint16_t value.

Protected Attributes inherited from DebugPrinter
colortype debugForegroundColor

Font color to use when displaying the debug string.

Rect debugRegion
Region onscreen where the debug message is displayed.

uint8_t debugScale
Font scaling factor to use when displaying the debug string.

const char * debugString
Debug string to be displayed onscreen.

Public Functions Documentation
draw

virtual void draw (const Rect & rect)

Draws the debug string on top of the framebuffer content.

Parameters:
rect The rect to draw inside.

Reimplements: touchgfx::DebugPrinter::draw

Version: 4.16

LCD8BGRA2222DebugPrinter
The class LCD8BGRA2222DebugPrinter implements the DebugPrinter interface for printing debug
messages on top of 8bit framebuffer.

See: DebugPrinter

Inherits from: DebugPrinter

Public Functions
virtual void draw(const Rect & rect) const

Draws the debug string on top of the framebuffer content.

Additional inherited members
Public Functions inherited from DebugPrinter

DebugPrinter()
Initializes a new instance of the DebugPrinter class.

const Rect & getRegion() const
Returns the region where the debug string is displayed.

void setColor(colortype fg)
Sets the foreground color of the debug string.

void setPosition(uint16_t x, uint16_t y, uint16_t w, uint16_t h)
Sets the position onscreen where the debug string will be displayed.

void setScale(uint8_t scale)
Sets the font scale of the debug string.

void setString(const char * string)
Sets the debug string to be displayed on top of the framebuffer.

virtual ~DebugPrinter()

Finalizes an instance of the DebugPrinter class.

Protected Functions inherited from DebugPrinter
uint16_t getGlyph(uint8_t c) const

Gets a glyph (15 bits) arranged with 3 bits wide, 5 bits high in a single uint16_t value.

Protected Attributes inherited from DebugPrinter
colortype debugForegroundColor

Font color to use when displaying the debug string.

Rect debugRegion
Region onscreen where the debug message is displayed.

uint8_t debugScale
Font scaling factor to use when displaying the debug string.

const char * debugString
Debug string to be displayed onscreen.

Public Functions Documentation
draw

virtual void draw (const Rect & rect)

Draws the debug string on top of the framebuffer content.

Parameters:
rect The rect to draw inside.

Reimplements: touchgfx::DebugPrinter::draw

Version: 4.16

LCD8bpp_ABGR2222
This class contains the various low-level drawing routines for drawing bitmaps, texts and rectangles on
16 bits per pixel displays.

See: LCD

Note: All coordinates are expected to be in absolute coordinates!

Inherits from: LCD

Public Functions
virtual uint8_t bitDepth() const

Number of bits per pixel used by the display.

virtual void
blitCopy(const uint16_t * sourceData, const Rect & source,
const Rect & blitRect, uint8_t alpha, bool
hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual void
blitCopy(const uint8_t * sourceData, Bitmap::BitmapFormat
sourceFormat, const Rect & source, const Rect & blitRect,
uint8_t alpha, bool hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual uint16_t * copyFrameBufferRegionToMemory(const Rect & visRegion,
const Rect & absRegion, const BitmapId bitmapId)
Copies part of the framebuffer to the data section of a bitmap.

virtual void
drawPartialBitmap(const Bitmap & bitmap, int16_t x, int16_t
y, const Rect & rect, uint8_t alpha =255, bool useOptimized
=true)
Draws all (or a part) of a bitmap.

void enableTextureMapperA4()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_BilinearInterpolation()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_NearestNeighbor()
Enables the texture mappers for A4 image format.

void enableTextureMapperABGR2222()
Enables the texture mappers for ABGR2222 image format.

void enableTextureMapperABGR2222_BilinearInterpolation()
Enables the texture mappers for ABGR2222 image format.

void enableTextureMapperABGR2222_NearestNeighbor()
Enables the texture mappers for ABGR2222 image format.

void enableTextureMapperAll()
Enables the texture mappers for all image formats.

void enableTextureMapperARGB8888()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_BilinearInterpolation()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_NearestNeighbor()
Enables the texture mappers for ARGB8888 image format.

virtual void fillRect(const Rect & rect, colortype color, uint8_t alpha
=255)
Draws a filled rectangle in the framebuffer in the specified
color and opacity.

virtual Bitmap::BitmapFormat framebufferFormat() const
Framebuffer format used by the display.

virtual uint16_t framebufferStride() const
Framebuffer stride in bytes.

virtual uint8_t getBlueColor(colortype color) const
Gets the blue color part of a color.

virtual colortype getColorFrom24BitRGB(uint8_t red, uint8_t green, uint8_t
blue) const

Generates a color representation to be used on the LCD,
based on 24 bit RGB values.

virtual uint8_t getGreenColor(colortype color) const
Gets the green color part of a color.

virtual uint8_t getRedColor(colortype color) const
Gets the red color part of a color.

LCD8bpp_ABGR2222()

FORCE_INLINE_FUNCTION uint8_t getBlueFromColor(colortype color)
Gets blue from color.

FORCE_INLINE_FUNCTION colortype getColorFromRGB(uint8_t red, uint8_t green, uint8_t blue)
Gets color from RGB.

FORCE_INLINE_FUNCTION uint16_t getFramebufferStride()
Framebuffer stride in bytes.

FORCE_INLINE_FUNCTION uint8_t getGreenFromColor(colortype color)
Gets green from color.

FORCE_INLINE_FUNCTION uint8_t getRedFromColor(colortype color)
Gets red from color.

Protected Functions

virtual void

drawGlyph(uint16_t wbuf16, Rect widgetArea, int16_t x,
int16_t y, uint16_t offsetX, uint16_t offsetY, const Rect &
invalidatedArea, const GlyphNode glyph, const uint8_t *
glyphData, uint8_t byteAlignRow, colortype color, uint8_t
bitsPerPixel, uint8_t alpha, TextRotation rotation)
Private version of draw-glyph with explicit destination buffer
pointer argument.

virtual DrawTextureMapScanLineBase * getTextureMapperDrawScanLine(const TextureSurface &
texture, RenderingVariant renderVariant, uint8_t alpha)
Gets pointer to object that can draw a scan line which allows
for highly specialized and optimized implementation.

void blitCopyAlphaPerPixel(const uint16_t * sourceData16, const
Rect & source, const Rect & blitRect, uint8_t alpha)

Blit a 2D source-array to the framebuffer performing alpha-
blending per pixel as specified Performs always a software
blend.

void blitCopyARGB8888(const uint32_t * sourceData, const Rect
& source, const Rect & blitRect, uint8_t alpha)
Blit a 2D source-array to the framebuffer performing alpha-
blending per pixel as specified if ARGB8888 is not supported
by the DMA a software blend is performed.

int nextLine(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to
the next line.

int nextPixel(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to
the next pixel.

Additional inherited members
Public Classes inherited from LCD

struct StringVisuals
The visual elements when writing a string.

Protected Classes inherited from LCD
class DrawTextureMapScanLineBase

Base class for drawing scanline by the texture mapper.

Public Functions inherited from LCD

void
drawString(Rect widgetArea, const Rect & invalidatedArea,
const StringVisuals & stringVisuals, const
Unicode::UnicodeChar * format, ...)
Draws the specified Unicode string.

virtual void

drawTextureMapTriangle(const DrawingSurface & dest, const
Point3D * vertices, const TextureSurface & texture, const Rect
& absoluteRect, const Rect & dirtyAreaAbsolute,
RenderingVariant renderVariant, uint8_t alpha =255, uint16_t
subDivisionSize =12)
Texture map triangle.

colortype getDefaultColor() const
Gets default color previously set using setDefaultColor.

void setDefaultColor(colortype color)
Sets default color as used by alpha level only bitmap formats,
e.g.

virtual ~LCD()
Finalizes an instance of the LCD class.

FORCE_INLINE_FUNCTION uint8_t div255(uint16_t num)
Approximates an integer division of a 16bit value by 255.

FORCE_INLINE_FUNCTION uint32_t div255g(uint32_t pixelxAlpha)
Divides the green component of pixelxAlpha by 255.

FORCE_INLINE_FUNCTION uint32_t div255rb(uint32_t pixelxAlpha)
Divides the red and blue components of pixelxAlpha by 255.

Protected Functions inherited from LCD

void
drawStringLTR(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

void
drawStringRTL(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

virtual void

drawTextureMapScanLine(const DrawingSurface & dest, const
Gradients & gradients, const Edge leftEdge, const Edge
rightEdge, const TextureSurface & texture, const Rect &
absoluteRect, const Rect & dirtyAreaAbsolute, RenderingVariant
renderVariant, uint8_t alpha, uint16_t subDivisionSize)
Draw scan line.

FORCE_INLINE_FUNCTION uint8_t getAlphaFromA4(const uint16_t * data, uint32_t offset)
Gets alpha from A4 image at given offset.

uint16_t
getNumLines(TextProvider & textProvider, WideTextAction
wideTextAction, TextDirection textDirection, const Font * font,
int16_t width)
Gets number of lines for a given text taking word wrap into
consideration.

int realX(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute x coordinate of a point inside a widget
with regards to rotation.

int realY(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute y coordinate of a point inside a widget
with regards to rotation.

void rotateRect(Rect & rect, const Rect & canvas, const TextRotation
rotation)
Rotate a rectangle inside another rectangle.

uint16_t stringWidth(TextProvider & textProvider, const Font & font,
const int numChars, TextDirection textDirection)
Find string width of the given number of ligatures read from the
given TextProvider.

Protected Attributes inherited from LCD
colortype defaultColor

Default Color to use when displaying transparency-only elements, e.g. A4 bitmaps.

const uint16_t newLine
NewLine value.

Public Functions Documentation
bitDepth

virtual uint8_t bitDepth () const

Number of bits per pixel used by the display.

Returns:

The number of bits per pixel.

Reimplements: touchgfx::LCD::bitDepth

blitCopy
virtual void blitCopy (const uint16_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha != 255
(solid).

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

blitCopy
virtual void blitCopy (const uint8_t * sourceData ,

Bitmap::BitmapFormat sourceFormat ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,

bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha < 255
(solid).

If the display does not support the specified sourceFormat, an assert will be raised.

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
sourceFormat The bitmap format used in the source data.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

copyFrameBufferRegionToMemory
virtual uint16_t * copyFrameBufferRegionToMemory (const Rect & visRegion ,

const Rect & absRegion ,
const BitmapId bitmapId
)

Copies part of the framebuffer to the data section of a bitmap.

The bitmap must be a dynamic bitmap or animation storage (BITMAP_ANIMATION_STORAGE). The
two regions given are the visible region and the absolute region on screen. This is used to copy
only a part of the framebuffer. This might be the case if a SnapshotWidget is placed inside a
Container where parts of the SnapshowWidget is outside the area defined by the Container. The
visible region must be completely inside the absolute region.

Parameters:
visRegion The visible region.
absRegion The absolute region.
bitmapId Identifier for the bitmap.

Returns:

Null if it fails, else a pointer to the data in the given bitmap.

NOTE

There is only one instance of animation storage. The content of the bitmap data /animation storage
outside the given region is left untouched.

See also:

blitCopy

Reimplements: touchgfx::LCD::copyFrameBufferRegionToMemory

drawPartialBitmap
virtual void drawPartialBitmap (const Bitmap & bitmap ,

int16_t x ,
int16_t y ,
const Rect & rect ,
uint8_t alpha =255,
bool useOptimized =true
)

Draws all (or a part) of a bitmap.

The coordinates of the corner of the bitmap is given in (x, y) and rect describes which part of the
bitmap should be drawn. The bitmap can be drawn as it is or more or less transparent depending
on the value of alpha. The value of alpha is independent of the transparency of the individual pixels
of the given bitmap.

Parameters:
bitmap The bitmap to draw.
x The absolute x coordinate to place (0, 0) of the bitmap on the screen.
y The absolute y coordinate to place (0, 0) of the bitmap on the screen.
rect A rectangle describing what region of the bitmap is to be drawn.
alpha (Optional) Optional alpha value ranging from 0=invisible to 255=solid. Default is

255 (solid).
useOptimized (Optional) if false, do not attempt to substitute (parts of) this bitmap with faster

fillrects.

Reimplements: touchgfx::LCD::drawPartialBitmap

enableTextureMapperA4
void enableTextureMapperA4 ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperA4_BilinearInterpolation, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_BilinearInterpolation
void enableTextureMapperA4_BilinearInterpolation ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_NearestNeighbor
void enableTextureMapperA4_NearestNeighbor ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_BilinearInterpolation

enableTextureMapperABGR2222
void enableTextureMapperABGR2222 ()

Enables the texture mappers for ABGR2222 image format.

This allows drawing ABGR2222 images using Bilinear Interpolation and Nearest Neighbor
algorithms.

See also:

enableTextureMapperABGR2222_BilinearInterpolation,
enableTextureMapperABGR2222_NearestNeighbor

enableTextureMapperABGR2222_BilinearInterpolation
void enableTextureMapperABGR2222_BilinearInterpolation ()

Enables the texture mappers for ABGR2222 image format.

This allows drawing ABGR2222 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperABGR2222, enableTextureMapperABGR2222_NearestNeighbor

enableTextureMapperABGR2222_NearestNeighbor
void enableTextureMapperABGR2222_NearestNeighbor ()

Enables the texture mappers for ABGR2222 image format.

This allows drawing ABGR2222 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperABGR2222, enableTextureMapperABGR2222_BilinearInterpolation

enableTextureMapperAll
void enableTextureMapperAll ()

Enables the texture mappers for all image formats.

This allows drawing any image using Bilinear Interpolation and Nearest Neighbor algorithms, but
might use a lot of memory for the drawing algorithms.

enableTextureMapperARGB8888
void enableTextureMapperARGB8888 ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation and Nearest Neighbor
algorithms.

See also:

enableTextureMapperARGB8888_BilinearInterpolation,
enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_BilinearInterpolation
void enableTextureMapperARGB8888_BilinearInterpolation ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_NearestNeighbor
void enableTextureMapperARGB8888_NearestNeighbor ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_BilinearInterpolation

fillRect
virtual void fillRect (const Rect & rect ,

colortype color ,
uint8_t alpha =255
)

Draws a filled rectangle in the framebuffer in the specified color and opacity.

By default the rectangle will be drawn as a solid box. The rectangle can be drawn with transparency
by specifying alpha from 0=invisible to 255=solid.

Parameters:

rect The rectangle to draw in absolute display coordinates.
color The rectangle color.
alpha (Optional) The rectangle opacity, from 0=invisible to 255=solid.

Reimplements: touchgfx::LCD::fillRect

framebufferFormat
virtual Bitmap::BitmapFormat framebufferFormat () const

Framebuffer format used by the display.

Returns:

A Bitmap::BitmapFormat.

Reimplements: touchgfx::LCD::framebufferFormat

framebufferStride
virtual uint16_t framebufferStride () const

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

Reimplements: touchgfx::LCD::framebufferStride

getBlueColor
virtual uint8_t getBlueColor (colortype color)

Gets the blue color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The blue part of the color.

Reimplements: touchgfx::LCD::getBlueColor

getColorFrom24BitRGB
virtual colortype getColorFrom24BitRGB (uint8_t red , const

uint8_t green , const
uint8_t blue const
) const

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Depending on your chosen color bit depth, the color will be interpreted internally as either a 16 bit
or 24 bit color value. This function can be safely used regardless of whether your application is
configured for 16 or 24 bit colors.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

Reimplements: touchgfx::LCD::getColorFrom24BitRGB

getGreenColor
virtual uint8_t getGreenColor (colortype color)

Gets the green color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The green part of the color.

Reimplements: touchgfx::LCD::getGreenColor

getRedColor
virtual uint8_t getRedColor (colortype color)

Gets the red color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The color value.

Returns:

The red part of the color.

Reimplements: touchgfx::LCD::getRedColor

LCD8bpp_ABGR2222
LCD8bpp_ABGR2222 ()

getBlueFromColor
static FORCE_INLINE_FUNCTION uint8_t getBlueFromColor (colortype color)

Gets blue from color.

Parameters:
color The color.

Returns:

The blue from color.

getColorFromRGB
static FORCE_INLINE_FUNCTION colortype getColorFromRGB (uint8_t red ,

uint8_t green ,
uint8_t blue
)

Gets color from RGB.

Parameters:
red The red.
green The green.
blue The blue.

Returns:

The color from RGB.

getFramebufferStride
static FORCE_INLINE_FUNCTION uint16_t getFramebufferStride ()

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

getGreenFromColor
static FORCE_INLINE_FUNCTION uint8_t getGreenFromColor (colortype color)

Gets green from color.

Parameters:
color The color.

Returns:

The green from color.

getRedFromColor
static FORCE_INLINE_FUNCTION uint8_t getRedFromColor (colortype color)

Gets red from color.

Parameters:
color The color.

Returns:

The red from color.

Protected Functions Documentation
drawGlyph

virtual void drawGlyph (uint16_t * wbuf16 ,
Rect widgetArea ,
int16_t x ,
int16_t y ,
uint16_t offsetX ,
uint16_t offsetY ,
const Rect & invalidatedArea ,
const GlyphNode * glyph ,
const uint8_t * glyphData ,
uint8_t byteAlignRow ,
colortype color ,
uint8_t bitsPerPixel ,
uint8_t alpha ,
TextRotation rotation
)

Private version of draw-glyph with explicit destination buffer pointer argument.

For all parameters (except the buffer pointer) see the public function drawString().

Parameters:
wbuf16 The destination (frame) buffer to draw to.
widgetArea The canvas to draw the glyph inside.
x Horizontal offset to start drawing the glyph.
y Vertical offset to start drawing the glyph.
offsetX Horizontal offset in the glyph to start drawing from.
offsetY Vertical offset in the glyph to start drawing from.
invalidatedArea The area to draw inside.
glyph Specifications of the glyph to draw.
glyphData Data containing the actual glyph (dense format)
byteAlignRow Each row of glyph data starts in a new byte.
color The color of the glyph.
bitsPerPixel Bit depth of the glyph.
alpha The transparency of the glyph.
rotation Rotation to do before drawing the glyph.

Reimplements: touchgfx::LCD::drawGlyph

getTextureMapperDrawScanLine
virtual DrawTextureMapScanLineBase
* getTextureMapperDrawScanLine (const

TextureSurface & texture ,

RenderingVariant renderVariant
,

uint8_t alpha
)

Gets pointer to object that can draw a scan line which allows for highly specialized and optimized
implementation.

Parameters:
texture The texture Surface.
renderVariant The render variant.
alpha The global alpha.

Returns:

Null if it fails, else the pointer to the texture mapper draw scan line object.

Reimplements: touchgfx::LCD::getTextureMapperDrawScanLine

blitCopyAlphaPerPixel
static void blitCopyAlphaPerPixel (const uint16_t * sourceData16 ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blit a 2D source-array to the framebuffer performing alpha-blending per pixel as specified Performs
always a software blend.

Parameters:
sourceData16 The source-array pointer (points to the beginning of the data). The sourceData

must be stored as 8-bits ABGR2222 values.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

blitCopyARGB8888
static void blitCopyARGB8888 (const uint32_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blit a 2D source-array to the framebuffer performing alpha-blending per pixel as specified if
ARGB8888 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-array pointer (points to the beginning of the data). The sourceData

must be stored as 32- bits ARGB8888 values.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

nextLine
static int nextLine (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next line.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next line.

nextPixel
static int nextPixel (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next pixel.

Parameters:

rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next pixel.

Version: 4.16

LCD8bpp_ARGB2222
This class contains the various low-level drawing routines for drawing bitmaps, texts and rectangles on
16 bits per pixel displays.

See: LCD

Note: All coordinates are expected to be in absolute coordinates!

Inherits from: LCD

Public Functions
virtual uint8_t bitDepth() const

Number of bits per pixel used by the display.

virtual void
blitCopy(const uint16_t * sourceData, const Rect & source,
const Rect & blitRect, uint8_t alpha, bool
hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual void
blitCopy(const uint8_t * sourceData, Bitmap::BitmapFormat
sourceFormat, const Rect & source, const Rect & blitRect,
uint8_t alpha, bool hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual uint16_t * copyFrameBufferRegionToMemory(const Rect & visRegion,
const Rect & absRegion, const BitmapId bitmapId)
Copies part of the framebuffer to the data section of a bitmap.

virtual void
drawPartialBitmap(const Bitmap & bitmap, int16_t x, int16_t
y, const Rect & rect, uint8_t alpha =255, bool useOptimized
=true)
Draws all (or a part) of a bitmap.

void enableTextureMapperA4()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_BilinearInterpolation()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_NearestNeighbor()
Enables the texture mappers for A4 image format.

void enableTextureMapperAll()
Enables the texture mappers for all image formats.

void enableTextureMapperARGB2222()
Enables the texture mappers for ARGB2222 image format.

void enableTextureMapperARGB2222_BilinearInterpolation()
Enables the texture mappers for ARGB2222 image format.

void enableTextureMapperARGB2222_NearestNeighbor()
Enables the texture mappers for ARGB2222 image format.

void enableTextureMapperARGB8888()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_BilinearInterpolation()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_NearestNeighbor()
Enables the texture mappers for ARGB8888 image format.

virtual void fillRect(const Rect & rect, colortype color, uint8_t alpha
=255)
Draws a filled rectangle in the framebuffer in the specified
color and opacity.

virtual Bitmap::BitmapFormat framebufferFormat() const
Framebuffer format used by the display.

virtual uint16_t framebufferStride() const
Framebuffer stride in bytes.

virtual uint8_t getBlueColor(colortype color) const
Gets the blue color part of a color.

virtual colortype getColorFrom24BitRGB(uint8_t red, uint8_t green, uint8_t
blue) const

Generates a color representation to be used on the LCD,
based on 24 bit RGB values.

virtual uint8_t getGreenColor(colortype color) const
Gets the green color part of a color.

virtual uint8_t getRedColor(colortype color) const
Gets the red color part of a color.

LCD8bpp_ARGB2222()

FORCE_INLINE_FUNCTION uint8_t getBlueFromColor(colortype color)
Gets blue from color.

FORCE_INLINE_FUNCTION colortype getColorFromRGB(uint8_t red, uint8_t green, uint8_t blue)
Gets color from RGB.

FORCE_INLINE_FUNCTION uint16_t getFramebufferStride()
Framebuffer stride in bytes.

FORCE_INLINE_FUNCTION uint8_t getGreenFromColor(colortype color)
Gets green from color.

FORCE_INLINE_FUNCTION uint8_t getRedFromColor(colortype color)
Gets red from color.

Protected Functions

virtual void

drawGlyph(uint16_t wbuf16, Rect widgetArea, int16_t x,
int16_t y, uint16_t offsetX, uint16_t offsetY, const Rect &
invalidatedArea, const GlyphNode glyph, const uint8_t *
glyphData, uint8_t byteAlignRow, colortype color, uint8_t
bitsPerPixel, uint8_t alpha, TextRotation rotation)
Private version of draw-glyph with explicit destination
buffer pointer argument.

virtual DrawTextureMapScanLineBase * getTextureMapperDrawScanLine(const TextureSurface
& texture, RenderingVariant renderVariant, uint8_t alpha)
Gets pointer to object that can draw a scan line which
allows for highly specialized and optimized
implementation.

void blitCopyAlphaPerPixel(const uint16_t * sourceData16,
const Rect & source, const Rect & blitRect, uint8_t alpha)
Blit a 2D source-array to the framebuffer performing
alpha-blending per pixel as specified Performs always a
software blend.

void blitCopyARGB8888(const uint32_t * sourceData, const
Rect & source, const Rect & blitRect, uint8_t alpha)
Blit a 2D source-array to the framebuffer performing
alpha-blending per pixel as specified if ARGB8888 is not
supported by the DMA a software blend is performed.

int nextLine(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get
to the next line.

int nextPixel(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get
to the next pixel.

Additional inherited members
Public Classes inherited from LCD

struct StringVisuals
The visual elements when writing a string.

Protected Classes inherited from LCD
class DrawTextureMapScanLineBase

Base class for drawing scanline by the texture mapper.

Public Functions inherited from LCD

void
drawString(Rect widgetArea, const Rect & invalidatedArea,
const StringVisuals & stringVisuals, const
Unicode::UnicodeChar * format, ...)
Draws the specified Unicode string.

virtual void

drawTextureMapTriangle(const DrawingSurface & dest, const
Point3D * vertices, const TextureSurface & texture, const Rect
& absoluteRect, const Rect & dirtyAreaAbsolute,
RenderingVariant renderVariant, uint8_t alpha =255, uint16_t
subDivisionSize =12)
Texture map triangle.

colortype getDefaultColor() const
Gets default color previously set using setDefaultColor.

void setDefaultColor(colortype color)
Sets default color as used by alpha level only bitmap formats,
e.g.

virtual ~LCD()
Finalizes an instance of the LCD class.

FORCE_INLINE_FUNCTION uint8_t div255(uint16_t num)
Approximates an integer division of a 16bit value by 255.

FORCE_INLINE_FUNCTION uint32_t div255g(uint32_t pixelxAlpha)
Divides the green component of pixelxAlpha by 255.

FORCE_INLINE_FUNCTION uint32_t div255rb(uint32_t pixelxAlpha)
Divides the red and blue components of pixelxAlpha by 255.

Protected Functions inherited from LCD

void
drawStringLTR(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

void
drawStringRTL(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

virtual void

drawTextureMapScanLine(const DrawingSurface & dest, const
Gradients & gradients, const Edge leftEdge, const Edge
rightEdge, const TextureSurface & texture, const Rect &
absoluteRect, const Rect & dirtyAreaAbsolute, RenderingVariant
renderVariant, uint8_t alpha, uint16_t subDivisionSize)
Draw scan line.

FORCE_INLINE_FUNCTION uint8_t getAlphaFromA4(const uint16_t * data, uint32_t offset)
Gets alpha from A4 image at given offset.

uint16_t
getNumLines(TextProvider & textProvider, WideTextAction
wideTextAction, TextDirection textDirection, const Font * font,
int16_t width)
Gets number of lines for a given text taking word wrap into
consideration.

int realX(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute x coordinate of a point inside a widget
with regards to rotation.

int realY(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute y coordinate of a point inside a widget
with regards to rotation.

void rotateRect(Rect & rect, const Rect & canvas, const TextRotation
rotation)
Rotate a rectangle inside another rectangle.

uint16_t stringWidth(TextProvider & textProvider, const Font & font,
const int numChars, TextDirection textDirection)
Find string width of the given number of ligatures read from the
given TextProvider.

Protected Attributes inherited from LCD
colortype defaultColor

Default Color to use when displaying transparency-only elements, e.g. A4 bitmaps.

const uint16_t newLine
NewLine value.

Public Functions Documentation
bitDepth

virtual uint8_t bitDepth () const

Number of bits per pixel used by the display.

Returns:

The number of bits per pixel.

Reimplements: touchgfx::LCD::bitDepth

blitCopy
virtual void blitCopy (const uint16_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha != 255
(solid).

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

blitCopy
virtual void blitCopy (const uint8_t * sourceData ,

Bitmap::BitmapFormat sourceFormat ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,

bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha < 255
(solid).

If the display does not support the specified sourceFormat, an assert will be raised.

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
sourceFormat The bitmap format used in the source data.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

copyFrameBufferRegionToMemory
virtual uint16_t * copyFrameBufferRegionToMemory (const Rect & visRegion ,

const Rect & absRegion ,
const BitmapId bitmapId
)

Copies part of the framebuffer to the data section of a bitmap.

The bitmap must be a dynamic bitmap or animation storage (BITMAP_ANIMATION_STORAGE). The
two regions given are the visible region and the absolute region on screen. This is used to copy
only a part of the framebuffer. This might be the case if a SnapshotWidget is placed inside a
Container where parts of the SnapshowWidget is outside the area defined by the Container. The
visible region must be completely inside the absolute region.

Parameters:
visRegion The visible region.
absRegion The absolute region.
bitmapId Identifier for the bitmap.

Returns:

Null if it fails, else a pointer to the data in the given bitmap.

NOTE

There is only one instance of animation storage. The content of the bitmap data /animation storage
outside the given region is left untouched.

See also:

blitCopy

Reimplements: touchgfx::LCD::copyFrameBufferRegionToMemory

drawPartialBitmap
virtual void drawPartialBitmap (const Bitmap & bitmap ,

int16_t x ,
int16_t y ,
const Rect & rect ,
uint8_t alpha =255,
bool useOptimized =true
)

Draws all (or a part) of a bitmap.

The coordinates of the corner of the bitmap is given in (x, y) and rect describes which part of the
bitmap should be drawn. The bitmap can be drawn as it is or more or less transparent depending
on the value of alpha. The value of alpha is independent of the transparency of the individual pixels
of the given bitmap.

Parameters:
bitmap The bitmap to draw.
x The absolute x coordinate to place (0, 0) of the bitmap on the screen.
y The absolute y coordinate to place (0, 0) of the bitmap on the screen.
rect A rectangle describing what region of the bitmap is to be drawn.
alpha (Optional) Optional alpha value ranging from 0=invisible to 255=solid. Default is

255 (solid).
useOptimized (Optional) if false, do not attempt to substitute (parts of) this bitmap with faster

fillrects.

Reimplements: touchgfx::LCD::drawPartialBitmap

enableTextureMapperA4
void enableTextureMapperA4 ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperA4_BilinearInterpolation, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_BilinearInterpolation
void enableTextureMapperA4_BilinearInterpolation ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_NearestNeighbor
void enableTextureMapperA4_NearestNeighbor ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_BilinearInterpolation

enableTextureMapperAll
void enableTextureMapperAll ()

Enables the texture mappers for all image formats.

This allows drawing any image using Bilinear Interpolation and Nearest Neighbor algorithms, but
might use a lot of memory for the drawing algorithms.

enableTextureMapperARGB2222
void enableTextureMapperARGB2222 ()

Enables the texture mappers for ARGB2222 image format.

This allows drawing ARGB2222 images using Bilinear Interpolation and Nearest Neighbor
algorithms.

See also:

enableTextureMapperARGB2222_BilinearInterpolation,
enableTextureMapperARGB2222_NearestNeighbor

enableTextureMapperARGB2222_BilinearInterpolation
void enableTextureMapperARGB2222_BilinearInterpolation ()

Enables the texture mappers for ARGB2222 image format.

This allows drawing ARGB2222 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperARGB2222, enableTextureMapperARGB2222_NearestNeighbor

enableTextureMapperARGB2222_NearestNeighbor
void enableTextureMapperARGB2222_NearestNeighbor ()

Enables the texture mappers for ARGB2222 image format.

This allows drawing ARGB2222 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperARGB2222, enableTextureMapperARGB2222_BilinearInterpolation

enableTextureMapperARGB8888
void enableTextureMapperARGB8888 ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation and Nearest Neighbor
algorithms.

See also:

enableTextureMapperARGB8888_BilinearInterpolation,
enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_BilinearInterpolation
void enableTextureMapperARGB8888_BilinearInterpolation ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_NearestNeighbor
void enableTextureMapperARGB8888_NearestNeighbor ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_BilinearInterpolation

fillRect
virtual void fillRect (const Rect & rect ,

colortype color ,
uint8_t alpha =255
)

Draws a filled rectangle in the framebuffer in the specified color and opacity.

By default the rectangle will be drawn as a solid box. The rectangle can be drawn with transparency
by specifying alpha from 0=invisible to 255=solid.

Parameters:
rect The rectangle to draw in absolute display coordinates.
color The rectangle color.
alpha (Optional) The rectangle opacity, from 0=invisible to 255=solid.

Reimplements: touchgfx::LCD::fillRect

framebufferFormat
virtual Bitmap::BitmapFormat framebufferFormat () const

Framebuffer format used by the display.

Returns:

A Bitmap::BitmapFormat.

Reimplements: touchgfx::LCD::framebufferFormat

framebufferStride
virtual uint16_t framebufferStride () const

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

Reimplements: touchgfx::LCD::framebufferStride

getBlueColor
virtual uint8_t getBlueColor (colortype color)

Gets the blue color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The blue part of the color.

Reimplements: touchgfx::LCD::getBlueColor

getColorFrom24BitRGB
virtual colortype getColorFrom24BitRGB (uint8_t red , const

uint8_t green , const
uint8_t blue const
) const

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Depending on your chosen color bit depth, the color will be interpreted internally as either a 16 bit
or 24 bit color value. This function can be safely used regardless of whether your application is
configured for 16 or 24 bit colors.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

Reimplements: touchgfx::LCD::getColorFrom24BitRGB

getGreenColor
virtual uint8_t getGreenColor (colortype color)

Gets the green color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The green part of the color.

Reimplements: touchgfx::LCD::getGreenColor

getRedColor
virtual uint8_t getRedColor (colortype color)

Gets the red color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The color value.

Returns:

The red part of the color.

Reimplements: touchgfx::LCD::getRedColor

LCD8bpp_ARGB2222
LCD8bpp_ARGB2222 ()

getBlueFromColor
static FORCE_INLINE_FUNCTION uint8_t getBlueFromColor (colortype color)

Gets blue from color.

Parameters:
color The color.

Returns:

The blue from color.

getColorFromRGB
static FORCE_INLINE_FUNCTION colortype getColorFromRGB (uint8_t red ,

uint8_t green ,
uint8_t blue
)

Gets color from RGB.

Parameters:
red The red.
green The green.
blue The blue.

Returns:

The color from RGB.

getFramebufferStride
static FORCE_INLINE_FUNCTION uint16_t getFramebufferStride ()

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

getGreenFromColor
static FORCE_INLINE_FUNCTION uint8_t getGreenFromColor (colortype color)

Gets green from color.

Parameters:
color The color.

Returns:

The green from color.

getRedFromColor
static FORCE_INLINE_FUNCTION uint8_t getRedFromColor (colortype color)

Gets red from color.

Parameters:
color The color.

Returns:

The red from color.

Protected Functions Documentation

drawGlyph
virtual void drawGlyph (uint16_t * wbuf16 ,

Rect widgetArea ,
int16_t x ,
int16_t y ,
uint16_t offsetX ,
uint16_t offsetY ,
const Rect & invalidatedArea ,
const GlyphNode * glyph ,
const uint8_t * glyphData ,
uint8_t byteAlignRow ,
colortype color ,
uint8_t bitsPerPixel ,
uint8_t alpha ,
TextRotation rotation
)

Private version of draw-glyph with explicit destination buffer pointer argument.

For all parameters (except the buffer pointer) see the public function drawString().

Parameters:
wbuf16 The destination (frame) buffer to draw to.
widgetArea The canvas to draw the glyph inside.
x Horizontal offset to start drawing the glyph.
y Vertical offset to start drawing the glyph.
offsetX Horizontal offset in the glyph to start drawing from.
offsetY Vertical offset in the glyph to start drawing from.
invalidatedArea The area to draw inside.
glyph Specifications of the glyph to draw.
glyphData Data containing the actual glyph (dense format)
byteAlignRow Each row of glyph data starts in a new byte.
color The color of the glyph.
bitsPerPixel Bit depth of the glyph.
alpha The transparency of the glyph.
rotation Rotation to do before drawing the glyph.

Reimplements: touchgfx::LCD::drawGlyph

getTextureMapperDrawScanLine
virtual DrawTextureMapScanLineBase
* getTextureMapperDrawScanLine (const

TextureSurface & texture ,

RenderingVariant renderVariant
,

uint8_t alpha
)

Gets pointer to object that can draw a scan line which allows for highly specialized and optimized
implementation.

Parameters:
texture The texture Surface.
renderVariant The render variant.
alpha The global alpha.

Returns:

Null if it fails, else the pointer to the texture mapper draw scan line object.

Reimplements: touchgfx::LCD::getTextureMapperDrawScanLine

blitCopyAlphaPerPixel
static void blitCopyAlphaPerPixel (const uint16_t * sourceData16 ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blit a 2D source-array to the framebuffer performing alpha-blending per pixel as specified Performs
always a software blend.

Parameters:
sourceData16 The source-array pointer (points to the beginning of the data). The sourceData

must be stored as 8-bits ARGB2222 values.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

blitCopyARGB8888
static void blitCopyARGB8888 (const uint32_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha

)

Blit a 2D source-array to the framebuffer performing alpha-blending per pixel as specified if
ARGB8888 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-array pointer (points to the beginning of the data). The sourceData

must be stored as 32- bits ARGB8888 values.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

nextLine
static int nextLine (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next line.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next line.

nextPixel
static int nextPixel (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next pixel.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next pixel.

Version: 4.16

LCD8bpp_BGRA2222
This class contains the various low-level drawing routines for drawing bitmaps, texts and rectangles on
16 bits per pixel displays.

See: LCD

Note: All coordinates are expected to be in absolute coordinates!

Inherits from: LCD

Public Functions
virtual uint8_t bitDepth() const

Number of bits per pixel used by the display.

virtual void
blitCopy(const uint16_t * sourceData, const Rect & source,
const Rect & blitRect, uint8_t alpha, bool
hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual void
blitCopy(const uint8_t * sourceData, Bitmap::BitmapFormat
sourceFormat, const Rect & source, const Rect & blitRect,
uint8_t alpha, bool hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual uint16_t * copyFrameBufferRegionToMemory(const Rect & visRegion,
const Rect & absRegion, const BitmapId bitmapId)
Copies part of the framebuffer to the data section of a bitmap.

virtual void
drawPartialBitmap(const Bitmap & bitmap, int16_t x, int16_t
y, const Rect & rect, uint8_t alpha =255, bool useOptimized
=true)
Draws all (or a part) of a bitmap.

void enableTextureMapperA4()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_BilinearInterpolation()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_NearestNeighbor()
Enables the texture mappers for A4 image format.

void enableTextureMapperAll()
Enables the texture mappers for all image formats.

void enableTextureMapperARGB8888()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_BilinearInterpolation()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_NearestNeighbor()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperBGRA2222()
Enables the texture mappers for BGRA2222 image format.

void enableTextureMapperBGRA2222_BilinearInterpolation()
Enables the texture mappers for BGRA2222 image format.

void enableTextureMapperBGRA2222_NearestNeighbor()
Enables the texture mappers for BGRA2222 image format.

virtual void fillRect(const Rect & rect, colortype color, uint8_t alpha
=255)
Draws a filled rectangle in the framebuffer in the specified
color and opacity.

virtual Bitmap::BitmapFormat framebufferFormat() const
Framebuffer format used by the display.

virtual uint16_t framebufferStride() const
Framebuffer stride in bytes.

virtual uint8_t getBlueColor(colortype color) const
Gets the blue color part of a color.

virtual colortype getColorFrom24BitRGB(uint8_t red, uint8_t green, uint8_t
blue) const

Generates a color representation to be used on the LCD,
based on 24 bit RGB values.

virtual uint8_t getGreenColor(colortype color) const
Gets the green color part of a color.

virtual uint8_t getRedColor(colortype color) const
Gets the red color part of a color.

LCD8bpp_BGRA2222()

FORCE_INLINE_FUNCTION uint8_t getBlueFromColor(colortype color)
Gets blue from color.

FORCE_INLINE_FUNCTION colortype getColorFromRGB(uint8_t red, uint8_t green, uint8_t blue)
Gets color from RGB.

FORCE_INLINE_FUNCTION uint16_t getFramebufferStride()
Framebuffer stride in bytes.

FORCE_INLINE_FUNCTION uint8_t getGreenFromColor(colortype color)
Gets green from color.

FORCE_INLINE_FUNCTION uint8_t getRedFromColor(colortype color)
Gets red from color.

Protected Functions

virtual void

drawGlyph(uint16_t wbuf16, Rect widgetArea, int16_t x,
int16_t y, uint16_t offsetX, uint16_t offsetY, const Rect &
invalidatedArea, const GlyphNode glyph, const uint8_t *
glyphData, uint8_t byteAlignRow, colortype color, uint8_t
bitsPerPixel, uint8_t alpha, TextRotation rotation)
Private version of draw-glyph with explicit destination buffer
pointer argument.

virtual DrawTextureMapScanLineBase * getTextureMapperDrawScanLine(const TextureSurface &
texture, RenderingVariant renderVariant, uint8_t alpha)
Gets pointer to object that can draw a scan line which allows
for highly specialized and optimized implementation.

void blitCopyAlphaPerPixel(const uint16_t * sourceData16, const
Rect & source, const Rect & blitRect, uint8_t alpha)

Blit a 2D source-array to the framebuffer performing alpha-
blending per pixel as specified Performs always a software
blend.

void blitCopyARGB8888(const uint32_t * sourceData, const Rect
& source, const Rect & blitRect, uint8_t alpha)
Blit a 2D source-array to the framebuffer performing alpha-
blending per pixel as specified if ARGB8888 is not supported
by the DMA a software blend is performed.

int nextLine(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to
the next line.

int nextPixel(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to
the next pixel.

Additional inherited members
Public Classes inherited from LCD

struct StringVisuals
The visual elements when writing a string.

Protected Classes inherited from LCD
class DrawTextureMapScanLineBase

Base class for drawing scanline by the texture mapper.

Public Functions inherited from LCD

void
drawString(Rect widgetArea, const Rect & invalidatedArea,
const StringVisuals & stringVisuals, const
Unicode::UnicodeChar * format, ...)
Draws the specified Unicode string.

virtual void

drawTextureMapTriangle(const DrawingSurface & dest, const
Point3D * vertices, const TextureSurface & texture, const Rect
& absoluteRect, const Rect & dirtyAreaAbsolute,
RenderingVariant renderVariant, uint8_t alpha =255, uint16_t
subDivisionSize =12)
Texture map triangle.

colortype getDefaultColor() const
Gets default color previously set using setDefaultColor.

void setDefaultColor(colortype color)
Sets default color as used by alpha level only bitmap formats,
e.g.

virtual ~LCD()
Finalizes an instance of the LCD class.

FORCE_INLINE_FUNCTION uint8_t div255(uint16_t num)
Approximates an integer division of a 16bit value by 255.

FORCE_INLINE_FUNCTION uint32_t div255g(uint32_t pixelxAlpha)
Divides the green component of pixelxAlpha by 255.

FORCE_INLINE_FUNCTION uint32_t div255rb(uint32_t pixelxAlpha)
Divides the red and blue components of pixelxAlpha by 255.

Protected Functions inherited from LCD

void
drawStringLTR(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

void
drawStringRTL(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

virtual void

drawTextureMapScanLine(const DrawingSurface & dest, const
Gradients & gradients, const Edge leftEdge, const Edge
rightEdge, const TextureSurface & texture, const Rect &
absoluteRect, const Rect & dirtyAreaAbsolute, RenderingVariant
renderVariant, uint8_t alpha, uint16_t subDivisionSize)
Draw scan line.

FORCE_INLINE_FUNCTION uint8_t getAlphaFromA4(const uint16_t * data, uint32_t offset)
Gets alpha from A4 image at given offset.

uint16_t
getNumLines(TextProvider & textProvider, WideTextAction
wideTextAction, TextDirection textDirection, const Font * font,
int16_t width)
Gets number of lines for a given text taking word wrap into
consideration.

int realX(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute x coordinate of a point inside a widget
with regards to rotation.

int realY(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute y coordinate of a point inside a widget
with regards to rotation.

void rotateRect(Rect & rect, const Rect & canvas, const TextRotation
rotation)
Rotate a rectangle inside another rectangle.

uint16_t stringWidth(TextProvider & textProvider, const Font & font,
const int numChars, TextDirection textDirection)
Find string width of the given number of ligatures read from the
given TextProvider.

Protected Attributes inherited from LCD
colortype defaultColor

Default Color to use when displaying transparency-only elements, e.g. A4 bitmaps.

const uint16_t newLine
NewLine value.

Public Functions Documentation
bitDepth

virtual uint8_t bitDepth () const

Number of bits per pixel used by the display.

Returns:

The number of bits per pixel.

Reimplements: touchgfx::LCD::bitDepth

blitCopy
virtual void blitCopy (const uint16_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha != 255
(solid).

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

blitCopy
virtual void blitCopy (const uint8_t * sourceData ,

Bitmap::BitmapFormat sourceFormat ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,

bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha < 255
(solid).

If the display does not support the specified sourceFormat, an assert will be raised.

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
sourceFormat The bitmap format used in the source data.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

copyFrameBufferRegionToMemory
virtual uint16_t * copyFrameBufferRegionToMemory (const Rect & visRegion ,

const Rect & absRegion ,
const BitmapId bitmapId
)

Copies part of the framebuffer to the data section of a bitmap.

The bitmap must be a dynamic bitmap or animation storage (BITMAP_ANIMATION_STORAGE). The
two regions given are the visible region and the absolute region on screen. This is used to copy
only a part of the framebuffer. This might be the case if a SnapshotWidget is placed inside a
Container where parts of the SnapshowWidget is outside the area defined by the Container. The
visible region must be completely inside the absolute region.

Parameters:
visRegion The visible region.
absRegion The absolute region.
bitmapId Identifier for the bitmap.

Returns:

Null if it fails, else a pointer to the data in the given bitmap.

NOTE

There is only one instance of animation storage. The content of the bitmap data /animation storage
outside the given region is left untouched.

See also:

blitCopy

Reimplements: touchgfx::LCD::copyFrameBufferRegionToMemory

drawPartialBitmap
virtual void drawPartialBitmap (const Bitmap & bitmap ,

int16_t x ,
int16_t y ,
const Rect & rect ,
uint8_t alpha =255,
bool useOptimized =true
)

Draws all (or a part) of a bitmap.

The coordinates of the corner of the bitmap is given in (x, y) and rect describes which part of the
bitmap should be drawn. The bitmap can be drawn as it is or more or less transparent depending
on the value of alpha. The value of alpha is independent of the transparency of the individual pixels
of the given bitmap.

Parameters:
bitmap The bitmap to draw.
x The absolute x coordinate to place (0, 0) of the bitmap on the screen.
y The absolute y coordinate to place (0, 0) of the bitmap on the screen.
rect A rectangle describing what region of the bitmap is to be drawn.
alpha (Optional) Optional alpha value ranging from 0=invisible to 255=solid. Default is

255 (solid).
useOptimized (Optional) if false, do not attempt to substitute (parts of) this bitmap with faster

fillrects.

Reimplements: touchgfx::LCD::drawPartialBitmap

enableTextureMapperA4
void enableTextureMapperA4 ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperA4_BilinearInterpolation, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_BilinearInterpolation
void enableTextureMapperA4_BilinearInterpolation ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_NearestNeighbor
void enableTextureMapperA4_NearestNeighbor ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_BilinearInterpolation

enableTextureMapperAll
void enableTextureMapperAll ()

Enables the texture mappers for all image formats.

This allows drawing any image using Bilinear Interpolation and Nearest Neighbor algorithms, but
might use a lot of memory for the drawing algorithms.

enableTextureMapperARGB8888
void enableTextureMapperARGB8888 ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation and Nearest Neighbor
algorithms.

See also:

enableTextureMapperARGB8888_BilinearInterpolation,
enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_BilinearInterpolation
void enableTextureMapperARGB8888_BilinearInterpolation ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_NearestNeighbor
void enableTextureMapperARGB8888_NearestNeighbor ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_BilinearInterpolation

enableTextureMapperBGRA2222
void enableTextureMapperBGRA2222 ()

Enables the texture mappers for BGRA2222 image format.

This allows drawing BGRA2222 images using Bilinear Interpolation and Nearest Neighbor
algorithms.

See also:

enableTextureMapperBGRA2222_BilinearInterpolation,
enableTextureMapperBGRA2222_NearestNeighbor

enableTextureMapperBGRA2222_BilinearInterpolation
void enableTextureMapperBGRA2222_BilinearInterpolation ()

Enables the texture mappers for BGRA2222 image format.

This allows drawing BGRA2222 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperBGRA2222, enableTextureMapperBGRA2222_NearestNeighbor

enableTextureMapperBGRA2222_NearestNeighbor
void enableTextureMapperBGRA2222_NearestNeighbor ()

Enables the texture mappers for BGRA2222 image format.

This allows drawing BGRA2222 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperBGRA2222, enableTextureMapperBGRA2222_BilinearInterpolation

fillRect
virtual void fillRect (const Rect & rect ,

colortype color ,
uint8_t alpha =255
)

Draws a filled rectangle in the framebuffer in the specified color and opacity.

By default the rectangle will be drawn as a solid box. The rectangle can be drawn with transparency
by specifying alpha from 0=invisible to 255=solid.

Parameters:
rect The rectangle to draw in absolute display coordinates.
color The rectangle color.
alpha (Optional) The rectangle opacity, from 0=invisible to 255=solid.

Reimplements: touchgfx::LCD::fillRect

framebufferFormat
virtual Bitmap::BitmapFormat framebufferFormat () const

Framebuffer format used by the display.

Returns:

A Bitmap::BitmapFormat.

Reimplements: touchgfx::LCD::framebufferFormat

framebufferStride
virtual uint16_t framebufferStride () const

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

Reimplements: touchgfx::LCD::framebufferStride

getBlueColor
virtual uint8_t getBlueColor (colortype color)

Gets the blue color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The blue part of the color.

Reimplements: touchgfx::LCD::getBlueColor

getColorFrom24BitRGB
virtual colortype getColorFrom24BitRGB (uint8_t red , const

uint8_t green , const
uint8_t blue const
) const

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Depending on your chosen color bit depth, the color will be interpreted internally as either a 16 bit
or 24 bit color value. This function can be safely used regardless of whether your application is
configured for 16 or 24 bit colors.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

Reimplements: touchgfx::LCD::getColorFrom24BitRGB

getGreenColor
virtual uint8_t getGreenColor (colortype color)

Gets the green color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The green part of the color.

Reimplements: touchgfx::LCD::getGreenColor

getRedColor
virtual uint8_t getRedColor (colortype color)

Gets the red color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The color value.

Returns:

The red part of the color.

Reimplements: touchgfx::LCD::getRedColor

LCD8bpp_BGRA2222
LCD8bpp_BGRA2222 ()

getBlueFromColor
static FORCE_INLINE_FUNCTION uint8_t getBlueFromColor (colortype color)

Gets blue from color.

Parameters:
color The color.

Returns:

The blue from color.

getColorFromRGB
static FORCE_INLINE_FUNCTION colortype getColorFromRGB (uint8_t red ,

uint8_t green ,
uint8_t blue
)

Gets color from RGB.

Parameters:
red The red.
green The green.
blue The blue.

Returns:

The color from RGB.

getFramebufferStride
static FORCE_INLINE_FUNCTION uint16_t getFramebufferStride ()

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

getGreenFromColor
static FORCE_INLINE_FUNCTION uint8_t getGreenFromColor (colortype color)

Gets green from color.

Parameters:
color The color.

Returns:

The green from color.

getRedFromColor
static FORCE_INLINE_FUNCTION uint8_t getRedFromColor (colortype color)

Gets red from color.

Parameters:
color The color.

Returns:

The red from color.

Protected Functions Documentation

drawGlyph
virtual void drawGlyph (uint16_t * wbuf16 ,

Rect widgetArea ,
int16_t x ,
int16_t y ,
uint16_t offsetX ,
uint16_t offsetY ,
const Rect & invalidatedArea ,
const GlyphNode * glyph ,
const uint8_t * glyphData ,
uint8_t byteAlignRow ,
colortype color ,
uint8_t bitsPerPixel ,
uint8_t alpha ,
TextRotation rotation
)

Private version of draw-glyph with explicit destination buffer pointer argument.

For all parameters (except the buffer pointer) see the public function drawString().

Parameters:
wbuf16 The destination (frame) buffer to draw to.
widgetArea The canvas to draw the glyph inside.
x Horizontal offset to start drawing the glyph.
y Vertical offset to start drawing the glyph.
offsetX Horizontal offset in the glyph to start drawing from.
offsetY Vertical offset in the glyph to start drawing from.
invalidatedArea The area to draw inside.
glyph Specifications of the glyph to draw.
glyphData Data containing the actual glyph (dense format)
byteAlignRow Each row of glyph data starts in a new byte.
color The color of the glyph.
bitsPerPixel Bit depth of the glyph.
alpha The transparency of the glyph.
rotation Rotation to do before drawing the glyph.

Reimplements: touchgfx::LCD::drawGlyph

getTextureMapperDrawScanLine
virtual DrawTextureMapScanLineBase
* getTextureMapperDrawScanLine (const

TextureSurface & texture ,

RenderingVariant renderVariant
,

uint8_t alpha
)

Gets pointer to object that can draw a scan line which allows for highly specialized and optimized
implementation.

Parameters:
texture The texture Surface.
renderVariant The render variant.
alpha The global alpha.

Returns:

Null if it fails, else the pointer to the texture mapper draw scan line object.

Reimplements: touchgfx::LCD::getTextureMapperDrawScanLine

blitCopyAlphaPerPixel
static void blitCopyAlphaPerPixel (const uint16_t * sourceData16 ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blit a 2D source-array to the framebuffer performing alpha-blending per pixel as specified Performs
always a software blend.

Parameters:
sourceData16 The source-array pointer (points to the beginning of the data). The sourceData

must be stored as 8-bits BGRA2222 values.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

blitCopyARGB8888
static void blitCopyARGB8888 (const uint32_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha

)

Blit a 2D source-array to the framebuffer performing alpha-blending per pixel as specified if
ARGB8888 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-array pointer (points to the beginning of the data). The sourceData

must be stored as 32- bits ARGB8888 values.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

nextLine
static int nextLine (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next line.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next line.

nextPixel
static int nextPixel (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next pixel.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next pixel.

Version: 4.16

LCD8bpp_RGBA2222
This class contains the various low-level drawing routines for drawing bitmaps, texts and rectangles on
16 bits per pixel displays.

See: LCD

Note: All coordinates are expected to be in absolute coordinates!

Inherits from: LCD

Public Functions
virtual uint8_t bitDepth() const

Number of bits per pixel used by the display.

virtual void
blitCopy(const uint16_t * sourceData, const Rect & source,
const Rect & blitRect, uint8_t alpha, bool
hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual void
blitCopy(const uint8_t * sourceData, Bitmap::BitmapFormat
sourceFormat, const Rect & source, const Rect & blitRect,
uint8_t alpha, bool hasTransparentPixels)
Blits (directly copies) a block of data to the framebuffer,
performing alpha blending (and tranparency keying) as
specified.

virtual uint16_t * copyFrameBufferRegionToMemory(const Rect & visRegion,
const Rect & absRegion, const BitmapId bitmapId)
Copies part of the framebuffer to the data section of a bitmap.

virtual void
drawPartialBitmap(const Bitmap & bitmap, int16_t x, int16_t
y, const Rect & rect, uint8_t alpha =255, bool useOptimized
=true)
Draws all (or a part) of a bitmap.

void enableTextureMapperA4()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_BilinearInterpolation()
Enables the texture mappers for A4 image format.

void enableTextureMapperA4_NearestNeighbor()
Enables the texture mappers for A4 image format.

void enableTextureMapperAll()
Enables the texture mappers for all image formats.

void enableTextureMapperARGB8888()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_BilinearInterpolation()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperARGB8888_NearestNeighbor()
Enables the texture mappers for ARGB8888 image format.

void enableTextureMapperRGBA2222()
Enables the texture mappers for RGBA2222 image format.

void enableTextureMapperRGBA2222_BilinearInterpolation()
Enables the texture mappers for RGBA2222 image format.

void enableTextureMapperRGBA2222_NearestNeighbor()
Enables the texture mappers for RGBA2222 image format.

virtual void fillRect(const Rect & rect, colortype color, uint8_t alpha
=255)
Draws a filled rectangle in the framebuffer in the specified
color and opacity.

virtual Bitmap::BitmapFormat framebufferFormat() const
Framebuffer format used by the display.

virtual uint16_t framebufferStride() const
Framebuffer stride in bytes.

virtual uint8_t getBlueColor(colortype color) const
Gets the blue color part of a color.

virtual colortype getColorFrom24BitRGB(uint8_t red, uint8_t green, uint8_t
blue) const

Generates a color representation to be used on the LCD,
based on 24 bit RGB values.

virtual uint8_t getGreenColor(colortype color) const
Gets the green color part of a color.

virtual uint8_t getRedColor(colortype color) const
Gets the red color part of a color.

LCD8bpp_RGBA2222()

FORCE_INLINE_FUNCTION uint8_t getBlueFromColor(colortype color)
Gets blue from color.

FORCE_INLINE_FUNCTION colortype getColorFromRGB(uint8_t red, uint8_t green, uint8_t blue)
Gets color from RGB.

FORCE_INLINE_FUNCTION uint16_t getFramebufferStride()
Framebuffer stride in bytes.

FORCE_INLINE_FUNCTION uint8_t getGreenFromColor(colortype color)
Gets green from color.

FORCE_INLINE_FUNCTION uint8_t getRedFromColor(colortype color)
Gets red from color.

Protected Functions

virtual void

drawGlyph(uint16_t wbuf16, Rect widgetArea, int16_t x,
int16_t y, uint16_t offsetX, uint16_t offsetY, const Rect &
invalidatedArea, const GlyphNode glyph, const uint8_t *
glyphData, uint8_t byteAlignRow, colortype color, uint8_t
bitsPerPixel, uint8_t alpha, TextRotation rotation)
Private version of draw-glyph with explicit destination buffer
pointer argument.

virtual DrawTextureMapScanLineBase * getTextureMapperDrawScanLine(const TextureSurface &
texture, RenderingVariant renderVariant, uint8_t alpha)
Gets pointer to object that can draw a scan line which allows
for highly specialized and optimized implementation.

void blitCopyAlphaPerPixel(const uint16_t * sourceData16, const
Rect & source, const Rect & blitRect, uint8_t alpha)

Blit a 2D source-array to the framebuffer performing alpha-
blending per pixel as specified Performs always a software
blend.

void blitCopyARGB8888(const uint32_t * sourceData, const Rect
& source, const Rect & blitRect, uint8_t alpha)
Blit a 2D source-array to the framebuffer performing alpha-
blending per pixel as specified if ARGB8888 is not supported
by the DMA a software blend is performed.

int nextLine(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to
the next line.

int nextPixel(bool rotatedDisplay, TextRotation textRotation)
Find out how much to advance in the display buffer to get to
the next pixel.

Additional inherited members
Public Classes inherited from LCD

struct StringVisuals
The visual elements when writing a string.

Protected Classes inherited from LCD
class DrawTextureMapScanLineBase

Base class for drawing scanline by the texture mapper.

Public Functions inherited from LCD

void
drawString(Rect widgetArea, const Rect & invalidatedArea,
const StringVisuals & stringVisuals, const
Unicode::UnicodeChar * format, ...)
Draws the specified Unicode string.

virtual void

drawTextureMapTriangle(const DrawingSurface & dest, const
Point3D * vertices, const TextureSurface & texture, const Rect
& absoluteRect, const Rect & dirtyAreaAbsolute,
RenderingVariant renderVariant, uint8_t alpha =255, uint16_t
subDivisionSize =12)
Texture map triangle.

colortype getDefaultColor() const
Gets default color previously set using setDefaultColor.

void setDefaultColor(colortype color)
Sets default color as used by alpha level only bitmap formats,
e.g.

virtual ~LCD()
Finalizes an instance of the LCD class.

FORCE_INLINE_FUNCTION uint8_t div255(uint16_t num)
Approximates an integer division of a 16bit value by 255.

FORCE_INLINE_FUNCTION uint32_t div255g(uint32_t pixelxAlpha)
Divides the green component of pixelxAlpha by 255.

FORCE_INLINE_FUNCTION uint32_t div255rb(uint32_t pixelxAlpha)
Divides the red and blue components of pixelxAlpha by 255.

Protected Functions inherited from LCD

void
drawStringLTR(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

void
drawStringRTL(const Rect & widgetArea, const Rect &
invalidatedArea, const StringVisuals & visuals, const
Unicode::UnicodeChar * format, va_list pArg)
Draws the specified Unicode string.

virtual void

drawTextureMapScanLine(const DrawingSurface & dest, const
Gradients & gradients, const Edge leftEdge, const Edge
rightEdge, const TextureSurface & texture, const Rect &
absoluteRect, const Rect & dirtyAreaAbsolute, RenderingVariant
renderVariant, uint8_t alpha, uint16_t subDivisionSize)
Draw scan line.

FORCE_INLINE_FUNCTION uint8_t getAlphaFromA4(const uint16_t * data, uint32_t offset)
Gets alpha from A4 image at given offset.

uint16_t
getNumLines(TextProvider & textProvider, WideTextAction
wideTextAction, TextDirection textDirection, const Font * font,
int16_t width)
Gets number of lines for a given text taking word wrap into
consideration.

int realX(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute x coordinate of a point inside a widget
with regards to rotation.

int realY(const Rect & widgetArea, int16_t x, int16_t y, TextRotation
rotation)
Find the real, absolute y coordinate of a point inside a widget
with regards to rotation.

void rotateRect(Rect & rect, const Rect & canvas, const TextRotation
rotation)
Rotate a rectangle inside another rectangle.

uint16_t stringWidth(TextProvider & textProvider, const Font & font,
const int numChars, TextDirection textDirection)
Find string width of the given number of ligatures read from the
given TextProvider.

Protected Attributes inherited from LCD
colortype defaultColor

Default Color to use when displaying transparency-only elements, e.g. A4 bitmaps.

const uint16_t newLine
NewLine value.

Public Functions Documentation
bitDepth

virtual uint8_t bitDepth () const

Number of bits per pixel used by the display.

Returns:

The number of bits per pixel.

Reimplements: touchgfx::LCD::bitDepth

blitCopy
virtual void blitCopy (const uint16_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,
bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha != 255
(solid).

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

blitCopy
virtual void blitCopy (const uint8_t * sourceData ,

Bitmap::BitmapFormat sourceFormat ,
const Rect & source ,
const Rect & blitRect ,
uint8_t alpha ,

bool hasTransparentPixels
)

Blits (directly copies) a block of data to the framebuffer, performing alpha blending (and
tranparency keying) as specified.

Performs a software blend if HAL does not support BLIT_COPY_WITH_ALPHA and alpha < 255
(solid).

If the display does not support the specified sourceFormat, an assert will be raised.

Parameters:
sourceData The source array pointer (points to the beginning of the data). The

sourceData must be stored in a format suitable for the selected display.
sourceFormat The bitmap format used in the source data.
source The position and dimensions of the source. The x and y of this rect

should both be 0.
blitRect A rectangle describing what region of the sourceData is to be copied to

the framebuffer.
alpha The alpha value to use for blending ranging from 0=invisible to

255=solid=no blending.
hasTransparentPixels If true, this data copy contains transparent pixels and require hardware

support for that to be enabled.

Reimplements: touchgfx::LCD::blitCopy

copyFrameBufferRegionToMemory
virtual uint16_t * copyFrameBufferRegionToMemory (const Rect & visRegion ,

const Rect & absRegion ,
const BitmapId bitmapId
)

Copies part of the framebuffer to the data section of a bitmap.

The bitmap must be a dynamic bitmap or animation storage (BITMAP_ANIMATION_STORAGE). The
two regions given are the visible region and the absolute region on screen. This is used to copy
only a part of the framebuffer. This might be the case if a SnapshotWidget is placed inside a
Container where parts of the SnapshowWidget is outside the area defined by the Container. The
visible region must be completely inside the absolute region.

Parameters:
visRegion The visible region.
absRegion The absolute region.
bitmapId Identifier for the bitmap.

Returns:

Null if it fails, else a pointer to the data in the given bitmap.

NOTE

There is only one instance of animation storage. The content of the bitmap data /animation storage
outside the given region is left untouched.

See also:

blitCopy

Reimplements: touchgfx::LCD::copyFrameBufferRegionToMemory

drawPartialBitmap
virtual void drawPartialBitmap (const Bitmap & bitmap ,

int16_t x ,
int16_t y ,
const Rect & rect ,
uint8_t alpha =255,
bool useOptimized =true
)

Draws all (or a part) of a bitmap.

The coordinates of the corner of the bitmap is given in (x, y) and rect describes which part of the
bitmap should be drawn. The bitmap can be drawn as it is or more or less transparent depending
on the value of alpha. The value of alpha is independent of the transparency of the individual pixels
of the given bitmap.

Parameters:
bitmap The bitmap to draw.
x The absolute x coordinate to place (0, 0) of the bitmap on the screen.
y The absolute y coordinate to place (0, 0) of the bitmap on the screen.
rect A rectangle describing what region of the bitmap is to be drawn.
alpha (Optional) Optional alpha value ranging from 0=invisible to 255=solid. Default is

255 (solid).
useOptimized (Optional) if false, do not attempt to substitute (parts of) this bitmap with faster

fillrects.

Reimplements: touchgfx::LCD::drawPartialBitmap

enableTextureMapperA4
void enableTextureMapperA4 ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation and Nearest Neighbor algorithms.

See also:

enableTextureMapperA4_BilinearInterpolation, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_BilinearInterpolation
void enableTextureMapperA4_BilinearInterpolation ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_NearestNeighbor

enableTextureMapperA4_NearestNeighbor
void enableTextureMapperA4_NearestNeighbor ()

Enables the texture mappers for A4 image format.

This allows drawing A4 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperA4, enableTextureMapperA4_BilinearInterpolation

enableTextureMapperAll
void enableTextureMapperAll ()

Enables the texture mappers for all image formats.

This allows drawing any image using Bilinear Interpolation and Nearest Neighbor algorithms, but
might use a lot of memory for the drawing algorithms.

enableTextureMapperARGB8888
void enableTextureMapperARGB8888 ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation and Nearest Neighbor
algorithms.

See also:

enableTextureMapperARGB8888_BilinearInterpolation,
enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_BilinearInterpolation
void enableTextureMapperARGB8888_BilinearInterpolation ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_NearestNeighbor

enableTextureMapperARGB8888_NearestNeighbor
void enableTextureMapperARGB8888_NearestNeighbor ()

Enables the texture mappers for ARGB8888 image format.

This allows drawing ARGB8888 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperARGB8888, enableTextureMapperARGB8888_BilinearInterpolation

enableTextureMapperRGBA2222
void enableTextureMapperRGBA2222 ()

Enables the texture mappers for RGBA2222 image format.

This allows drawing RGBA2222 images using Bilinear Interpolation and Nearest Neighbor
algorithms.

See also:

enableTextureMapperRGBA2222_BilinearInterpolation,
enableTextureMapperRGBA2222_NearestNeighbor

enableTextureMapperRGBA2222_BilinearInterpolation
void enableTextureMapperRGBA2222_BilinearInterpolation ()

Enables the texture mappers for RGBA2222 image format.

This allows drawing RGBA2222 images using Bilinear Interpolation algorithm.

See also:

enableTextureMapperRGBA2222, enableTextureMapperRGBA2222_NearestNeighbor

enableTextureMapperRGBA2222_NearestNeighbor
void enableTextureMapperRGBA2222_NearestNeighbor ()

Enables the texture mappers for RGBA2222 image format.

This allows drawing RGBA2222 images using Nearest Neighbor algorithm.

See also:

enableTextureMapperRGBA2222, enableTextureMapperRGBA2222_BilinearInterpolation

fillRect
virtual void fillRect (const Rect & rect ,

colortype color ,
uint8_t alpha =255
)

Draws a filled rectangle in the framebuffer in the specified color and opacity.

By default the rectangle will be drawn as a solid box. The rectangle can be drawn with transparency
by specifying alpha from 0=invisible to 255=solid.

Parameters:
rect The rectangle to draw in absolute display coordinates.
color The rectangle color.
alpha (Optional) The rectangle opacity, from 0=invisible to 255=solid.

Reimplements: touchgfx::LCD::fillRect

framebufferFormat
virtual Bitmap::BitmapFormat framebufferFormat () const

Framebuffer format used by the display.

Returns:

A Bitmap::BitmapFormat.

Reimplements: touchgfx::LCD::framebufferFormat

framebufferStride
virtual uint16_t framebufferStride () const

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

Reimplements: touchgfx::LCD::framebufferStride

getBlueColor
virtual uint8_t getBlueColor (colortype color)

Gets the blue color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The blue part of the color.

Reimplements: touchgfx::LCD::getBlueColor

getColorFrom24BitRGB
virtual colortype getColorFrom24BitRGB (uint8_t red , const

uint8_t green , const
uint8_t blue const
) const

Generates a color representation to be used on the LCD, based on 24 bit RGB values.

Depending on your chosen color bit depth, the color will be interpreted internally as either a 16 bit
or 24 bit color value. This function can be safely used regardless of whether your application is
configured for 16 or 24 bit colors.

Parameters:
red Value of the red part (0-255).
green Value of the green part (0-255).
blue Value of the blue part (0-255).

Returns:

The color representation depending on LCD color format.

Reimplements: touchgfx::LCD::getColorFrom24BitRGB

getGreenColor
virtual uint8_t getGreenColor (colortype color)

Gets the green color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The 16 bit color value.

Returns:

The green part of the color.

Reimplements: touchgfx::LCD::getGreenColor

getRedColor
virtual uint8_t getRedColor (colortype color)

Gets the red color part of a color.

As this function must work for all color depths, it can be somewhat slow if used in speed critical
sections. Consider finding the color in another way, if possible.

Parameters:
color The color value.

Returns:

The red part of the color.

Reimplements: touchgfx::LCD::getRedColor

LCD8bpp_RGBA2222
LCD8bpp_RGBA2222 ()

getBlueFromColor
static FORCE_INLINE_FUNCTION uint8_t getBlueFromColor (colortype color)

Gets blue from color.

Parameters:
color The color.

Returns:

The blue from color.

getColorFromRGB
static FORCE_INLINE_FUNCTION colortype getColorFromRGB (uint8_t red ,

uint8_t green ,
uint8_t blue
)

Gets color from RGB.

Parameters:
red The red.
green The green.
blue The blue.

Returns:

The color from RGB.

getFramebufferStride
static FORCE_INLINE_FUNCTION uint16_t getFramebufferStride ()

Framebuffer stride in bytes.

The distance (in bytes) from the start of one framebuffer row, to the next.

Returns:

The number of bytes in one framebuffer row.

getGreenFromColor
static FORCE_INLINE_FUNCTION uint8_t getGreenFromColor (colortype color)

Gets green from color.

Parameters:
color The color.

Returns:

The green from color.

getRedFromColor
static FORCE_INLINE_FUNCTION uint8_t getRedFromColor (colortype color)

Gets red from color.

Parameters:
color The color.

Returns:

The red from color.

Protected Functions Documentation

drawGlyph
virtual void drawGlyph (uint16_t * wbuf16 ,

Rect widgetArea ,
int16_t x ,
int16_t y ,
uint16_t offsetX ,
uint16_t offsetY ,
const Rect & invalidatedArea ,
const GlyphNode * glyph ,
const uint8_t * glyphData ,
uint8_t byteAlignRow ,
colortype color ,
uint8_t bitsPerPixel ,
uint8_t alpha ,
TextRotation rotation
)

Private version of draw-glyph with explicit destination buffer pointer argument.

For all parameters (except the buffer pointer) see the public function drawString().

Parameters:
wbuf16 The destination (frame) buffer to draw to.
widgetArea The canvas to draw the glyph inside.
x Horizontal offset to start drawing the glyph.
y Vertical offset to start drawing the glyph.
offsetX Horizontal offset in the glyph to start drawing from.
offsetY Vertical offset in the glyph to start drawing from.
invalidatedArea The area to draw inside.
glyph Specifications of the glyph to draw.
glyphData Data containing the actual glyph (dense format)
byteAlignRow Each row of glyph data starts in a new byte.
color The color of the glyph.
bitsPerPixel Bit depth of the glyph.
alpha The transparency of the glyph.
rotation Rotation to do before drawing the glyph.

Reimplements: touchgfx::LCD::drawGlyph

getTextureMapperDrawScanLine
virtual DrawTextureMapScanLineBase
* getTextureMapperDrawScanLine (const

TextureSurface & texture ,

RenderingVariant renderVariant
,

uint8_t alpha
)

Gets pointer to object that can draw a scan line which allows for highly specialized and optimized
implementation.

Parameters:
texture The texture Surface.
renderVariant The render variant.
alpha The global alpha.

Returns:

Null if it fails, else the pointer to the texture mapper draw scan line object.

Reimplements: touchgfx::LCD::getTextureMapperDrawScanLine

blitCopyAlphaPerPixel
static void blitCopyAlphaPerPixel (const uint16_t * sourceData16 ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha
)

Blit a 2D source-array to the framebuffer performing alpha-blending per pixel as specified Performs
always a software blend.

Parameters:
sourceData16 The source-array pointer (points to the beginning of the data). The sourceData

must be stored as 8-bit RGBA2222 values.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

blitCopyARGB8888
static void blitCopyARGB8888 (const uint32_t * sourceData ,

const Rect & source ,
const Rect & blitRect ,
uint8_t alpha

)

Blit a 2D source-array to the framebuffer performing alpha-blending per pixel as specified if
ARGB8888 is not supported by the DMA a software blend is performed.

Parameters:
sourceData The source-array pointer (points to the beginning of the data). The sourceData

must be stored as 32- bits ARGB8888 values.
source The location and dimensions of the source.
blitRect A rectangle describing what region is to be drawn.
alpha The alpha value to use for blending applied to the whole image (255 = solid, no

blending)

nextLine
static int nextLine (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next line.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next line.

nextPixel
static int nextPixel (bool rotatedDisplay ,

TextRotation textRotation
)

Find out how much to advance in the display buffer to get to the next pixel.

Parameters:
rotatedDisplay Is the display running in portrait mode?
textRotation Rotation to perform.

Returns:

How much to advance to get to the next pixel.

Version: 4.16

LCD8RGBA2222DebugPrinter
The class LCD8RGBA2222DebugPrinter implements the DebugPrinter interface for printing debug
messages on top of 8bit framebuffer.

See: DebugPrinter

Inherits from: DebugPrinter

Public Functions
virtual void draw(const Rect & rect) const

Draws the debug string on top of the framebuffer content.

Additional inherited members
Public Functions inherited from DebugPrinter

DebugPrinter()
Initializes a new instance of the DebugPrinter class.

const Rect & getRegion() const
Returns the region where the debug string is displayed.

void setColor(colortype fg)
Sets the foreground color of the debug string.

void setPosition(uint16_t x, uint16_t y, uint16_t w, uint16_t h)
Sets the position onscreen where the debug string will be displayed.

void setScale(uint8_t scale)
Sets the font scale of the debug string.

void setString(const char * string)
Sets the debug string to be displayed on top of the framebuffer.

virtual ~DebugPrinter()

Finalizes an instance of the DebugPrinter class.

Protected Functions inherited from DebugPrinter
uint16_t getGlyph(uint8_t c) const

Gets a glyph (15 bits) arranged with 3 bits wide, 5 bits high in a single uint16_t value.

Protected Attributes inherited from DebugPrinter
colortype debugForegroundColor

Font color to use when displaying the debug string.

Rect debugRegion
Region onscreen where the debug message is displayed.

uint8_t debugScale
Font scaling factor to use when displaying the debug string.

const char * debugString
Debug string to be displayed onscreen.

Public Functions Documentation
draw

virtual void draw (const Rect & rect)

Draws the debug string on top of the framebuffer content.

Parameters:
rect The rect to draw inside.

Reimplements: touchgfx::DebugPrinter::draw

Version: 4.16

Line
Simple CanvasWidget capable of drawing a line from one point to another point. The end points can
be moved to new locations and the line width can be set and changed. A 10 pixel long line along the
top of the screen with a width on 1 pixel has endpoints in (0, 0.5) and (10, 0.5) and line width 1. The
Line class calculates the corners of the shape, which in this case would be (0, 0), (10, 0), (10, 1) and (0,
1) and tells CanvasWidgetRenderer to moveTo() the first coordinate and then lineTo() the next
coordinates in order. Finally it tells CWR to render the inside of the shape using the set Painter object.

The Line class caches the four corners of the shape to speed up redrawing. In general, drawing lines
involve some extra mathematics for calculating the normal vector of the line and this computation
would slow down re-draws if not cached.

Note: All coordinates are internally handled as CWRUtil::Q5 which means that floating point values are
rounded down to a fixed number of binary digits, for example:

.

Inherits from: CanvasWidget, Widget, Drawable

Public Types
enum LINE_ENDING_STYLE { BUTT_CAP_ENDING, ROUND_CAP_ENDING, SQUARE_CAP_ENDING }

Values that represent line ending styles.

Public Functions
virtual bool drawCanvasWidget(const Rect & invalidatedArea) const

Draw canvas widget for the given invalidated area.

template \<typename T \>
void getEnd(T & x, T & y) const

Line line;
line.setStart(1.1f, 1.1f); // Will use (35/32, 35/32) = (1.09375f, 1.09375f)
int x, y;
line.getStart(&x, &y); // Will return (1, 1)

Gets the endpoint coordinates for the line.

LINE_ENDING_STYLE getLineEndingStyle() const
Gets line ending style.

template \<typename T \>
T getLineWidth() const

Gets line width.

template \<typename T \>
void getLineWidth(T & width) const

Gets line width.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

template \<typename T \>
void getStart(T & x, T & y) const

Gets the starting point of the line as either integers or floats.

Line()

void setCapPrecision(int precision)
Sets a precision of the arc at the ends of the Line.

void setEnd(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5)
Sets the endpoint coordinates of the line.

template \<typename T \>
void setEnd(T x, T y)

Sets the endpoint coordinates of the line.

template \<typename T \>
void setLine(T startX, T startY, T endX, T endY)

Sets the starting point and ending point of the line.

void setLineEndingStyle(LINE_ENDING_STYLE lineEnding)
Sets line ending style.

void setLineWidth(CWRUtil::Q5 widthQ5)
Sets the width for this Line.

template \<typename T \>
void setLineWidth(T width)

Sets the width for this Line.

void setStart(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5)
Sets the starting point of the line.

template \<typename T \>
void setStart(T x, T y)

Sets the starting point of the line.

void updateEnd(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5)
Update the endpoint for this Line.

template \<typename T \>
void updateEnd(T x, T y)

Update the endpoint for this Line.

void updateLengthAndAngle(CWRUtil::Q5 length, CWRUtil::Q5 angle)
Update the end point for this Line given the new length and angle.

void updateLineWidth(CWRUtil::Q5 widthQ5)
Update the width for this Line.

template \<typename T \>
void updateLineWidth(T width)

Update the width for this Line and invalidates the minimal rectangle
surrounding the line on screen.

void updateStart(CWRUtil::Q5 xQ5, CWRUtil::Q5 yQ5)
Update the start point for this Line.

template \<typename T \>
void updateStart(T x, T y)

Update the start point for this Line.

Additional inherited members
Public Functions inherited from CanvasWidget

CanvasWidget()

virtual void draw(const Rect & invalidatedArea) const

Draws the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const
Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const

Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)

Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Types Documentation
LINE_ENDING_STYLE

enum LINE_ENDING_STYLE

Values that represent line ending styles.

BUTT_CAP_ENDING The line ending is cut 90 degrees at the end of the line.
ROUND_CAP_ENDING The line ending is rounded as a circle with center at the end of the line.
SQUARE_CAP_ENDING The line ending is cut 90 degrees, but extends half the width of the line.

Public Functions Documentation
drawCanvasWidget

virtual bool drawCanvasWidget (const Rect & invalidatedArea)

Draw canvas widget for the given invalidated area.

Similar to draw(), but might be invoked several times with increasingly smaller areas to due to
memory constraints from the underlying CanvasWidgetRenderer.

Parameters:
invalidatedArea The invalidated area.

Returns:

true if the widget was drawn properly, false if not.

See also:

draw

Reimplements: touchgfx::CanvasWidget::drawCanvasWidget

getEnd
void getEnd (T & x , const

T & y const
) const

Gets the endpoint coordinates for the line.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
x The x coordinate rounded down to the precision of T.
y The y coordinate rounded down to the precision of T.

See also:

setEnd, updateEnd

getLineEndingStyle
LINE_ENDING_STYLE getLineEndingStyle () const

Gets line ending style.

Returns:

The line ending style.

See also:

LINE_ENDING_STYLE, setLineEndingStyle

getLineWidth
T getLineWidth () const

Gets line width.

Template Parameters:
T Generic type parameter, either int or float.

Returns:

The line width rounded down to the precision of T.

See also:

setLineWidth

getLineWidth
void getLineWidth (T & width)

Gets line width.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
width The line width rounded down to the precision of T.

See also:

setLineWidth

getMinimalRect
virtual Rect getMinimalRect () const

Gets minimal rectangle containing the shape drawn by this widget.

Default implementation returns the size of the entire widget, but this function should be
overwritten in subclasses and return the minimal rectangle containing the shape. See classes such
as Circle for example implementations.

Returns:

The minimal rectangle containing the shape drawn.

Reimplements: touchgfx::CanvasWidget::getMinimalRect

getStart
void getStart (T & x , const

T & y const
) const

Gets the starting point of the line as either integers or floats.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
x The x coordinate rounded down to the precision of T.
y The y coordinate rounded down to the precision of T.

See also:

setStart, setLine

Line
Line ()

setCapPrecision
void setCapPrecision (int precision)

Sets a precision of the arc at the ends of the Line.

This only works for ROUND_CAP_ENDING. The precision is given in degrees where 18 is the default
which results in a nice half circle with 10 line segments. 90 will draw "an arrow head", 180 will look
exactly like a BUTT_CAP_ENDING.

Parameters:
precision The new ROUND_CAP_ENDING precision.

NOTE

The line is not invalidated. This is only used if line ending is set to ROUND_CAP_ENDING.

setEnd
void setEnd (CWRUtil::Q5 xQ5 ,

CWRUtil::Q5 yQ5
)

Sets the endpoint coordinates of the line.

Parameters:
xQ5 The x coordinate of the end point in Q5 format.
yQ5 The y coordinate of the end point in Q5 format.

NOTE

The area containing the Line is not invalidated.

See also:

updateEnd, getEnd

setEnd
void setEnd (T x ,

T y
)

Sets the endpoint coordinates of the line.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
x The x coordinate of the end point.
y The y coordinate of the end point.

NOTE

The area containing the Line is not invalidated.

See also:

updateEnd, getEnd

setLine
void setLine (T startX ,

T startY ,
T endX ,
T endY
)

Sets the starting point and ending point of the line.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
startX The x coordinate of the start point.
startY The y coordinate of the start point.
endX The x coordinate of the end point.
endY The y coordinate of the end point.

NOTE

The area containing the Line is not invalidated.

See also:

setStart, setEnd

setLineEndingStyle
void setLineEndingStyle (LINE_ENDING_STYLE lineEnding)

Sets line ending style.

The same style is applied to both ends of the line.

Parameters:
lineEnding The line ending style.

NOTE

The area containing the Line is not invalidated.

See also:

LINE_ENDING_STYLE, getLineEndingStyle

setLineWidth
void setLineWidth (CWRUtil::Q5 widthQ5)

Sets the width for this Line.

Parameters:
widthQ5 The width of the line measured in pixels in Q5 format.

NOTE

The area containing the Line is not invalidated.

See also:

updateLineWidth

setLineWidth
void setLineWidth (T width)

Sets the width for this Line.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
width The width of the line measured in pixels.

NOTE

The area containing the Line is not invalidated.

See also:

updateLineWidth

setStart
void setStart (CWRUtil::Q5 xQ5 ,

CWRUtil::Q5 yQ5
)

Sets the starting point of the line.

Parameters:
xQ5 The x coordinate of the start point in Q5 format.
yQ5 The y coordinate of the start point in Q5 format.

NOTE

The area containing the Line is not invalidated.

See also:

updateStart, getStart, setLine, setEnd

setStart
void setStart (T x ,

T y
)

Sets the starting point of the line.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
x The x coordinate of the start point.
y The y coordinate of the start point.

NOTE

The area containing the Line is not invalidated.

See also:

updateStart, getStart, setLine, setEnd

updateEnd
void updateEnd (CWRUtil::Q5 xQ5 ,

CWRUtil::Q5 yQ5
)

Update the endpoint for this Line.

The rectangle that surrounds the line before and after will be invalidated.

Parameters:
xQ5 The x coordinate of the end point in Q5 format.
yQ5 The y coordinate of the end point in Q5 format.

NOTE

The area containing the Line is invalidated before and after the change.

See also:

setEnd, updateStart

updateEnd
void updateEnd (T x ,

T y
)

Update the endpoint for this Line.

The rectangle that surrounds the line before and after will be invalidated.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
x The x coordinate of the end point.
y The y coordinate of the end point.

NOTE

The area containing the Line is invalidated before and after the change.

See also:

setEnd, updateStart

updateLengthAndAngle
void updateLengthAndAngle (CWRUtil::Q5 length ,

CWRUtil::Q5 angle
)

Update the end point for this Line given the new length and angle.

The rectangle that surrounds the line before and after will be invalidated. The starting coordinates
will be fixed but the ending point will be updated. This is simply a different way to update the
ending point.

Parameters:
length The new length of the line in Q5 format.
angle The new angle of the line in Q5 format.

NOTE

The area containing the Line is invalidated before and after the change.

See also:

updateEnd

updateLineWidth
void updateLineWidth (CWRUtil::Q5 widthQ5)

Update the width for this Line.

Update the width for this Line and invalidates the minimal rectangle surrounding the line on
screen.

Parameters:
widthQ5 The width of the line measured in pixels in Q5 format.

NOTE

The area containing the Line is invalidated before and after the change.

See also:

setLineWidth

updateLineWidth
void updateLineWidth (T width)

Update the width for this Line and invalidates the minimal rectangle surrounding the line on
screen.

Template Parameters:

T Generic type parameter, either int or float.

Parameters:
width The width of the line measured in pixels.

NOTE

The area containing the Line is invalidated before and after the change.

See also:

setLineWidth

updateStart
void updateStart (CWRUtil::Q5 xQ5 ,

CWRUtil::Q5 yQ5
)

Update the start point for this Line.

The rectangle that surrounds the line before and after will be invalidated.

Parameters:
xQ5 The x coordinate of the start point in CWRUtil::Q5 format.
yQ5 The y coordinate of the start point in CWRUtil::Q5 format.

NOTE

The area containing the Line is invalidated before and after the change.

See also:

setStart, updateEnd

updateStart
void updateStart (T x ,

T y
)

Update the start point for this Line.

The rectangle that surrounds the line before and after will be invalidated.

Template Parameters:
T Generic type parameter, either int or float.

Parameters:
x The x coordinate of the start point.
y The y coordinate of the start point.

NOTE

The area containing the Line is invalidated before and after the change.

See also:

setStart, updateEnd

Version: 4.16

LineProgress
Using Line from CanvasWidgetRenderer, progress will be rendered as a line. This means that the user
must create a painter for painting the circle. The line does not need to horizontal or vertical, but can
start at any coordinate and finish at any coordinate.

Note: As LineProgress uses CanvasWidgetRenderer, it is important that a buffer is set up by calling
CanvasWidgetRendere::setBuffer().

Inherits from: AbstractProgressIndicator, Container, Drawable

Public Functions
virtual uint8_t getAlpha() const

Gets the current alpha value of the widget.

virtual void getEnd(int & x, int & y) const
Gets the coordinates of the end point of the line.

virtual Line::LINE_ENDING_STYLE getLineEndingStyle() const
Gets line ending style.

virtual int getLineWidth() const
Gets the line width.

virtual void getStart(int & x, int & y) const
Gets the coordinates of the starting point of the line.

LineProgress()

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setEnd(int x, int y)
Sets the end point for the line.

virtual void setLineEndingStyle(Line::LINE_ENDING_STYLE lineEndingStyle)
Sets line ending style.

virtual void setLineWidth(int width)

Sets the line width.

virtual void setPainter(AbstractPainter & painter)
Sets a painter to be used for drawing the line.

virtual void setProgressIndicatorPosition(int16_t x, int16_t y, int16_t width,
int16_t height)
Sets the position and dimensions of the actual progress indicator
relative to the background image.

virtual void setStart(int x, int y)
Sets a starting point for the line.

virtual void setValue(int value)
Sets the current value in the range (min..max) set by setRange().

Protected Attributes
CWRUtil::Q5 endX

The end x coordinate.

CWRUtil::Q5 endY
The end y coordinate.

Line line
The line.

CWRUtil::Q5 startX
The start x coordinate.

CWRUtil::Q5 startY
The start y coordinate.

Additional inherited members
Public Functions inherited from AbstractProgressIndicator

AbstractProgressIndicator()

Initializes a new instance of the AbstractProgressIndicator class with a default
range 0-100.

virtual uint16_t getProgress(uint16_t range =100) const
Gets the current progress based on the range set by setRange() and the value set by
setValue().

virtual int16_t getProgressIndicatorHeight() const
Gets progress indicator height.

virtual int16_t getProgressIndicatorWidth() const
Gets progress indicator width.

virtual int16_t getProgressIndicatorX() const
Gets progress indicator x coordinate.

virtual int16_t getProgressIndicatorY() const
Gets progress indicator y coordinate.

virtual void getRange(int & min, int & max) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps, uint16_t & minStep) const
Gets the range set by setRange().

virtual int getValue() const
Gets the current value set by setValue().

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void setBackground(const Bitmap & bitmapBackground)
Sets the background image.

virtual void setEasingEquation(EasingEquation easingEquation)
Sets easing equation to be used in updateValue.

virtual void setRange(int min, int max, uint16_t steps =0, uint16_t minStep =0)
Sets the range for the progress indicator.

void setValueSetAction(GenericCallback< const AbstractProgressIndicator & > &
callback)
Sets callback that will be triggered every time a new value is assigned to the
progress indicator.

void setValueUpdatedAction(GenericCallback< const AbstractProgressIndicator & >
& callback)
Sets callback that will be triggered when updateValue has finished animating to the
final value.

virtual void updateValue(int value, uint16_t duration)
Update the current value in the range (min..max) set by setRange().

Protected Attributes inherited from AbstractProgressIndicator
int animationDuration

Duration of the animation.

int animationEndValue
The animation end value.

int animationStartValue
The animation start value.

int animationStep
The current animation step.

Image background
The background image.

int currentValue
The current value.

EasingEquation equation
The equation used in updateValue()

Container progressIndicatorContainer
The container that holds the actual
progress indicator.

int rangeMax
The range maximum.

int rangeMin
The range minimum.

uint16_t rangeSteps
The range steps.

uint16_t rangeStepsMin
The range steps minimum.

GenericCallback< const AbstractProgressIndicator & > * valueSetCallback
New value assigned Callback.

GenericCallback< const AbstractProgressIndicator & > * valueUpdatedCallback
Animation ended Callback.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)

Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
getAlpha

virtual uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getEnd
virtual void getEnd (int & x , const

int & y const
) const

Gets the coordinates of the end point of the line.

Beware that this is not the coordinates of the current progress of the line, but the coordinates when
the line is at 100%.

Parameters:

x The x coordinate.
y The y coordinate.

getLineEndingStyle
virtual Line::LINE_ENDING_STYLE getLineEndingStyle () const

Gets line ending style.

Returns:

The line ending style.

getLineWidth
virtual int getLineWidth () const

Gets the line width.

Returns:

The line width.

getStart
virtual void getStart (int & x , const

int & y const
) const

Gets the coordinates of the starting point of the line.

Parameters:
x The x coordinate.
y The y coordinate.

LineProgress
LineProgress ()

setAlpha

virtual void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setEnd
virtual void setEnd (int x ,

int y
)

Sets the end point for the line.

When progress is at 100%, the line will go from the coordinates set by setStart() to the coordinates
set by setEnd()

Parameters:
x The x coordinate of the end point.
y The y coordinate of the end point.

See also:

setStart

setLineEndingStyle
virtual void setLineEndingStyle (Line::LINE_ENDING_STYLE lineEndingStyle)

Sets line ending style.

Parameters:
lineEndingStyle The line ending style.

See also:

Line::setLineEndingStyle

setLineWidth
virtual void setLineWidth (int width)

Sets the line width.

Parameters:
width The width.

See also:

Line::setLineWidth

setPainter
virtual void setPainter (AbstractPainter & painter)

Sets a painter to be used for drawing the line.

This can be any Painter, a simple single color painter, a bitmap painter or a custom painter.

Parameters:
painter The painter.

setProgressIndicatorPosition
virtual void setProgressIndicatorPosition (int16_t x ,

int16_t y ,
int16_t width ,
int16_t height
)

Sets the position and dimensions of the actual progress indicator relative to the background image.

Parameters:
x The x coordinate.
y The y coordinate.
width The width of the box progress indicator.
height The height of the box progress indicator.

See also:

getProgressIndicatorX, getProgressIndicatorY, getProgressIndicatorWidth,
getProgressIndicatorHeight

Reimplements: touchgfx::AbstractProgressIndicator::setProgressIndicatorPosition

setStart
virtual void setStart (int x ,

int y
)

Sets a starting point for the line.

Parameters:
x The x coordinate of the start point.
y The y coordinate of the start point.

See also:

setEnd

setValue
virtual void setValue (int value)

Sets the current value in the range (min..max) set by setRange().

Values lower than min are mapped to min, values higher than max are mapped to max. If a callback
function has been set using setValueSetAction, that callback will be called (unless the new value is
the same as the current value).

Parameters:
value The value.

NOTE

if value is equal to the current value, nothing happens, and the callback will not be called.

See also:

getValue, updateValue, setValueSetAction

Reimplements: touchgfx::AbstractProgressIndicator::setValue

Protected Attributes Documentation
endX

CWRUtil::Q5 endX

The end x coordinate.

endY
CWRUtil::Q5 endY

The end y coordinate.

line
Line line

The line.

startX
CWRUtil::Q5 startX

The start x coordinate.

startY
CWRUtil::Q5 startY

The start y coordinate.

Version: 4.16

ListLayout
This class provides a layout mechanism for arranging Drawable instances adjacent in the specified
Direction. The first element in the ListLayout is positioned in the ListLayout origin (0,0). The dimensions
of this class is automatically expanded to cover the area of the added Drawable instances, which may
grow larger than the dimensions of the physical screen. Place the ListLayout inside e.g. a
ScrollableContainer to allow all the children to be viewed.

See: ScrollableContainer

Inherits from: Container, Drawable

Public Functions
virtual void add(Drawable & d)

Adds a Drawable instance to the end of the list.

virtual Direction getDirection() const
Gets the direction of the ListLayout.

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

ListLayout(const Direction d =SOUTH)
Initializes a new instance of the ListLayout class.

virtual void remove(Drawable & d)
Removes a Drawable.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void setDirection(const Direction d)
Sets the direction of the ListLayout.

Additional inherited members

Public Functions inherited from Container
Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable

virtual void childGeometryChanged()
This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const

Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)

Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
add

virtual void add (Drawable & d)

Adds a Drawable instance to the end of the list.

The Drawable dimensions shall be set prior to addition. The coordinates of the Drawable will be
updated to reflect the position in the ListLayout.

Parameters:
d The Drawable to add.

Reimplements: touchgfx::Container::add

getDirection
virtual Direction getDirection () const

Gets the direction of the ListLayout.

Returns:

The current direction to grow in when added children (either SOUTH or EAST).

See also:

setDirection

insert
virtual void insert (Drawable * previous ,

Drawable & d
)

Inserts a Drawable after a specific child node.

If previous child node is 0, the drawable will be inserted as the first element in the list. The first
element in the list of children is the element drawn first, so this makes it possible to insert a
Drawablebehind all previously added children.

Parameters:
previous The Drawable to insert after. If null, insert as header.
d The Drawable to insert.

NOTE

As with add, do not add the same drawable twice.

Reimplements: touchgfx::Container::insert

ListLayout
ListLayout (const Direction d =SOUTH)

Initializes a new instance of the ListLayout class.

Parameters:
d (Optional) The direction to place the elements. SOUTH (Default) places the elements

vertically, EAST places the elements horizontally.

See also:

setDirection

remove
virtual void remove (Drawable & d)

Removes a Drawable.

Safe to call even if drawable has not been added. Other Drawable elements in the ListLayout are
repositioned and the size of the ListLayout is adjusted.

Parameters:
d The drawable to remove.

Reimplements: touchgfx::Container::remove

removeAll
virtual void removeAll ()

Removes all children in the Container by resetting their parent and sibling pointers.

Please note that this is not done recursively, so any child which is itself a Container is not emptied.

Reimplements: touchgfx::Container::removeAll

setDirection
virtual void setDirection (const Direction d)

Sets the direction of the ListLayout.

If elements have already been added to the ListLayout, these elements will be repositioned to
adhere to the new direction.

Parameters:
d The new Direction to grow in when added children (either SOUTH or EAST).

See also:

getDirection

Version: 4.16

LockFreeDMA_Queue
This implements a simple lock-free FIFO queue (single producer, single consumer)

See: DMA_Queue

Inherits from: DMA_Queue

Public Functions
virtual bool isEmpty()

Query if this object is empty.

virtual bool isFull()
Query if this object is full.

LockFreeDMA_Queue(BlitOp * mem, atomic_t n)
Constructs a lock-free queue.

virtual void pushCopyOf(const BlitOp & op)
Adds the specified blitop to the queue.

Protected Functions
virtual const BlitOp * first()

Gets the first element in the queue.

virtual void pop()
Pops an element from the queue.

Protected Attributes
atomic_t capacity

The number of elements the queue can contain.

atomic_t head

Index to the head element.

BlitOp * q
Pointer to the queue memory.

atomic_t tail
Index to the tail element.

Additional inherited members
Public Functions inherited from DMA_Queue

virtual ~DMA_Queue()
Finalizes an instance of the DMA_Queue class.

Protected Functions inherited from DMA_Queue
DMA_Queue()
Initializes a new instance of the DMA_Queue class.

Public Functions Documentation
isEmpty

virtual bool isEmpty ()

Query if this object is empty.

Returns:

true if the queue is empty.

Reimplements: touchgfx::DMA_Queue::isEmpty

isFull
virtual bool isFull ()

Query if this object is full.

Returns:

true if the queue is full.

Reimplements: touchgfx::DMA_Queue::isFull

LockFreeDMA_Queue
LockFreeDMA_Queue (BlitOp * mem ,

atomic_t n
)

Constructs a lock-free queue.

Parameters:
mem Pointer to the memory used by the queue to store elements.
n Number of elements the memory provided can contain.

pushCopyOf
virtual void pushCopyOf (const BlitOp & op)

Adds the specified blitop to the queue.

Parameters:
op The blitop to add.

Reimplements: touchgfx::DMA_Queue::pushCopyOf

Protected Functions Documentation
first

virtual const BlitOp * first ()

Gets the first element in the queue.

Returns:

The first element in the queue.

Reimplements: touchgfx::DMA_Queue::first

pop
virtual void pop ()

Pops an element from the queue.

Reimplements: touchgfx::DMA_Queue::pop

Protected Attributes Documentation
capacity

atomic_t capacity

The number of elements the queue can contain.

head
atomic_t head

Index to the head element.

q
BlitOp * q

Pointer to the queue memory.

tail
atomic_t tail

Index to the tail element.

Version: 4.16

ManyBlockAllocator
This class is partial framebuffer allocator using multiple blocks. New buffers can be allocated until no
free blocks are available. After transfer to LCD, a block is queued for allocation again.

See: FrameBufferAllocator

Inherits from: FrameBufferAllocator

Public Functions
virtual uint16_t allocateBlock(const uint16_t x, const uint16_t y, const uint16_t width, const

uint16_t height, uint8_t ** block)
Allocates a framebuffer block.

virtual void freeBlockAfterTransfer()
Free a block after transfer to the LCD.

virtual const uint8_t * getBlockForTransfer(Rect & rect)
Get the block ready for transfer.

virtual bool hasBlockReadyForTransfer()
Check if a block is ready for transfer to the LCD.

virtual bool hasEmptyBlock()
Check if a block is ready for drawing (the block is empty).

ManyBlockAllocator()

virtual void markBlockReadyForTransfer()
Marks a previously allocated block as ready to be transferred to the LCD.

virtual const Rect & peekBlockForTransfer()
Get the Rect of the next block to transfer.

Additional inherited members

Protected Types inherited from FrameBufferAllocator
enum BlockState { EMPTY, ALLOCATED, DRAWN, SENDING }

BlockState is used for internal state of each block.

Public Functions inherited from FrameBufferAllocator
virtual ~FrameBufferAllocator()

Finalizes an instance of the FrameBufferAllocator class.

Public Functions Documentation
allocateBlock

virtual uint16_t allocateBlock (const uint16_t x ,
const uint16_t y ,
const uint16_t width ,
const uint16_t height ,
uint8_t ** block
)

Allocates a framebuffer block.

The block will have at least the width requested. The height of the allocated block can be lower
than requested if not enough memory is available.

Parameters:
x The absolute x coordinate of the block on the screen.
y The absolute y coordinate of the block on the screen.
width The width of the block.
height The height of the block.
block Pointer to pointer to return the block address in.

Returns:

The height of the allocated block.

Reimplements: touchgfx::FrameBufferAllocator::allocateBlock

freeBlockAfterTransfer

virtual void freeBlockAfterTransfer ()

Free a block after transfer to the LCD.

Marks a previously allocated block as transferred and ready to reuse.

Reimplements: touchgfx::FrameBufferAllocator::freeBlockAfterTransfer

getBlockForTransfer
virtual const uint8_t * getBlockForTransfer (Rect & rect)

Get the block ready for transfer.

Parameters:
rect Reference to rect to write block x, y, width, and height.

Returns:

Returns the address of the block ready for transfer.

Reimplements: touchgfx::FrameBufferAllocator::getBlockForTransfer

hasBlockReadyForTransfer
virtual bool hasBlockReadyForTransfer ()

Check if a block is ready for transfer to the LCD.

Returns:

True if a block is ready for transfer.

Reimplements: touchgfx::FrameBufferAllocator::hasBlockReadyForTransfer

hasEmptyBlock
virtual bool hasEmptyBlock ()

Check if a block is ready for drawing (the block is empty).

Returns:

True if a block is empty.

Reimplements: touchgfx::FrameBufferAllocator::hasEmptyBlock

ManyBlockAllocator
ManyBlockAllocator ()

markBlockReadyForTransfer
virtual void markBlockReadyForTransfer ()

Marks a previously allocated block as ready to be transferred to the LCD.

Reimplements: touchgfx::FrameBufferAllocator::markBlockReadyForTransfer

peekBlockForTransfer
virtual const Rect & peekBlockForTransfer ()

Get the Rect of the next block to transfer.

Returns:

Rect ready for transfer.

NOTE

This function should only be called when the allocator has a block ready for transfer.

See also:

hasBlockReadyForTransfer

Reimplements: touchgfx::FrameBufferAllocator::peekBlockForTransfer

Version: 4.16

Matrix4x4
This class represents row major 4x4 homogeneous matrices.

Public Functions
Matrix4x4 & concatenateXRotation(float radians)

Concatenate x coordinate rotation.

Matrix4x4 & concatenateXScale(float distance)
Concatenate x coordinate scale.

Matrix4x4 & concatenateXTranslation(float distance)
Concatenate x coordinate translation.

Matrix4x4 & concatenateYRotation(float radians)
Concatenate y coordinate rotation.

Matrix4x4 & concatenateYScale(float distance)
Concatenate y coordinate scale.

Matrix4x4 & concatenateYTranslation(float distance)
Concatenate y coordinate translation.

Matrix4x4 & concatenateZRotation(float radians)
Concatenate z coordinate rotation.

Matrix4x4 & concatenateZScale(float distance)
Concatenate z coordinate scale.

Matrix4x4 & concatenateZTranslation(float distance)
Concatenate z coordinate translation.

FORCE_INLINE_FUNCTION float getElement(int row, int column) const
Gets an element.

Matrix4x4()
Initializes a new instance of the Point4 class.

FORCE_INLINE_FUNCTION Matrix4x4 setElement(int row, int column, float value)

Sets an element.

void setViewDistance(float distance)
Sets view distance.

Protected Attributes
float elements

The elements[4][4].

Public Functions Documentation
concatenateXRotation

Matrix4x4 & concatenateXRotation (float radians)

Concatenate x coordinate rotation.

Parameters:
radians The radians.

Returns:

A matrix_4x4&

concatenateXScale
Matrix4x4 & concatenateXScale (float distance)

Concatenate x coordinate scale.

Parameters:
distance The distance.

Returns:

A matrix_4x4&

concatenateXTranslation

Matrix4x4 & concatenateXTranslation (float distance)

Concatenate x coordinate translation.

Parameters:
distance The distance.

Returns:

A matrix_4x4&

concatenateYRotation
Matrix4x4 & concatenateYRotation (float radians)

Concatenate y coordinate rotation.

Parameters:
radians The radians.

Returns:

A matrix_4x4&

concatenateYScale
Matrix4x4 & concatenateYScale (float distance)

Concatenate y coordinate scale.

Parameters:
distance The distance.

Returns:

A matrix_4x4&

concatenateYTranslation
Matrix4x4 & concatenateYTranslation (float distance)

Concatenate y coordinate translation.

Parameters:
distance The distance.

Returns:

A matrix_4x4&

concatenateZRotation
Matrix4x4 & concatenateZRotation (float radians)

Concatenate z coordinate rotation.

Parameters:
radians The radians.

Returns:

A matrix_4x4&

concatenateZScale
Matrix4x4 & concatenateZScale (float distance)

Concatenate z coordinate scale.

Parameters:
distance The distance.

Returns:

A matrix_4x4&

concatenateZTranslation
Matrix4x4 & concatenateZTranslation (float distance)

Concatenate z coordinate translation.

Parameters:
distance The distance.

Returns:

A matrix_4x4&

getElement
FORCE_INLINE_FUNCTION float getElement (int row , const

int column const
) const

Gets an element.

Parameters:
row The row (0-3).
column The column (0-3).

Returns:

The element.

Matrix4x4
Matrix4x4 ()

Initializes a new instance of the Point4 class.

setElement
FORCE_INLINE_FUNCTION Matrix4x4 setElement (int row ,

int column ,
float value
)

Sets an element.

Parameters:
row The row.
column The column.
value The value.

Returns:

A matrix_4x4&

setViewDistance
void setViewDistance (float distance)

Sets view distance.

Parameters:
distance The distance.

Protected Attributes Documentation
elements

float elements

The elements[4][4].

Version: 4.16

MCUInstrumentation
Interface for instrumenting processors to measure MCU load via measured CPU cycles.

Public Functions
virtual uint32_t getCCConsumed()

Gets number of consumed clock cycles.

virtual unsigned int getCPUCycles(void) =0
Gets CPU cycles from register.

virtual unsigned int getElapsedUS(unsigned int start, unsigned int now, unsigned int
clockfrequency) =0
Gets elapsed microseconds based on clock frequency.

virtual void init() =0
Initialize.

MCUInstrumentation()
Initializes a new instance of the MCUInstrumentation class.

virtual void setCCConsumed(uint32_t val)
Sets number of consumed clock cycles.

virtual void setMCUActive(bool active)
Sets MCU activity high.

virtual ~MCUInstrumentation()
Finalizes an instance of the MCUInstrumentation class.

Protected Attributes
uint32_t cc_consumed

Amount of consumed CPU cycles.

uint32_t cc_in
Current CPU cycles.

Public Functions Documentation
getCCConsumed

virtual uint32_t getCCConsumed ()

Gets number of consumed clock cycles.

Returns:

clock cycles.

getCPUCycles
virtual unsigned int getCPUCycles (void)

Gets CPU cycles from register.

Returns:

CPU cycles.

getElapsedUS
virtual unsigned int getElapsedUS (unsigned int start , =0

unsigned int now , =0
unsigned int clockfrequency =0
) =0

Gets elapsed microseconds based on clock frequency.

Parameters:
start Start time.
now Current time.
clockfrequency Clock frequency of the system expressed in MHz.

Returns:

Elapsed microseconds start and now.

init

virtual void init () =0

Initialize.

MCUInstrumentation
MCUInstrumentation ()

Initializes a new instance of the MCUInstrumentation class.

setCCConsumed
virtual void setCCConsumed (uint32_t val)

Sets number of consumed clock cycles.

Parameters:
val number of clock cycles.

setMCUActive
virtual void setMCUActive (bool active)

Sets MCU activity high.

Parameters:
active if True, inactive otherwise.

~MCUInstrumentation
virtual ~MCUInstrumentation ()

Finalizes an instance of the MCUInstrumentation class.

Protected Attributes Documentation
cc_consumed

uint32_t cc_consumed

Amount of consumed CPU cycles.

cc_in
uint32_t cc_in

Current CPU cycles.

Version: 4.16

ModalWindow
Container for displaying a modal window and hijacking touch event and prevent them from reaching
the underlying view and widgets. The container has a background image and a surrounding box that
acts as a shade on top of the rest of the screen. The background image must be set (using
setBackground()) and the shade can be adjusted (using setShadeAlpha() and setShadeColor()).

The ModalWindow can either be used directly by adding widgets/containers to the ModalWindow
from your view or by sub-classing it if you need a specific ModalWindow with predefined behavior
across your application.

The ModalWindow should be instantiated in the view class and added as the last element (to always
be on top, i.e. be modal). The ModalWindow will fill up the entire screen so it should always be placed
at x=0, y=0 on the display.

To control the visibility of the ModalWindow use the show and hide methods.

Inherits from: Container, Drawable

Public Functions
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

virtual uint16_t getBackgroundHeight() const
Gets the height of the actual window (the background images).

virtual uint16_t getBackgroundWidth() const
Gets the width of the actual window (the background images).

virtual uint8_t getShadeAlpha() const
Gets the alpha value of the background shade.

virtual colortype getShadeColor() const
Gets the color of the background shade.

virtual void hide()
Make the ModalWindow invisible.

ModalWindow()

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void setBackground(const BitmapId & bmpId)
Sets the background of the actual window.

virtual void setBackground(const BitmapId & bmpId, int16_t backgroundX, int16_t
backgroundY)
Sets the background of the actual window.

virtual void setShadeAlpha(uint8_t alpha)
Sets the alpha value of the background shade.

virtual void setShadeColor(colortype color)
Sets the color of the background shade.

virtual void show()
Make the ModalWindow visible.

Protected Attributes
Box backgroundShade

The background shade.

Image windowBackground
The window background.

Container windowContainer
The window container that defines the active container area where both the
windowBackground and added drawables are placed.

Additional inherited members
Public Functions inherited from Container

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()

Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)

Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
add

virtual void add (Drawable & d)

Adds a Drawable instance as child to this Container.

The Drawable added will be placed as the element to be drawn last, and thus appear on top of all
previously added drawables in the Container.

Parameters:
d The Drawable to add.

NOTE

Never add a drawable more than once!

Reimplements: touchgfx::Container::add

getBackgroundHeight
virtual uint16_t getBackgroundHeight () const

Gets the height of the actual window (the background images).

Whereas the getHeight() method will return the height including the shade.

Returns:

The height of the actual window.

getBackgroundWidth
virtual uint16_t getBackgroundWidth () const

Gets the width of the actual window (the background images).

Whereas the getWidth() method will return the width including the shade.

Returns:

The width of the actual window.

getShadeAlpha
virtual uint8_t getShadeAlpha () const

Gets the alpha value of the background shade.

Returns:

The background shades alpha.

getShadeColor
virtual colortype getShadeColor () const

Gets the color of the background shade.

Returns:

The color of the background shade.

hide
virtual void hide ()

Make the ModalWindow invisible.

ModalWindow
ModalWindow ()

remove
virtual void remove (Drawable & d)

Removes a Drawable from the container by removing it from the linked list of children.

If the Drawable is not in the list of children, nothing happens. It is possible to remove an element
from whichever Container it is a member of using:

The Drawable will have the parent and next sibling cleared, but is otherwise left unaltered.

Parameters:
d The Drawable to remove.

NOTE

This is safe to call even if d is not a child of this Container (in which case nothing happens).

Reimplements: touchgfx::Container::remove

setBackground

if (d.getParent()) d.getParent()->remove(d);

virtual void setBackground (const BitmapId & bmpId)

Sets the background of the actual window.

The remaining area of the screen will be covered by the shade. The background image is centered
on the screen.

Parameters:
bmpId Identifier for the background bitmap.

setBackground
virtual void setBackground (const BitmapId & bmpId ,

int16_t backgroundX ,
int16_t backgroundY
)

Sets the background of the actual window.

The remaining area of the screen will be covered by the shade. The background image will be
placed at the backgroundX and backgroundY coordinate.

Parameters:
bmpId Identifier for the bitmap.
backgroundX The background x coordinate.
backgroundY The background y coordinate.

setShadeAlpha
virtual void setShadeAlpha (uint8_t alpha)

Sets the alpha value of the background shade.

Default, if not set, is 96.

Parameters:
alpha The new alpha.

setShadeColor
virtual void setShadeColor (colortype color)

Sets the color of the background shade.

Default is black.

Parameters:
color The new color.

show
virtual void show ()

Make the ModalWindow visible.

Protected Attributes Documentation
backgroundShade

Box backgroundShade

The background shade.

windowBackground
Image windowBackground

The window background.

windowContainer
Container windowContainer

The window container that defines the active container area where both the windowBackground
and added drawables are placed.

Version: 4.16

MoveAnimator
A MoveAnimator makes the template class T able to animate a movement from its current position to
a specified end position. The speed of the movement in both the X and Y direction can be controlled
by supplying EasingEquations. The MoveAnimator performs a callback when the animation has
finished.

This mixin can be used on any Drawable.

Inherits from: T

Public Functions
void cancelMoveAnimation()

Cancel move animation and leave the Drawable in its current position.

void clearMoveAnimationEndedAction()
Clears the move animation ended action previously set by
setMoveAnimationEndedAction.

virtual uint16_t getMoveAnimationDelay() const
Gets the current animation delay.

virtual void handleTickEvent()
The tick handler that handles the actual animation steps.

bool isMoveAnimationRunning() const
Gets whether or not the move animation is running.

MoveAnimator()

virtual void setMoveAnimationDelay(uint16_t delay)
Sets a delay on animations done by the MoveAnimator.

void setMoveAnimationEndedAction(GenericCallback< const MoveAnimator< T > &
> & callback)
Associates an action to be performed when the animation ends.

void
startMoveAnimation(int16_t endX, int16_t endY, uint16_t duration, EasingEquation
xProgressionEquation =&EasingEquations::linearEaseNone, EasingEquation
yProgressionEquation =&EasingEquations::linearEaseNone)
Starts the move animation from the current position to the specified end position.

Protected Functions
void nextMoveAnimationStep()

Execute next step in move animation and stop the timer if the animation has finished.

Protected Attributes
uint16_t moveAnimationCounter

Counter that is equal to the current step in the
animation.

uint16_t moveAnimationDelay
The delay applied before animation start.
Expressed in ticks.

uint16_t moveAnimationDuration
The complete duration of the actual
animation. Expressed in ticks.

GenericCallback< const MoveAnimator< T > & > * moveAnimationEndedCallback
Animation ended Callback.

int16_t moveAnimationEndX
The X value at the end of the animation.

int16_t moveAnimationEndY
The Y value at the end of the animation.

bool moveAnimationRunning
True if the animation is running.

int16_t moveAnimationStartX
The X value at the beginning of the animation.

int16_t moveAnimationStartY

The Y value at the beginning of the animation.

EasingEquation moveAnimationXEquation
EasingEquation expressing the development
of the X value during the animation.

EasingEquation moveAnimationYEquation
EasingEquation expressing the development
of the Y value during the animation.

Public Functions Documentation
cancelMoveAnimation

void cancelMoveAnimation ()

Cancel move animation and leave the Drawable in its current position.

If the animation is not running, nothing is done.

clearMoveAnimationEndedAction
void clearMoveAnimationEndedAction ()

Clears the move animation ended action previously set by setMoveAnimationEndedAction.

The effect is that any action set using setMoveAnimationEndedAction() will not be executed.

See also:

setMoveAnimationEndedAction

getMoveAnimationDelay
virtual uint16_t getMoveAnimationDelay () const

Gets the current animation delay.

Returns:

The current animation delay.

See also:

setMoveAnimationDelay

handleTickEvent
virtual void handleTickEvent ()

The tick handler that handles the actual animation steps.

isMoveAnimationRunning
bool isMoveAnimationRunning () const

Gets whether or not the move animation is running.

Returns:

true if the move animation is running.

MoveAnimator
MoveAnimator ()

setMoveAnimationDelay
virtual void setMoveAnimationDelay (uint16_t delay)

Sets a delay on animations done by the MoveAnimator.

Parameters:
delay The delay in ticks.

See also:

getMoveAnimationDelay

setMoveAnimationEndedAction

void setMoveAnimationEndedAction (GenericCallback< const MoveAnimator< T > & >
& callback)

Associates an action to be performed when the animation ends.

Parameters:
callback The callback to be executed. The callback will be given a reference to the

MoveAnimator.

See also:

clearMoveAnimationEndedAction

startMoveAnimation
void startMoveAnimation (int16_t endX ,

int16_t endY ,
uint16_t duration ,

EasingEquation xProgressionEquation
=&EasingEquations::linearEaseNone,

EasingEquation yProgressionEquation
=&EasingEquations::linearEaseNone

)

Starts the move animation from the current position to the specified end position.

The development of the position (X, Y) during the animation is described by the supplied
EasingEquations. If no easing equation is given, the movement is performed linear.

Parameters:
endX The X position at animation end.
endY The Y position at animation end.
duration The duration of the animation measured in ticks.
xProgressionEquation (Optional) The equation that describes the development of the X

position during the animation. Default is
EasingEquations::linearEaseNone.

yProgressionEquation (Optional) The equation that describes the development of the Y
position during the animation. Default is
EasingEquations::linearEaseNone.

Protected Functions Documentation
nextMoveAnimationStep

void nextMoveAnimationStep ()

Execute next step in move animation and stop the timer if the animation has finished.

Protected Attributes Documentation
moveAnimationCounter

uint16_t moveAnimationCounter

Counter that is equal to the current step in the animation.

moveAnimationDelay
uint16_t moveAnimationDelay

The delay applied before animation start. Expressed in ticks.

moveAnimationDuration
uint16_t moveAnimationDuration

The complete duration of the actual animation. Expressed in ticks.

moveAnimationEndedCallback
GenericCallback< const MoveAnimator< T > & > * moveAnimationEndedCallback

Animation ended Callback.

moveAnimationEndX
int16_t moveAnimationEndX

The X value at the end of the animation.

moveAnimationEndY
int16_t moveAnimationEndY

The Y value at the end of the animation.

moveAnimationRunning
bool moveAnimationRunning

True if the animation is running.

moveAnimationStartX
int16_t moveAnimationStartX

The X value at the beginning of the animation.

moveAnimationStartY
int16_t moveAnimationStartY

The Y value at the beginning of the animation.

moveAnimationXEquation
EasingEquation moveAnimationXEquation

EasingEquation expressing the development of the X value during the animation.

moveAnimationYEquation
EasingEquation moveAnimationYEquation

EasingEquation expressing the development of the Y value during the animation.

Version: 4.16

MVPApplication
A specialization of the TouchGFX Application class that provides the necessary glue for transitioning
between presenter/view pairs. It maintains a callback for transitioning and evaluates this at each tick.

See: Application

Inherits from: Application, UIEventListener

Public Functions
virtual void handlePendingScreenTransition()

Handles the pending screen transition.

MVPApplication()
Initializes a new instance of the MVPApplication class.

Protected Functions
void evaluatePendingScreenTransition()

Evaluates the pending Callback instances.

Protected Attributes
Presenter * currentPresenter

Pointer to the currently active presenter.

GenericCallback * pendingScreenTransitionCallback
Callback for screen transitions. Will be set to something valid when a transition
request is made.

Additional inherited members

Protected Types inherited from Application
typedef Vector< Rect, 8 > RectVector_t

Type to ensure the same number of rects are in the Vector.

Public Functions inherited from Application
DebugPrinter * getDebugPrinter()

Returns the DebugPrinter object associated with the application.

Application * getInstance()
Gets the single instance application.

void invalidateDebugRegion()
Sets the debug string to be displayed onscreen on top of the framebuffer.

void setDebugPrinter(DebugPrinter * printer)
Sets the DebugPrinter object to be used by the application to print debug
messages.

void setDebugString(const char * string)
Sets the debug string to be displayed onscreen on top of the framebuffer.

virtual void appSwitchScreen(uint8_t screenId)
An application specific function for switching screen.

virtual void cacheDrawOperations(bool enableCache)
This function allows for deferring draw operations to a later time.

void clearAllTimerWidgets()
Clears all currently registered timer widgets.

void copyInvalidatedAreasFromTFTToClientBuffer()
This function copies the parts that were updated in the previous frame (in the tft
buffer) to the active framebuffer (client buffer).

virtual void draw()
Initiate a draw operation of the entire screen.

virtual void draw(Rect & rect)
Initiate a draw operation of the specified region of the screen.

Screen * getCurrentScreen()
Gets the current screen.

uint16_t getNumberOfRegisteredTimerWidgets() const
gets the number of timer widgets that has been registered.

uint16_t getTimerWidgetCountForDrawable(const Drawable * w) const
Gets the number of timer events registered to a widget, i.e.

virtual void handleClickEvent(const ClickEvent & evt)
Handle a click event.

virtual void handleDragEvent(const DragEvent & evt)
Handle drag events.

virtual void handleGestureEvent(const GestureEvent & evt)
Handle gestures.

virtual void handleKeyEvent(uint8_t c)
Handle an incoming character received by the HAL layer.

virtual void handleTickEvent()
Handle tick.

void registerTimerWidget(Drawable * w)
Adds a widget to the list of widgets receiving ticks every frame (typically 16.67ms)

virtual void requestRedraw()
An application specific function for requesting redraw of entire screen.

virtual void requestRedraw(Rect & rect)
An application specific function for requesting redraw of given Rect.

virtual void switchScreen(Screen * newScreen)
Switch to another Screen.

void unregisterTimerWidget(const Drawable * w)
Removes a widget from the list of widgets receiving ticks every frame (typically
16.67ms) milliseconds.

Protected Functions inherited from Application

Application()
Protected constructor.

void invalidateArea(Rect area)
Invalidates this area.

Public Attributes inherited from Application
const uint8_t MAX_TIMER_WIDGETS

Maximum number of widgets receiving ticks.

const uint16_t TICK_INTERVAL_MS
Deprecated, do not use this constant. Tick interval depends on VSYNC of your target
platform.

Protected Attributes inherited from Application
RectVector_t cachedDirtyAreas

When draw caching is enabled, these rects keeps
track of the dirty screen area.

bool drawCacheEnabled
True when draw caching is active.

RectVector_t lastRects
The dirty areas from last frame that needs to be
redrawn because we have swapped frame buffers.

Rect redraw
Rect describing application requested invalidate
area.

uint8_t timerWidgetCounter
A counter for each potentially registered timer
widget. Increase when registering for timer events,
decrease when unregistering.

Vector< Drawable *, MAX_TIMER_WIDGETS > timerWidgets
List of widgets that receive timer ticks.

bool transitionHandled

True if the transition is done and
Screen::afterTransition has been called.

Screen * currentScreen
Pointer to currently displayed Screen.

Transition * currentTransition
Pointer to current transition.

DebugPrinter * debugPrinter
Pointer to the DebugPrinter instance.

Rect debugRegionInvalidRect
Invalidated Debug Region.

Application * instance
Pointer to the instance of the Application-derived
subclass.

Public Functions inherited from UIEventListener
virtual void handleClickEvent(const ClickEvent & event)

This handler is invoked when a mouse click or display touch event has been detected by
the system.

virtual void handleDragEvent(const DragEvent & event)
This handler is invoked when a drag event has been detected by the system.

virtual void handleGestureEvent(const GestureEvent & event)
This handler is invoked when a gesture event has been detected by the system.

virtual void handleKeyEvent(uint8_t c)
This handler is invoked when a key (or button) event has been detected by the system.

virtual void handleTickEvent()
This handler is invoked when a system tick event has been generated.

virtual ~UIEventListener()
Finalizes an instance of the UIEventListener class.

Public Functions Documentation

handlePendingScreenTransition
virtual void handlePendingScreenTransition ()

Handles the pending screen transition.

Delegates the work to evaluatePendingScreenTransition()

Reimplements: touchgfx::Application::handlePendingScreenTransition

MVPApplication
MVPApplication ()

Initializes a new instance of the MVPApplication class.

Protected Functions Documentation
evaluatePendingScreenTransition

void evaluatePendingScreenTransition ()

Evaluates the pending Callback instances.

If a callback is valid, it is executed and a Screen transition is executed.

Protected Attributes Documentation
currentPresenter

Presenter * currentPresenter

Pointer to the currently active presenter.

pendingScreenTransitionCallback
GenericCallback * pendingScreenTransitionCallback

Callback for screen transitions. Will be set to something valid when a transition request is made.

Version: 4.16

MVPHeap
Generic heap class for MVP applications. Serves as a way of obtaining the memory storage areas for
presenters, screens, transitions and the concrete application.

Subclassed by an application-specific heap which provides the actual storage areas. This generic
interface is used only in makeTransition.

Public Functions
MVPHeap(AbstractPartition & pres, AbstractPartition & scr, AbstractPartition & tra,
MVPApplication & app)
Initializes a new instance of the MVPHeap class.

virtual ~MVPHeap()
Finalizes an instance of the MVPHeap class.

Public Attributes
MVPApplication & frontendApplication

A reference to the MVPApplication instance.

AbstractPartition & presenterStorage
A memory partition containing enough memory to hold the largest presenter.

AbstractPartition & screenStorage
A memory partition containing enough memory to hold the largest view.

AbstractPartition & transitionStorage
A memory partition containing enough memory to hold the largest transition.

Public Functions Documentation
MVPHeap

MVPHeap (AbstractPartition & pres ,
AbstractPartition & scr ,
AbstractPartition & tra ,
MVPApplication & app
)

Initializes a new instance of the MVPHeap class.

Parameters:
pres A memory partition containing enough memory to hold the largest presenter.
scr A memory partition containing enough memory to hold the largest view.
tra A memory partition containing enough memory to hold the largest transition.
app A reference to the MVPApplication instance.

~MVPHeap
virtual ~MVPHeap ()

Finalizes an instance of the MVPHeap class.

Public Attributes Documentation
frontendApplication

MVPApplication & frontendApplication

A reference to the MVPApplication instance.

presenterStorage
AbstractPartition & presenterStorage

A memory partition containing enough memory to hold the largest presenter.

screenStorage
AbstractPartition & screenStorage

A memory partition containing enough memory to hold the largest view.

transitionStorage
AbstractPartition & transitionStorage

A memory partition containing enough memory to hold the largest transition.

Version: 4.16

NoDMA
This is an "empty" DMA subclass that does nothing except assert if accidentally used. An instance of
this object can be used if DMA support is not desired.

See: DMA_Interface

Inherits from: DMA_Interface

Public Functions
virtual void flush()

Block until all DMA transfers are complete.

virtual BlitOperations getBlitCaps()
No blit operations supported by this DMA implementation.

NoDMA()

virtual void setupDataCopy(const BlitOp & blitOp)
Asserts if used.

virtual void setupDataFill(const BlitOp & blitOp)
Asserts if used.

virtual void signalDMAInterrupt()
Does nothing.

Additional inherited members
Public Functions inherited from DMA_Interface

virtual void addToQueue(const BlitOp & op)
Inserts a BlitOp for processing.

bool getAllowed() const
Gets whether a DMA operation is allowed to begin.

virtual DMAType getDMAType(void)
Function for obtaining the DMA type of the concrete DMA_Interface
implementation.

virtual void initialize()
Perform initialization.

uint8_t isDmaQueueEmpty()
Query if the DMA queue is empty.

uint8_t isDmaQueueFull()
Query if the DMA queue is full.

bool isDMARunning()
Query if the DMA is running.

void setAllowed(bool allowed)
Sets whether or not a DMA operation is allowed to begin.

virtual void start()
Signals that DMA transfers can start.

virtual ~DMA_Interface()
Finalizes an instance of the DMA_Interface class.

Protected Functions inherited from DMA_Interface
virtual void disableAlpha()

Configures blit-op hardware for solid operation (no alpha-blending)

DMA_Interface(DMA_Queue & dmaQueue)
Constructs a DMA Interface object.

virtual void enableAlpha(uint8_t alpha)
Configures blit-op hardware for alpha-blending.

virtual void enableCopyWithTransparentPixels(uint8_t alpha)
Configures blit-op hardware for alpha-blending while simultaneously skipping
transparent pixels.

virtual void execute()
Performs a queued blit-op.

virtual void executeCompleted()
To be called when blit-op has been performed.

virtual void seedExecution()
Called when elements are added to the DMA-queue.

virtual void waitForFrameBufferSemaphore()
Waits until framebuffer semaphore is available (i.e.

Protected Attributes inherited from DMA_Interface
bool isAllowed

true if DMA transfers are currently allowed.

bool isRunning
true if a DMA transfer is currently ongoing.

DMA_Queue & queue
Reference to the DMA queue.

Public Functions Documentation
flush

virtual void flush ()

Block until all DMA transfers are complete.

Since this particular DMA does not do anything, return immediately.

Reimplements: touchgfx::DMA_Interface::flush

getBlitCaps
virtual BlitOperations getBlitCaps ()

No blit operations supported by this DMA implementation.

Returns:

Zero (no blit ops supported).

Reimplements: touchgfx::DMA_Interface::getBlitCaps

NoDMA
NoDMA ()

setupDataCopy
virtual void setupDataCopy (const BlitOp & blitOp)

Asserts if used.

Parameters:
blitOp The blit operation to be performed by this DMA instance.

Reimplements: touchgfx::DMA_Interface::setupDataCopy

setupDataFill
virtual void setupDataFill (const BlitOp & blitOp)

Asserts if used.

Parameters:
blitOp The blit operation to be performed by this DMA instance.

Reimplements: touchgfx::DMA_Interface::setupDataFill

signalDMAInterrupt
virtual void signalDMAInterrupt ()

Does nothing.

Reimplements: touchgfx::DMA_Interface::signalDMAInterrupt

Version: 4.16

NoTouchController
Empty TouchController implementation which does nothing. Use this if your display does not have
touch input capabilities.

Inherits from: TouchController

Public Functions
virtual void init()

Initializes touch controller.

virtual bool sampleTouch(int32_t & x, int32_t & y)
Checks whether the touch screen is being touched, and if so, what coordinates.

Additional inherited members
Public Functions inherited from TouchController

virtual ~TouchController()
Finalizes an instance of the TouchController class.

Public Functions Documentation
init

virtual void init ()

Initializes touch controller.

Reimplements: touchgfx::TouchController::init

sampleTouch

virtual bool sampleTouch (int32_t & x ,
int32_t & y
)

Checks whether the touch screen is being touched, and if so, what coordinates.

Parameters:
x The x position of the touch.
y The y position of the touch.

Returns:

True if a touch has been detected, otherwise false.

Reimplements: touchgfx::TouchController::sampleTouch

Version: 4.16

NoTransition
The most simple Transition without any visual effects. THe screen transition is done by immediately
replace the current Screen with a new Screen.

See: Transition

Inherits from: Transition

Public Functions
virtual void handleTickEvent()

Indicates that the transition is done after the first tick.

Additional inherited members
Public Functions inherited from Transition

virtual void init()
Initializes the transition.

virtual void invalidate()
Invalidates the screen when starting the Transition.

bool isDone() const
Query if the transition is done transitioning.

virtual void setScreenContainer(Container & cont)
Sets the ScreenContainer.

virtual void tearDown()
Tears down the Animation.

Transition()
Initializes a new instance of the Transition class.

virtual ~Transition()

Finalizes an instance of the Transition class.

Protected Attributes inherited from Transition
bool done

Flag that indicates when the transition is done. This should be set by implementing
classes.

Container * screenContainer
The screen Container of the Screen transitioning to.

Public Functions Documentation
handleTickEvent

virtual void handleTickEvent ()

Indicates that the transition is done after the first tick.

Reimplements: touchgfx::Transition::handleTickEvent

Version: 4.16

OSWrappers
This class specifies OS wrappers for dealing with the framebuffer semaphore and the VSYNC signal.

Public Functions
void giveFrameBufferSemaphore()

Release the framebuffer semaphore.

void giveFrameBufferSemaphoreFromISR()
Release the framebuffer semaphore in a way that is safe in interrupt context.

void initialize()
Initialize framebuffer semaphore and queue/mutex for VSYNC signal.

bool isVSyncAvailable()
This function checks if a VSync occurred after last rendering.

void signalRenderingDone()
Signal that the rendering of the frame has completed.

void signalVSync()
Signal that a VSYNC has occurred.

void takeFrameBufferSemaphore()
Take the framebuffer semaphore.

void taskDelay(uint16_t ms)
A function that causes executing task to sleep for a number of milliseconds.

void tryTakeFrameBufferSemaphore()
Attempt to obtain the framebuffer semaphore.

void waitForVSync()
This function blocks until a VSYNC occurs.

Public Functions Documentation

giveFrameBufferSemaphore
static void giveFrameBufferSemaphore ()

Release the framebuffer semaphore.

giveFrameBufferSemaphoreFromISR
static void giveFrameBufferSemaphoreFromISR ()

Release the framebuffer semaphore in a way that is safe in interrupt context.

Called from ISR.

initialize
static void initialize ()

Initialize framebuffer semaphore and queue/mutex for VSYNC signal.

isVSyncAvailable
static bool isVSyncAvailable ()

This function checks if a VSync occurred after last rendering.

The function is used in systems that cannot wait in waitForVSync (because they are also checking
other event sources.

Returns:

True if VSync occurred.

NOTE

signalRenderingDone is typically used together with this function.

signalRenderingDone
static void signalRenderingDone ()

Signal that the rendering of the frame has completed.

Used by some systems to avoid using any previous vsync.

signalVSync
static void signalVSync ()

Signal that a VSYNC has occurred.

Should make the vsync queue/mutex available.

NOTE

This function is called from an ISR, and should (depending on OS) trigger a scheduling.

takeFrameBufferSemaphore
static void takeFrameBufferSemaphore ()

Take the framebuffer semaphore.

Blocks until semaphore is available.

taskDelay
static void taskDelay (uint16_t ms)

A function that causes executing task to sleep for a number of milliseconds.

This function is OPTIONAL. It is only used by the TouchGFX in the case of a specific frame refresh
strategy (REFRESH_STRATEGY_OPTIM_SINGLE_BUFFER_TFT_CTRL). Due to backwards compatibility,
in order for this function to be usable by the HAL the function must be explicitly registered:
hal.registerTaskDelayFunction(&OSWrappers::taskDelay)

Parameters:
ms The number of milliseconds to sleep.

See also:

HAL::setFrameRefreshStrategy, HAL::registerTaskDelayFunction

tryTakeFrameBufferSemaphore

static void tryTakeFrameBufferSemaphore ()

Attempt to obtain the framebuffer semaphore.

If semaphore is not available, do nothing.

NOTE

must return immediately! This function does not care who has the taken the semaphore, it only serves to
make sure that the semaphore is taken by someone.

waitForVSync
static void waitForVSync ()

This function blocks until a VSYNC occurs.

NOTE

This function must first clear the mutex/queue and then wait for the next one to occur.

Version: 4.16

PainterABGR2222
The PainterABGR2222 class allows a shape to be filled with a given color and alpha value. This allows
transparent, anti-aliased elements to be drawn.

See: AbstractPainter

Inherits from: AbstractPainterABGR2222, AbstractPainter

Public Functions
colortype getColor() const

Gets the current color.

PainterABGR2222(colortype color =0, uint8_t alpha =255)
Initializes a new instance of the PainterABGR2222 class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setColor(colortype color)
Sets color and alpha to use when drawing the CanvasWidget.

Protected Functions
virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
uint8_t painterBlue

The blue part of the color, scaled up to [0..255].

uint8_t painterColor
The color.

uint8_t painterGreen
The green part of the color, scaled up to [0..255].

uint8_t painterRed
The red part of the color, scaled up to [0..255].

Additional inherited members
Public Functions inherited from AbstractPainterABGR2222

AbstractPainterABGR2222()

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t newpix, uint8_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t R, uint8_t G, uint8_t B, uint8_t bufpix, uint8_t
alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

Protected Functions inherited from AbstractPainterABGR2222
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual void renderPixel(uint8_t * p, uint8_t red, uint8_t green, uint8_t blue)
Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from
AbstractPainterABGR2222

int currentX
Current x coordinate relative to the widget.

int currentY

Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
getColor

colortype getColor () const

Gets the current color.

Returns:

The color.

PainterABGR2222
PainterABGR2222 (colortype color =0,

uint8_t alpha =255
)

Initializes a new instance of the PainterABGR2222 class.

Parameters:
color (Optional) the color, default is black.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterABGR2222::render

setColor
void setColor (colortype color)

Sets color and alpha to use when drawing the CanvasWidget.

Parameters:
color The color.

Protected Functions Documentation
renderNext

virtual bool renderNext (uint8_t & red ,
uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.

green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterABGR2222::renderNext

Protected Attributes Documentation
painterBlue

uint8_t painterBlue

The blue part of the color, scaled up to [0..255].

painterColor
uint8_t painterColor

The color.

painterGreen
uint8_t painterGreen

The green part of the color, scaled up to [0..255].

painterRed
uint8_t painterRed

The red part of the color, scaled up to [0..255].

Version: 4.16

PainterABGR2222Bitmap
PainterABGR2222Bitmap will take the color for a given point in the shape from a bitmap. Please be
aware, the the bitmap is used by the CanvasWidgetRenderer (not Shape), so any rotation you might
specify for a CanvasWidget (e.g. Shape) is not applied to the bitmap as CWR is not aware of this
rotation.

See: AbstractPainter

Inherits from: AbstractPainterABGR2222, AbstractPainter

Public Functions
PainterABGR2222Bitmap(const Bitmap & bmp =Bitmap(BITMAP_INVALID), uint8_t
alpha =255)
Initializes a new instance of the PainterABGR2222Bitmap class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setBitmap(const Bitmap & bmp)
Sets a bitmap to be used when drawing the CanvasWidget.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)
Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
Bitmap bitmap

The bitmap to be used when painting.

const uint8_t * bitmapABGR2222Pointer
Pointer to the bitmap (ABGR2222)

Rect bitmapRectToFrameBuffer
Bitmap rectangle translated to framebuffer coordinates.

Additional inherited members
Public Functions inherited from AbstractPainterABGR2222

AbstractPainterABGR2222()

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t newpix, uint8_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t R, uint8_t G, uint8_t B, uint8_t bufpix, uint8_t
alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

Protected Functions inherited from AbstractPainterABGR2222
virtual void renderPixel(uint8_t * p, uint8_t red, uint8_t green, uint8_t blue)

Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from
AbstractPainterABGR2222

int currentX
Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
PainterABGR2222Bitmap

PainterABGR2222Bitmap (const Bitmap & bmp =Bitmap(BITMAP_INVALID),
uint8_t alpha =255
)

Initializes a new instance of the PainterABGR2222Bitmap class.

Parameters:
bmp (Optional) the bitmap, default is BITMAP_INVALID.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterABGR2222::render

setBitmap
void setBitmap (const Bitmap & bmp)

Sets a bitmap to be used when drawing the CanvasWidget.

Parameters:
bmp The bitmap.

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplements: touchgfx::AbstractPainterABGR2222::renderInit

renderNext
virtual bool renderNext (uint8_t & red ,

uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterABGR2222::renderNext

Protected Attributes Documentation
bitmap

Bitmap bitmap

The bitmap to be used when painting.

bitmapABGR2222Pointer
const uint8_t * bitmapABGR2222Pointer

Pointer to the bitmap (ABGR2222)

bitmapRectToFrameBuffer
Rect bitmapRectToFrameBuffer

Bitmap rectangle translated to framebuffer coordinates.

Version: 4.16

PainterARGB2222
The PainterARGB2222 class allows a shape to be filled with a given color and alpha value. This allows
transparent, anti-aliased elements to be drawn.

See: AbstractPainter

Inherits from: AbstractPainterARGB2222, AbstractPainter

Public Functions
colortype getColor() const

Gets the current color.

PainterARGB2222(colortype color =0, uint8_t alpha =255)
Initializes a new instance of the PainterARGB2222 class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setColor(colortype color)
Sets color and alpha to use when drawing the CanvasWidget.

Protected Functions
virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
uint8_t painterBlue

The blue part of the color, scaled up to [0..255].

uint8_t painterColor
The color.

uint8_t painterGreen
The green part of the color, scaled up to [0..255].

uint8_t painterRed
The red part of the color, scaled up to [0..255].

Additional inherited members
Public Functions inherited from AbstractPainterARGB2222

AbstractPainterARGB2222()

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t newpix, uint8_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t R, uint8_t G, uint8_t B, uint8_t bufpix, uint8_t
alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

Protected Functions inherited from AbstractPainterARGB2222
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual void renderPixel(uint8_t * p, uint8_t red, uint8_t green, uint8_t blue)
Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from
AbstractPainterARGB2222

int currentX
Current x coordinate relative to the widget.

int currentY

Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
getColor

colortype getColor () const

Gets the current color.

Returns:

The color.

PainterARGB2222
PainterARGB2222 (colortype color =0,

uint8_t alpha =255
)

Initializes a new instance of the PainterARGB2222 class.

Parameters:
color (Optional) the color, default is black.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterARGB2222::render

setColor
void setColor (colortype color)

Sets color and alpha to use when drawing the CanvasWidget.

Parameters:
color The color.

Protected Functions Documentation
renderNext

virtual bool renderNext (uint8_t & red ,
uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.

green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterARGB2222::renderNext

Protected Attributes Documentation
painterBlue

uint8_t painterBlue

The blue part of the color, scaled up to [0..255].

painterColor
uint8_t painterColor

The color.

painterGreen
uint8_t painterGreen

The green part of the color, scaled up to [0..255].

painterRed
uint8_t painterRed

The red part of the color, scaled up to [0..255].

Version: 4.16

PainterARGB2222Bitmap
PainterARGB2222Bitmap will take the color for a given point in the shape from a bitmap. Please be
aware, the the bitmap is used by the CanvasWidgetRenderer (not Shape), so any rotation you might
specify for a CanvasWidget (e.g. Shape) is not applied to the bitmap as CWR is not aware of this
rotation.

See: AbstractPainter

Inherits from: AbstractPainterARGB2222, AbstractPainter

Public Functions
PainterARGB2222Bitmap(const Bitmap & bmp =Bitmap(BITMAP_INVALID), uint8_t
alpha =255)
Constructor.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setBitmap(const Bitmap & bmp)
Sets a bitmap to be used when drawing the CanvasWidget.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)
Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
Bitmap bitmap

The bitmap to be used when painting.

const uint8_t * bitmapARGB2222Pointer
Pointer to the bitmap (ARGB2222)

Rect bitmapRectToFrameBuffer
Bitmap rectangle translated to framebuffer coordinates.

Additional inherited members
Public Functions inherited from AbstractPainterARGB2222

AbstractPainterARGB2222()

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t newpix, uint8_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t R, uint8_t G, uint8_t B, uint8_t bufpix, uint8_t
alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

Protected Functions inherited from AbstractPainterARGB2222
virtual void renderPixel(uint8_t * p, uint8_t red, uint8_t green, uint8_t blue)

Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from
AbstractPainterARGB2222

int currentX
Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
PainterARGB2222Bitmap

PainterARGB2222Bitmap (const Bitmap & bmp =Bitmap(BITMAP_INVALID),
uint8_t alpha =255
)

Constructor.

Parameters:
bmp (Optional) The bitmap, default is BITMAP_INVALID.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterARGB2222::render

setBitmap
void setBitmap (const Bitmap & bmp)

Sets a bitmap to be used when drawing the CanvasWidget.

Parameters:
bmp The bitmap.

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplements: touchgfx::AbstractPainterARGB2222::renderInit

renderNext
virtual bool renderNext (uint8_t & red ,

uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterARGB2222::renderNext

Protected Attributes Documentation
bitmap

Bitmap bitmap

The bitmap to be used when painting.

bitmapARGB2222Pointer
const uint8_t * bitmapARGB2222Pointer

Pointer to the bitmap (ARGB2222)

bitmapRectToFrameBuffer
Rect bitmapRectToFrameBuffer

Bitmap rectangle translated to framebuffer coordinates.

Version: 4.16

PainterARGB8888
The PainterARGB8888 class allows a shape to be filled with a given color and alpha value. This allows
transparent, anti-aliased elements to be drawn.

See: AbstractPainter

Inherits from: AbstractPainterARGB8888, AbstractPainter

Public Functions
colortype getColor() const

Gets the current color.

PainterARGB8888(colortype color =0, uint8_t alpha =255)
Initializes a new instance of the PainterARGB8888 class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setColor(colortype color)
Sets color and alpha to use when drawing the CanvasWidget.

Protected Functions
virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
uint8_t painterBlue

The blue part of the color.

uint8_t painterGreen
The green part of the color.

uint8_t painterRed
The red part of the color.

Additional inherited members
Public Functions inherited from AbstractPainterARGB8888

AbstractPainterARGB8888()

Protected Functions inherited from AbstractPainterARGB8888
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue)
Renders (writes) the specified color into the framebuffer.

virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue, uint8_t alpha)
Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from
AbstractPainterARGB8888

int currentX
Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
getColor

colortype getColor () const

Gets the current color.

Returns:

The color.

PainterARGB8888
PainterARGB8888 (colortype color =0,

uint8_t alpha =255
)

Initializes a new instance of the PainterARGB8888 class.

Parameters:
color (Optional) the color, default is black.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterARGB8888::render

setColor
void setColor (colortype color)

Sets color and alpha to use when drawing the CanvasWidget.

Parameters:
color The color.

Protected Functions Documentation
renderNext

virtual bool renderNext (uint8_t & red ,
uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterARGB8888::renderNext

Protected Attributes Documentation

painterBlue
uint8_t painterBlue

The blue part of the color.

painterGreen
uint8_t painterGreen

The green part of the color.

painterRed
uint8_t painterRed

The red part of the color.

Version: 4.16

PainterARGB8888Bitmap
PainterARGB8888Bitmap will take the color for a given point in the shape from a bitmap. Please be
aware, the the bitmap is used by the CanvasWidgetRenderer (not Shape), so any rotation you might
specify for a CanvasWidget (e.g. Shape) is not applied to the bitmap as CWR is not aware of this
rotation.

See: AbstractPainter

Inherits from: AbstractPainterARGB8888, AbstractPainter

Public Functions
PainterARGB8888Bitmap(const Bitmap & bmp =Bitmap(BITMAP_INVALID), uint8_t
alpha =255)
Initializes a new instance of the PainterARGB8888Bitmap class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setBitmap(const Bitmap & bmp)
Sets a bitmap to be used when drawing the CanvasWidget.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)
Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
Bitmap bitmap

The bitmap to be used when painting.

const uint32_t * bitmapARGB8888Pointer
Pointer to the bitmap (ARGB8888)

Rect bitmapRectToFrameBuffer
Bitmap rectangle translated to framebuffer coordinates.

const uint16_t * bitmapRGB565Pointer
Pointer to the bitmap (RGB565)

const uint8_t * bitmapRGB888Pointer
Pointer to the bitmap (RGB888)

Additional inherited members
Public Functions inherited from AbstractPainterARGB8888

AbstractPainterARGB8888()

Protected Functions inherited from AbstractPainterARGB8888
virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue)

Renders (writes) the specified color into the framebuffer.

virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue, uint8_t alpha)
Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from
AbstractPainterARGB8888

int currentX
Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter

AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
PainterARGB8888Bitmap

PainterARGB8888Bitmap (const Bitmap & bmp =Bitmap(BITMAP_INVALID),
uint8_t alpha =255
)

Initializes a new instance of the PainterARGB8888Bitmap class.

Parameters:
bmp (Optional) The bitmap, default is BITMAP_INVALID.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterARGB8888::render

setBitmap
void setBitmap (const Bitmap & bmp)

Sets a bitmap to be used when drawing the CanvasWidget.

Parameters:
bmp The bitmap.

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplements: touchgfx::AbstractPainterARGB8888::renderInit

renderNext
virtual bool renderNext (uint8_t & red ,

uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterARGB8888::renderNext

Protected Attributes Documentation
bitmap

Bitmap bitmap

The bitmap to be used when painting.

bitmapARGB8888Pointer
const uint32_t * bitmapARGB8888Pointer

Pointer to the bitmap (ARGB8888)

bitmapRectToFrameBuffer
Rect bitmapRectToFrameBuffer

Bitmap rectangle translated to framebuffer coordinates.

bitmapRGB565Pointer
const uint16_t * bitmapRGB565Pointer

Pointer to the bitmap (RGB565)

bitmapRGB888Pointer
const uint8_t * bitmapRGB888Pointer

Pointer to the bitmap (RGB888)

Version: 4.16

PainterARGB8888L8Bitmap
PainterARGB8888L8Bitmap will take the color for a given point in the shape from a bitmap. Please be
aware, the the bitmap is used by the CanvasWidgetRenderer (not Shape), so any rotation you might
specify for a CanvasWidget (e.g. Shape) is not applied to the bitmap as CWR is not aware of this
rotation.

See: AbstractPainter

Inherits from: AbstractPainterARGB8888, AbstractPainter

Public Functions
PainterARGB8888L8Bitmap(const Bitmap & bmp =Bitmap(BITMAP_INVALID),
uint8_t alpha =255)
Initializes a new instance of the PainterARGB8888L8Bitmap class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setBitmap(const Bitmap & bmp)
Sets a bitmap to be used when drawing the CanvasWidget.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)
Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
Bitmap bitmap

The bitmap to be used when painting.

const uint8_t * bitmapExtraPointer
Pointer to the CLUT (L8)

const uint8_t * bitmapPointer
Pointer to the bitmap (L8)

Rect bitmapRectToFrameBuffer
Bitmap rectangle translated to framebuffer coordinates.

Additional inherited members
Public Functions inherited from AbstractPainterARGB8888

AbstractPainterARGB8888()

Protected Functions inherited from AbstractPainterARGB8888
virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue)

Renders (writes) the specified color into the framebuffer.

virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue, uint8_t alpha)
Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from
AbstractPainterARGB8888

int currentX
Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation

PainterARGB8888L8Bitmap
PainterARGB8888L8Bitmap (const Bitmap & bmp =Bitmap(BITMAP_INVALID),

uint8_t alpha =255
)

Initializes a new instance of the PainterARGB8888L8Bitmap class.

Parameters:
bmp (Optional) The bitmap, default is BITMAP_INVALID.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterARGB8888::render

setBitmap
void setBitmap (const Bitmap & bmp)

Sets a bitmap to be used when drawing the CanvasWidget.

Parameters:
bmp The bitmap.

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplements: touchgfx::AbstractPainterARGB8888::renderInit

renderNext
virtual bool renderNext (uint8_t & red ,

uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterARGB8888::renderNext

Protected Attributes Documentation
bitmap

Bitmap bitmap

The bitmap to be used when painting.

bitmapExtraPointer
const uint8_t * bitmapExtraPointer

Pointer to the CLUT (L8)

bitmapPointer
const uint8_t * bitmapPointer

Pointer to the bitmap (L8)

bitmapRectToFrameBuffer
Rect bitmapRectToFrameBuffer

Bitmap rectangle translated to framebuffer coordinates.

Version: 4.16

PainterBGRA2222
The PainterBGRA2222 class allows a shape to be filled with a given color and alpha value. This allows
transparent, anti-aliased elements to be drawn.

See: AbstractPainter

Inherits from: AbstractPainterBGRA2222, AbstractPainter

Public Functions
colortype getColor() const

Gets the current color.

PainterBGRA2222(colortype color =0, uint8_t alpha =255)
Initializes a new instance of the PainterBGRA2222 class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setColor(colortype color)
Sets color and alpha to use when drawing the CanvasWidget.

Protected Functions
virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
uint8_t painterBlue

The blue part of the color, scaled up to [0..255].

uint8_t painterColor
The color.

uint8_t painterGreen
The green part of the color, scaled up to [0..255].

uint8_t painterRed
The red part of the color, scaled up to [0..255].

Additional inherited members
Public Functions inherited from AbstractPainterBGRA2222

AbstractPainterBGRA2222()

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t newpix, uint8_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t R, uint8_t G, uint8_t B, uint8_t bufpix, uint8_t
alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

Protected Functions inherited from AbstractPainterBGRA2222
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual void renderPixel(uint8_t * p, uint8_t red, uint8_t green, uint8_t blue)
Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from
AbstractPainterBGRA2222

int currentX
Current x coordinate relative to the widget.

int currentY

Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
getColor

colortype getColor () const

Gets the current color.

Returns:

The color.

PainterBGRA2222
PainterBGRA2222 (colortype color =0,

uint8_t alpha =255
)

Initializes a new instance of the PainterBGRA2222 class.

Parameters:
color (Optional) the color, default is black.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterBGRA2222::render

setColor
void setColor (colortype color)

Sets color and alpha to use when drawing the CanvasWidget.

Parameters:
color The color.

Protected Functions Documentation
renderNext

virtual bool renderNext (uint8_t & red ,
uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.

green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterBGRA2222::renderNext

Protected Attributes Documentation
painterBlue

uint8_t painterBlue

The blue part of the color, scaled up to [0..255].

painterColor
uint8_t painterColor

The color.

painterGreen
uint8_t painterGreen

The green part of the color, scaled up to [0..255].

painterRed
uint8_t painterRed

The red part of the color, scaled up to [0..255].

Version: 4.16

PainterBGRA2222Bitmap
PainterBGRA2222Bitmap will take the color for a given point in the shape from a bitmap. Please be
aware, the the bitmap is used by the CanvasWidgetRenderer (not Shape), so any rotation you might
specify for a CanvasWidget (e.g. Shape) is not applied to the bitmap as CWR is not aware of this
rotation.

See: AbstractPainter

Inherits from: AbstractPainterBGRA2222, AbstractPainter

Public Functions
PainterBGRA2222Bitmap(const Bitmap & bmp =Bitmap(BITMAP_INVALID), uint8_t
alpha =255)
Initializes a new instance of the PainterBGRA2222Bitmap class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setBitmap(const Bitmap & bmp)
Sets a bitmap to be used when drawing the CanvasWidget.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)
Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
Bitmap bitmap

The bitmap to be used when painting.

const uint8_t * bitmapBGRA2222Pointer
Pointer to the bitmap (BGRA2222)

Rect bitmapRectToFrameBuffer
Bitmap rectangle translated to framebuffer coordinates.

Additional inherited members
Public Functions inherited from AbstractPainterBGRA2222

AbstractPainterBGRA2222()

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t newpix, uint8_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t R, uint8_t G, uint8_t B, uint8_t bufpix, uint8_t
alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

Protected Functions inherited from AbstractPainterBGRA2222
virtual void renderPixel(uint8_t * p, uint8_t red, uint8_t green, uint8_t blue)

Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from
AbstractPainterBGRA2222

int currentX
Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
PainterBGRA2222Bitmap

PainterBGRA2222Bitmap (const Bitmap & bmp =Bitmap(BITMAP_INVALID),
uint8_t alpha =255
)

Initializes a new instance of the PainterBGRA2222Bitmap class.

Parameters:
bmp (Optional) The bitmap, default is BITMAP_INVALID.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterBGRA2222::render

setBitmap
void setBitmap (const Bitmap & bmp)

Sets a bitmap to be used when drawing the CanvasWidget.

Parameters:
bmp The bitmap.

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplements: touchgfx::AbstractPainterBGRA2222::renderInit

renderNext
virtual bool renderNext (uint8_t & red ,

uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterBGRA2222::renderNext

Protected Attributes Documentation
bitmap

Bitmap bitmap

The bitmap to be used when painting.

bitmapBGRA2222Pointer
const uint8_t * bitmapBGRA2222Pointer

Pointer to the bitmap (BGRA2222)

bitmapRectToFrameBuffer
Rect bitmapRectToFrameBuffer

Bitmap rectangle translated to framebuffer coordinates.

Version: 4.16

PainterBW
PainterBW is used for drawing one 1bpp displays. The color is either on or off. No transparency is
supported.

See: AbstractPainter

Inherits from: AbstractPainterBW, AbstractPainter

Public Functions
unsigned bw(unsigned red, unsigned green, unsigned blue)

Converts the selected color to either white (1) or black (0) depending on the gray
representation of the RGB color.

colortype getColor() const
Gets the current color.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setColor(colortype color)
Sets color to use when drawing the CanvasWidget.

Protected Functions
virtual bool renderNext(uint8_t & color)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
uint8_t painterColor

The color to use when painting.

Additional inherited members
Public Functions inherited from AbstractPainterBW

AbstractPainterBW()

Protected Functions inherited from AbstractPainterBW
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

Protected Attributes inherited from AbstractPainterBW
uint16_t currentX

Current x coordinate relative to the widget.

uint16_t currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter

void setWidgetAlpha(const uint8_t alpha)
Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
bw

static unsigned bw (unsigned red ,
unsigned green ,
unsigned blue
)

Converts the selected color to either white (1) or black (0) depending on the gray representation of
the RGB color.

Parameters:
red The red color.
green The green color.
blue The blue color.

Returns:

1 (white) if the brightness of the RGB color is above 50% and 0 (black) otherwise.

getColor
colortype getColor () const

Gets the current color.

Returns:

The color.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterBW::render

setColor
void setColor (colortype color)

Sets color to use when drawing the CanvasWidget.

Parameters:
color The color, 0=black, otherwise white.

Protected Functions Documentation
renderNext

virtual bool renderNext (uint8_t & color)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
color The color (0 or 1).

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterBW::renderNext

Protected Attributes Documentation
painterColor

uint8_t painterColor

The color to use when painting.

Version: 4.16

PainterBWBitmap
PainterBWBitmap will take the color for a given point in the shape from a bitmap. Please be aware, the
the bitmap is used by the CanvasWidgetRenderer (not Shape), so any rotation you might specify for a
CanvasWidget (e.g. Shape) is not applied to the bitmap as CWR is not aware of this rotation.

See: AbstractPainter

Inherits from: AbstractPainterBW, AbstractPainter

Public Functions
PainterBWBitmap(const Bitmap & bmp =Bitmap(BITMAP_INVALID))
Initializes a new instance of the PainterBWBitmap class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setBitmap(const Bitmap & bmp)
Sets a bitmap to be used when drawing the CanvasWidget.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & color)
Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
Bitmap bitmap

The bitmap to be used when painting.

const uint8_t * bitmapBWPointer

Pointer to the bitmap (BW)

Rect bitmapRectToFrameBuffer
Bitmap rectangle translated to framebuffer coordinates.

LCD1bpp::bwRLEdata bw_rle
Pointer to class for walking through bw_rle image.

Additional inherited members
Public Functions inherited from AbstractPainterBW

AbstractPainterBW()

Protected Attributes inherited from AbstractPainterBW
uint16_t currentX

Current x coordinate relative to the widget.

uint16_t currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
PainterBWBitmap

PainterBWBitmap (const Bitmap & bmp =Bitmap(BITMAP_INVALID))

Initializes a new instance of the PainterBWBitmap class.

Parameters:
bmp (Optional) The bitmap, default is BITMAP_INVALID.

render
virtual void render (uint8_t * ptr ,

int x ,

int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterBW::render

setBitmap
void setBitmap (const Bitmap & bmp)

Sets a bitmap to be used when drawing the CanvasWidget.

Parameters:
bmp The bitmap.

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplements: touchgfx::AbstractPainterBW::renderInit

renderNext
virtual bool renderNext (uint8_t & color)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
color The color (0 or 1).

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterBW::renderNext

Protected Attributes Documentation
bitmap

Bitmap bitmap

The bitmap to be used when painting.

bitmapBWPointer
const uint8_t * bitmapBWPointer

Pointer to the bitmap (BW)

bitmapRectToFrameBuffer

Rect bitmapRectToFrameBuffer

Bitmap rectangle translated to framebuffer coordinates.

bw_rle
LCD1bpp::bwRLEdata bw_rle

Pointer to class for walking through bw_rle image.

Version: 4.16

PainterGRAY2
The PainterGRAY2 class allows a shape to be filled with a given color and alpha value. This allows
transparent, anti-aliased elements to be drawn.

See: AbstractPainter

Inherits from: AbstractPainterGRAY2, AbstractPainter

Public Functions
colortype getColor() const

Gets the current color.

PainterGRAY2(colortype color =0, uint8_t alpha =255)
Initializes a new instance of the PainterGRAY2 class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setColor(colortype color)
Sets color and alpha to use when drawing the CanvasWidget.

Protected Functions
virtual bool renderNext(uint8_t & gray, uint8_t & alpha)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
uint8_t painterGray

The gray color.

Additional inherited members
Public Functions inherited from AbstractPainterGRAY2

AbstractPainterGRAY2()

Protected Functions inherited from AbstractPainterGRAY2
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual void renderPixel(uint8_t * p, uint16_t offset, uint8_t gray)
Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from AbstractPainterGRAY2
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
getColor

colortype getColor () const

Gets the current color.

Returns:

The color.

PainterGRAY2
PainterGRAY2 (colortype color =0,

uint8_t alpha =255

)

Initializes a new instance of the PainterGRAY2 class.

Parameters:
color (Optional) the color, default is black.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterGRAY2::render

setColor
void setColor (colortype color)

Sets color and alpha to use when drawing the CanvasWidget.

Parameters:
color The color.

Protected Functions Documentation
renderNext

virtual bool renderNext (uint8_t & gray ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
gray The gray color (0-3).
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterGRAY2::renderNext

Protected Attributes Documentation
painterGray

uint8_t painterGray

The gray color.

Version: 4.16

PainterGRAY2Bitmap
PainterGRAY2Bitmap will take the color for a given point in the shape from a bitmap. Please be aware,
the the bitmap is used by the CanvasWidgetRenderer (not Shape), so any rotation you might specify
for a CanvasWidget (e.g. Shape) is not applied to the bitmap as CWR is not aware of this rotation.

See: AbstractPainter

Inherits from: AbstractPainterGRAY2, AbstractPainter

Public Functions
PainterGRAY2Bitmap(const Bitmap & bmp =Bitmap(BITMAP_INVALID), uint8_t alpha
=255)
Initializes a new instance of the PainterGRAY2Bitmap class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setBitmap(const Bitmap & bmp)
Sets a bitmap to be used when drawing the CanvasWidget.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & gray, uint8_t & alpha)
Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
Bitmap bitmap

The bitmap to be used when painting.

const uint8_t * bitmapAlphaPointer
Pointer to the bitmap alpha data for GRAY2.

const uint8_t * bitmapGRAY2Pointer
Pointer to the bitmap (GRAY2)

Rect bitmapRectToFrameBuffer
Bitmap rectangle translated to framebuffer coordinates.

Additional inherited members
Public Functions inherited from AbstractPainterGRAY2

AbstractPainterGRAY2()

Protected Functions inherited from AbstractPainterGRAY2
virtual void renderPixel(uint8_t * p, uint16_t offset, uint8_t gray)

Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from AbstractPainterGRAY2
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)

Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
PainterGRAY2Bitmap

PainterGRAY2Bitmap (const Bitmap & bmp =Bitmap(BITMAP_INVALID),
uint8_t alpha =255
)

Initializes a new instance of the PainterGRAY2Bitmap class.

Parameters:
bmp (Optional) The bitmap, default is BITMAP_INVALID.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterGRAY2::render

setBitmap
void setBitmap (const Bitmap & bmp)

Sets a bitmap to be used when drawing the CanvasWidget.

Parameters:
bmp The bitmap.

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplements: touchgfx::AbstractPainterGRAY2::renderInit

renderNext
virtual bool renderNext (uint8_t & gray ,

uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
gray The gray color (0-3).
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterGRAY2::renderNext

Protected Attributes Documentation
bitmap

Bitmap bitmap

The bitmap to be used when painting.

bitmapAlphaPointer
const uint8_t * bitmapAlphaPointer

Pointer to the bitmap alpha data for GRAY2.

bitmapGRAY2Pointer
const uint8_t * bitmapGRAY2Pointer

Pointer to the bitmap (GRAY2)

bitmapRectToFrameBuffer
Rect bitmapRectToFrameBuffer

Bitmap rectangle translated to framebuffer coordinates.

Version: 4.16

PainterGRAY4
The PainterGRAY4 class allows a shape to be filled with a given color and alpha value. This allows
transparent, anti-aliased elements to be drawn.

See: AbstractPainter

Inherits from: AbstractPainterGRAY4, AbstractPainter

Public Functions
colortype getColor() const

Gets the current color.

PainterGRAY4(colortype color =0, uint8_t alpha =255)
Initializes a new instance of the PainterGRAY4 class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setColor(colortype color)
Sets color and alpha to use when drawing the CanvasWidget.

Protected Functions
virtual bool renderNext(uint8_t & gray, uint8_t & alpha)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
uint8_t painterGray

The gray color.

Additional inherited members
Public Functions inherited from AbstractPainterGRAY4

AbstractPainterGRAY4()

Protected Functions inherited from AbstractPainterGRAY4
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual void renderPixel(uint8_t * p, uint16_t offset, uint8_t gray)
Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from AbstractPainterGRAY4
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
getColor

colortype getColor () const

Gets the current color.

Returns:

The color.

PainterGRAY4
PainterGRAY4 (colortype color =0,

uint8_t alpha =255

)

Initializes a new instance of the PainterGRAY4 class.

Parameters:
color (Optional) the color, default is black.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterGRAY4::render

setColor
void setColor (colortype color)

Sets color and alpha to use when drawing the CanvasWidget.

Parameters:
color The color.

Protected Functions Documentation
renderNext

virtual bool renderNext (uint8_t & gray ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
gray The gray color (0-15).
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterGRAY4::renderNext

Protected Attributes Documentation
painterGray

uint8_t painterGray

The gray color.

Version: 4.16

PainterGRAY4Bitmap
PainterGRAY4Bitmap will take the color for a given point in the shape from a bitmap. Please be aware,
the the bitmap is used by the CanvasWidgetRendere (not Shape), so any rotation you might specify for
a CanvasWidget (e.g. Shape) is not applied to the bitmap as CWR is not aware of this rotation.

See: AbstractPainter

Inherits from: AbstractPainterGRAY4, AbstractPainter

Public Functions
PainterGRAY4Bitmap(const Bitmap & bmp =Bitmap(BITMAP_INVALID), uint8_t alpha
=255)
Initializes a new instance of the PainterGRAY4Bitmap class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setBitmap(const Bitmap & bmp)
Sets a bitmap to be used when drawing the CanvasWidget.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & gray, uint8_t & alpha)
Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
Bitmap bitmap

The bitmap to be used when painting.

const uint8_t * bitmapAlphaPointer
Pointer to the bitmap alpha data for GRAY4.

const uint8_t * bitmapGRAY4Pointer
Pointer to the bitmap (GRAY4)

Rect bitmapRectToFrameBuffer
Bitmap rectangle translated to framebuffer coordinates.

Additional inherited members
Public Functions inherited from AbstractPainterGRAY4

AbstractPainterGRAY4()

Protected Functions inherited from AbstractPainterGRAY4
virtual void renderPixel(uint8_t * p, uint16_t offset, uint8_t gray)

Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from AbstractPainterGRAY4
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)

Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
PainterGRAY4Bitmap

PainterGRAY4Bitmap (const Bitmap & bmp =Bitmap(BITMAP_INVALID),
uint8_t alpha =255
)

Initializes a new instance of the PainterGRAY4Bitmap class.

Parameters:
bmp (Optional) The bitmap, default is BITMAP_INVALID.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterGRAY4::render

setBitmap
void setBitmap (const Bitmap & bmp)

Sets a bitmap to be used when drawing the CanvasWidget.

Parameters:
bmp The bitmap.

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplements: touchgfx::AbstractPainterGRAY4::renderInit

renderNext
virtual bool renderNext (uint8_t & gray ,

uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
gray The gray color (0-15).
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterGRAY4::renderNext

Protected Attributes Documentation
bitmap

Bitmap bitmap

The bitmap to be used when painting.

bitmapAlphaPointer
const uint8_t * bitmapAlphaPointer

Pointer to the bitmap alpha data for GRAY4.

bitmapGRAY4Pointer
const uint8_t * bitmapGRAY4Pointer

Pointer to the bitmap (GRAY4)

bitmapRectToFrameBuffer
Rect bitmapRectToFrameBuffer

Bitmap rectangle translated to framebuffer coordinates.

Version: 4.16

PainterRGB565
The PainterRGB565 class allows a shape to be filled with a given color and alpha value. This allows
transparent, anti-aliased elements to be drawn.

See: AbstractPainter

Inherits from: AbstractPainterRGB565, AbstractPainter

Public Functions
colortype getColor() const

Gets the current color.

PainterRGB565(colortype color =0, uint8_t alpha =255)
Initializes a new instance of the PainterRGB565 class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setColor(colortype color)
Sets color and alpha to use when drawing the CanvasWidget.

Protected Functions
virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
uint16_t painterBlue

The blue part of the color.

uint16_t painterColor
The color.

uint16_t painterGreen
The green part of the color.

uint16_t painterRed
The red part of the color.

Additional inherited members
Public Functions inherited from AbstractPainterRGB565

AbstractPainterRGB565()

FORCE_INLINE_FUNCTION uint16_t mixColors(uint16_t newpix, uint16_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint16_t mixColors(uint16_t R, uint16_t G, uint16_t B, uint16_t bufpix,
uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

Protected Functions inherited from AbstractPainterRGB565
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue)
Renders (writes) the specified color into the framebuffer.

Public Attributes inherited from AbstractPainterRGB565
const uint16_t BMASK

Mask for blue (0000000000011111)

const uint16_t GMASK
Mask for green (0000011111100000)

const uint16_t RMASK
Mask for red (1111100000000000)

Protected Attributes inherited from AbstractPainterRGB565
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter

int16_t areaOffsetX
The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
getColor

colortype getColor () const

Gets the current color.

Returns:

The color.

PainterRGB565
PainterRGB565 (colortype color =0,

uint8_t alpha =255
)

Initializes a new instance of the PainterRGB565 class.

Parameters:
color (Optional) the color, default is black.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,

int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterRGB565::render

setColor
void setColor (colortype color)

Sets color and alpha to use when drawing the CanvasWidget.

Parameters:
color The color.

Protected Functions Documentation
renderNext

virtual bool renderNext (uint8_t & red ,
uint8_t & green ,

uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterRGB565::renderNext

Protected Attributes Documentation
painterBlue

uint16_t painterBlue

The blue part of the color.

painterColor
uint16_t painterColor

The color.

painterGreen
uint16_t painterGreen

The green part of the color.

painterRed

uint16_t painterRed

The red part of the color.

Version: 4.16

PainterRGB565Bitmap
PainterRGB565Bitmap will take the color for a given point in the shape from a bitmap. Please be aware,
the the bitmap is used by the CanvasWidgetRenderer (not Shape), so any rotation you might specify
for a CanvasWidget (e.g. Shape) is not applied to the bitmap as CWR is not aware of this rotation.

See: AbstractPainter

Inherits from: AbstractPainterRGB565, AbstractPainter

Public Functions
PainterRGB565Bitmap(const Bitmap & bmp =Bitmap(BITMAP_INVALID), uint8_t
alpha =255)
Initializes a new instance of the PainterRGB565Bitmap class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setBitmap(const Bitmap & bmp)
Sets a bitmap to be used when drawing the CanvasWidget.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)
Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
Bitmap bitmap

The bitmap to be used when painting.

const uint8_t * bitmapAlphaPointer
Pointer to the bitmap alpha data for RGB565.

const uint32_t * bitmapARGB8888Pointer
Pointer to the bitmap (ARGB8888)

Rect bitmapRectToFrameBuffer
Bitmap rectangle translated to framebuffer coordinates.

const uint16_t * bitmapRGB565Pointer
Pointer to the bitmap (RGB565)

Additional inherited members
Public Functions inherited from AbstractPainterRGB565

AbstractPainterRGB565()

FORCE_INLINE_FUNCTION uint16_t mixColors(uint16_t newpix, uint16_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint16_t mixColors(uint16_t R, uint16_t G, uint16_t B, uint16_t bufpix,
uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

Protected Functions inherited from AbstractPainterRGB565
virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue)

Renders (writes) the specified color into the framebuffer.

Public Attributes inherited from AbstractPainterRGB565
const uint16_t BMASK

Mask for blue (0000000000011111)

const uint16_t GMASK
Mask for green (0000011111100000)

const uint16_t RMASK
Mask for red (1111100000000000)

Protected Attributes inherited from AbstractPainterRGB565
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)

Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
PainterRGB565Bitmap

PainterRGB565Bitmap (const Bitmap & bmp =Bitmap(BITMAP_INVALID),
uint8_t alpha =255
)

Initializes a new instance of the PainterRGB565Bitmap class.

Parameters:
bmp (Optional) The bitmap, default is BITMAP_INVALID.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers

)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterRGB565::render

setBitmap
void setBitmap (const Bitmap & bmp)

Sets a bitmap to be used when drawing the CanvasWidget.

Parameters:
bmp The bitmap.

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplements: touchgfx::AbstractPainterRGB565::renderInit

renderNext
virtual bool renderNext (uint8_t & red ,

uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterRGB565::renderNext

Protected Attributes Documentation
bitmap

Bitmap bitmap

The bitmap to be used when painting.

bitmapAlphaPointer
const uint8_t * bitmapAlphaPointer

Pointer to the bitmap alpha data for RGB565.

bitmapARGB8888Pointer
const uint32_t * bitmapARGB8888Pointer

Pointer to the bitmap (ARGB8888)

bitmapRectToFrameBuffer
Rect bitmapRectToFrameBuffer

Bitmap rectangle translated to framebuffer coordinates.

bitmapRGB565Pointer
const uint16_t * bitmapRGB565Pointer

Pointer to the bitmap (RGB565)

Version: 4.16

PainterRGB565L8Bitmap
PainterRGB565L8Bitmap will take the color for a given point in the shape from a bitmap. Please be
aware, the the bitmap is used by the CanvasWidgetRenderer (not Shape), so any rotation you might
specify for a CanvasWidget (e.g. Shape) is not applied to the bitmap as CWR is not aware of this
rotation.

See: AbstractPainter

Inherits from: AbstractPainterRGB565, AbstractPainter

Public Functions
PainterRGB565L8Bitmap(const Bitmap & bmp =Bitmap(BITMAP_INVALID), uint8_t
alpha =255)
Initializes a new instance of the PainterRGB565L8Bitmap class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setBitmap(const Bitmap & bmp)
Sets a bitmap to be used when drawing the CanvasWidget.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)
Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
Bitmap bitmap

The bitmap to be used when painting.

const uint8_t * bitmapExtraPointer
Pointer to the bitmap alpha data for RGB565 / CLUT for L8.

const uint8_t * bitmapPointer
Pointer to the bitmap (L8)

Rect bitmapRectToFrameBuffer
Bitmap rectangle translated to framebuffer coordinates.

Additional inherited members
Public Functions inherited from AbstractPainterRGB565

AbstractPainterRGB565()

FORCE_INLINE_FUNCTION uint16_t mixColors(uint16_t newpix, uint16_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint16_t mixColors(uint16_t R, uint16_t G, uint16_t B, uint16_t bufpix,
uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

Protected Functions inherited from AbstractPainterRGB565
virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue)

Renders (writes) the specified color into the framebuffer.

Public Attributes inherited from AbstractPainterRGB565
const uint16_t BMASK

Mask for blue (0000000000011111)

const uint16_t GMASK
Mask for green (0000011111100000)

const uint16_t RMASK
Mask for red (1111100000000000)

Protected Attributes inherited from AbstractPainterRGB565
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter

int16_t areaOffsetX
The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
PainterRGB565L8Bitmap

PainterRGB565L8Bitmap (const Bitmap & bmp =Bitmap(BITMAP_INVALID),
uint8_t alpha =255
)

Initializes a new instance of the PainterRGB565L8Bitmap class.

Parameters:
bmp (Optional) The bitmap, default is BITMAP_INVALID.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterRGB565::render

setBitmap
void setBitmap (const Bitmap & bmp)

Sets a bitmap to be used when drawing the CanvasWidget.

Parameters:
bmp The bitmap.

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplements: touchgfx::AbstractPainterRGB565::renderInit

renderNext
virtual bool renderNext (uint8_t & red ,

uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterRGB565::renderNext

Protected Attributes Documentation
bitmap

Bitmap bitmap

The bitmap to be used when painting.

bitmapExtraPointer
const uint8_t * bitmapExtraPointer

Pointer to the bitmap alpha data for RGB565 / CLUT for L8.

bitmapPointer
const uint8_t * bitmapPointer

Pointer to the bitmap (L8)

bitmapRectToFrameBuffer
Rect bitmapRectToFrameBuffer

Bitmap rectangle translated to framebuffer coordinates.

Version: 4.16

PainterRGB888
The PainterRGB888 class allows a shape to be filled with a given color and alpha value. This allows
transparent, anti-aliased elements to be drawn.

See: AbstractPainter

Inherits from: AbstractPainterRGB888, AbstractPainter

Public Functions
colortype getColor() const

Gets the current color.

PainterRGB888(colortype color =0, uint8_t alpha =255)
Initializes a new instance of the PainterRGB888 class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setColor(colortype color)
Sets color and alpha to use when drawing the CanvasWidget.

Protected Functions
virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
uint8_t painterBlue

The blue part of the color.

uint8_t painterGreen
The green part of the color.

uint8_t painterRed
The red part of the color.

Additional inherited members
Public Functions inherited from AbstractPainterRGB888

AbstractPainterRGB888()

Protected Functions inherited from AbstractPainterRGB888
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue)
Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from AbstractPainterRGB888
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
getColor

colortype getColor () const

Gets the current color.

Returns:

The color.

PainterRGB888
PainterRGB888 (colortype color =0,

uint8_t alpha =255
)

Initializes a new instance of the PainterRGB888 class.

Parameters:
color (Optional) the color, default is black.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterRGB888::render

setColor
void setColor (colortype color)

Sets color and alpha to use when drawing the CanvasWidget.

Parameters:
color The color.

Protected Functions Documentation
renderNext

virtual bool renderNext (uint8_t & red ,
uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterRGB888::renderNext

Protected Attributes Documentation
painterBlue

uint8_t painterBlue

The blue part of the color.

painterGreen
uint8_t painterGreen

The green part of the color.

painterRed
uint8_t painterRed

The red part of the color.

Version: 4.16

PainterRGB888Bitmap
PainterRGB888Bitmap will take the color for a given point in the shape from a bitmap. Please be aware,
the the bitmap is used by the CanvasWidgetRenderer (not Shape), so any rotation you might specify
for a CanvasWidget (e.g. Shape) is not applied to the bitmap as CWR is not aware of this rotation.

See: AbstractPainter

Inherits from: AbstractPainterRGB888, AbstractPainter

Public Functions
PainterRGB888Bitmap(const Bitmap & bmp =Bitmap(BITMAP_INVALID), uint8_t
alpha =255)
Initializes a new instance of the PainterRGB888Bitmap class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setBitmap(const Bitmap & bmp)
Sets a bitmap to be used when drawing the CanvasWidget.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)
Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
Bitmap bitmap

The bitmap to be used when painting.

const uint32_t * bitmapARGB8888Pointer
Pointer to the bitmap (ARGB8888)

Rect bitmapRectToFrameBuffer
Bitmap rectangle translated to framebuffer coordinates.

const uint8_t * bitmapRGB888Pointer
Pointer to the bitmap (RGB888)

Additional inherited members
Public Functions inherited from AbstractPainterRGB888

AbstractPainterRGB888()

Protected Functions inherited from AbstractPainterRGB888
virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue)

Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from AbstractPainterRGB888
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)

Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
PainterRGB888Bitmap

PainterRGB888Bitmap (const Bitmap & bmp =Bitmap(BITMAP_INVALID),
uint8_t alpha =255
)

Initializes a new instance of the PainterRGB888Bitmap class.

Parameters:
bmp (Optional) The bitmap, default is BITMAP_INVALID.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterRGB888::render

setBitmap
void setBitmap (const Bitmap & bmp)

Sets a bitmap to be used when drawing the CanvasWidget.

Parameters:
bmp The bitmap.

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplements: touchgfx::AbstractPainterRGB888::renderInit

renderNext
virtual bool renderNext (uint8_t & red ,

uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterRGB888::renderNext

Protected Attributes Documentation
bitmap

Bitmap bitmap

The bitmap to be used when painting.

bitmapARGB8888Pointer
const uint32_t * bitmapARGB8888Pointer

Pointer to the bitmap (ARGB8888)

bitmapRectToFrameBuffer
Rect bitmapRectToFrameBuffer

Bitmap rectangle translated to framebuffer coordinates.

bitmapRGB888Pointer
const uint8_t * bitmapRGB888Pointer

Pointer to the bitmap (RGB888)

Version: 4.16

PainterRGB888L8Bitmap
PainterRGB888L8Bitmap will take the color for a given point in the shape from a bitmap. Please be
aware, the the bitmap is used by the CanvasWidgetRenderer (not Shape), so any rotation you might
specify for a CanvasWidget (e.g. Shape) is not applied to the bitmap as CWR is not aware of this
rotation.

See: AbstractPainter

Inherits from: AbstractPainterRGB888, AbstractPainter

Public Functions
PainterRGB888L8Bitmap(const Bitmap & bmp =Bitmap(BITMAP_INVALID), uint8_t
alpha =255)
Initializes a new instance of the PainterRGB888L8Bitmap class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setBitmap(const Bitmap & bmp)
Sets a bitmap to be used when drawing the CanvasWidget.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)
Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
Bitmap bitmap

The bitmap to be used when painting.

const uint8_t * bitmapExtraPointer
Pointer to the CLUT (L8)

const uint8_t * bitmapPointer
Pointer to the bitmap (L8)

Rect bitmapRectToFrameBuffer
Bitmap rectangle translated to framebuffer coordinates.

Additional inherited members
Public Functions inherited from AbstractPainterRGB888

AbstractPainterRGB888()

Protected Functions inherited from AbstractPainterRGB888
virtual void renderPixel(uint16_t * p, uint8_t red, uint8_t green, uint8_t blue)

Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from AbstractPainterRGB888
int currentX

Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
PainterRGB888L8Bitmap

PainterRGB888L8Bitmap (const Bitmap & bmp =Bitmap(BITMAP_INVALID),
uint8_t alpha =255

)

Initializes a new instance of the PainterRGB888L8Bitmap class.

Parameters:
bmp (Optional) The bitmap, default is BITMAP_INVALID.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterRGB888::render

setBitmap
void setBitmap (const Bitmap & bmp)

Sets a bitmap to be used when drawing the CanvasWidget.

Parameters:
bmp The bitmap.

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplements: touchgfx::AbstractPainterRGB888::renderInit

renderNext
virtual bool renderNext (uint8_t & red ,

uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterRGB888::renderNext

Protected Attributes Documentation
bitmap

Bitmap bitmap

The bitmap to be used when painting.

bitmapExtraPointer
const uint8_t * bitmapExtraPointer

Pointer to the CLUT (L8)

bitmapPointer
const uint8_t * bitmapPointer

Pointer to the bitmap (L8)

bitmapRectToFrameBuffer
Rect bitmapRectToFrameBuffer

Bitmap rectangle translated to framebuffer coordinates.

Version: 4.16

PainterRGBA2222
The PainterRGBA2222 class allows a shape to be filled with a given color and alpha value. This allows
transparent, anti-aliased elements to be drawn.

See: AbstractPainter

Inherits from: AbstractPainterRGBA2222, AbstractPainter

Public Functions
colortype getColor() const

Gets the current color.

PainterRGBA2222(colortype color =0, uint8_t alpha =255)
Initializes a new instance of the PainterRGBA2222 class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setColor(colortype color)
Sets color and alpha to use when drawing the CanvasWidget.

Protected Functions
virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
uint8_t painterBlue

The blue part of the color, scaled up to [0..255].

uint8_t painterColor
The color.

uint8_t painterGreen
The green part of the color, scaled up to [0..255].

uint8_t painterRed
The red part of the color, scaled up to [0..255].

Additional inherited members
Public Functions inherited from AbstractPainterRGBA2222

AbstractPainterRGBA2222()

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t newpix, uint8_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t R, uint8_t G, uint8_t B, uint8_t bufpix, uint8_t
alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

Protected Functions inherited from AbstractPainterRGBA2222
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual void renderPixel(uint8_t * p, uint8_t red, uint8_t green, uint8_t blue)
Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from
AbstractPainterRGBA2222

int currentX
Current x coordinate relative to the widget.

int currentY

Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
getColor

colortype getColor () const

Gets the current color.

Returns:

The color.

PainterRGBA2222
PainterRGBA2222 (colortype color =0,

uint8_t alpha =255
)

Initializes a new instance of the PainterRGBA2222 class.

Parameters:
color (Optional) the color, default is black.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterRGBA2222::render

setColor
void setColor (colortype color)

Sets color and alpha to use when drawing the CanvasWidget.

Parameters:
color The color.

Protected Functions Documentation
renderNext

virtual bool renderNext (uint8_t & red ,
uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.

green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterRGBA2222::renderNext

Protected Attributes Documentation
painterBlue

uint8_t painterBlue

The blue part of the color, scaled up to [0..255].

painterColor
uint8_t painterColor

The color.

painterGreen
uint8_t painterGreen

The green part of the color, scaled up to [0..255].

painterRed
uint8_t painterRed

The red part of the color, scaled up to [0..255].

Version: 4.16

PainterRGBA2222Bitmap
PainterRGBA2222Bitmap will take the color for a given point in the shape from a bitmap. Please be
aware, the the bitmap is used by the CanvasWidgetRenderer (not Shape), so any rotation you might
specify for a CanvasWidget (e.g. Shape) is not applied to the bitmap as CWR is not aware of this
rotation.

See: AbstractPainter

Inherits from: AbstractPainterRGBA2222, AbstractPainter

Public Functions
PainterRGBA2222Bitmap(const Bitmap & bmp =Bitmap(BITMAP_INVALID), uint8_t
alpha =255)
Initializes a new instance of the PainterRGBA2222Bitmap class.

virtual void render(uint8_t ptr, int x, int xAdjust, int y, unsigned count, const uint8_t covers)
Paint a designated part of the RenderingBuffer with respect to the amount of coverage
of each pixel given by the parameter covers.

void setBitmap(const Bitmap & bmp)
Sets a bitmap to be used when drawing the CanvasWidget.

Protected Functions
virtual bool renderInit()

Initialize rendering of a single scan line of pixels for the render.

virtual bool renderNext(uint8_t & red, uint8_t & green, uint8_t & blue, uint8_t & alpha)
Get the color of the next pixel in the scan line to blend into the framebuffer.

Protected Attributes
Bitmap bitmap

The bitmap to be used when painting.

Rect bitmapRectToFrameBuffer
Bitmap rectangle translated to framebuffer coordinates.

const uint8_t * bitmapRGBA2222Pointer
Pointer to the bitmap (RGBA2222)

Additional inherited members
Public Functions inherited from AbstractPainterRGBA2222

AbstractPainterRGBA2222()

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t newpix, uint8_t bufpix, uint8_t alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

FORCE_INLINE_FUNCTION uint8_t mixColors(uint8_t R, uint8_t G, uint8_t B, uint8_t bufpix, uint8_t
alpha)
Mix colors from a new pixel and a buffer pixel with the given
alpha applied to the new pixel, and the inverse alpha applied to
the buffer pixel.

Protected Functions inherited from AbstractPainterRGBA2222
virtual void renderPixel(uint8_t * p, uint8_t red, uint8_t green, uint8_t blue)

Renders (writes) the specified color into the framebuffer.

Protected Attributes inherited from
AbstractPainterRGBA2222

int currentX
Current x coordinate relative to the widget.

int currentY
Current y coordinate relative to the widget.

Public Functions inherited from AbstractPainter
AbstractPainter()
Initializes a new instance of the AbstractPainter class.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setOffset(uint16_t offsetX, uint16_t offsetY)
Sets the offset of the area being drawn.

virtual ~AbstractPainter()
Finalizes an instance of the AbstractPainter class.

Protected Functions inherited from AbstractPainter
void setWidgetAlpha(const uint8_t alpha)

Sets the widget alpha to allow an entire canvas widget to easily be
faded without changing the painter of the widget.

FORCE_INLINE_FUNCTION bool compatibleFramebuffer(Bitmap::BitmapFormat format)
Helper function to check if the provided bitmap format matches the
current framebuffer format.

Protected Attributes inherited from AbstractPainter
int16_t areaOffsetX

The offset x coordinate of the area being drawn.

int16_t areaOffsetY
The offset y coordinate of the area being drawn.

uint8_t painterAlpha
The alpha value for the painter.

uint8_t widgetAlpha
The alpha of the widget using the painter.

Public Functions Documentation
PainterRGBA2222Bitmap

PainterRGBA2222Bitmap (const Bitmap & bmp =Bitmap(BITMAP_INVALID),
uint8_t alpha =255
)

Initializes a new instance of the PainterRGBA2222Bitmap class.

Parameters:
bmp (Optional) The bitmap, default is BITMAP_INVALID.
alpha (Optional) the alpha, default is 255 i.e. solid.

render
virtual void render (uint8_t * ptr ,

int x ,
int xAdjust ,
int y ,
unsigned count ,
const uint8_t * covers
)

Paint a designated part of the RenderingBuffer with respect to the amount of coverage of each
pixel given by the parameter covers.

The cover is the alpha for each pixel, which is what makes it possible to have smooth anti-aliased
edges on the shapes drawn with CanvasWidgetRenderer.

Parameters:
ptr Pointer to the row in the RenderingBuffer.
x The x coordinate.
xAdjust The minor adjustment of x (used when a pixel is smaller than a byte to specify that the

ptr should have been advanced "xAdjust" pixels futher into the byte).
y The y coordinate.
count Number of pixels to fill.
covers The coverage in of each pixel.

NOTE

The implementation of render() in the AbstractPainter classes is a generic (i.e. slow) implementation that
should be completely implemented in subclasses of AbstractPainter for better performance.

Reimplements: touchgfx::AbstractPainterRGBA2222::render

setBitmap
void setBitmap (const Bitmap & bmp)

Sets a bitmap to be used when drawing the CanvasWidget.

Parameters:
bmp The bitmap.

Protected Functions Documentation
renderInit

virtual bool renderInit ()

Initialize rendering of a single scan line of pixels for the render.

If renderInit returns false, the scanline will not be rendered.

Returns:

true if it succeeds, false if it fails.

Reimplements: touchgfx::AbstractPainterRGBA2222::renderInit

renderNext
virtual bool renderNext (uint8_t & red ,

uint8_t & green ,
uint8_t & blue ,
uint8_t & alpha
)

Get the color of the next pixel in the scan line to blend into the framebuffer.

Parameters:
red The red.
green The green.
blue The blue.
alpha The alpha.

Returns:

true if the pixel should be painted, false otherwise.

Reimplements: touchgfx::AbstractPainterRGBA2222::renderNext

Protected Attributes Documentation
bitmap

Bitmap bitmap

The bitmap to be used when painting.

bitmapRectToFrameBuffer
Rect bitmapRectToFrameBuffer

Bitmap rectangle translated to framebuffer coordinates.

bitmapRGBA2222Pointer
const uint8_t * bitmapRGBA2222Pointer

Pointer to the bitmap (RGBA2222)

Version: 4.16

Pair
A simple struct for holding pairs of data.

Template Parameters:

T1 The type of the first element.
T2 The type of the second element.

Public Functions
Pair()
Constructor initializing the elements it holds, using their default
constructors.

template \<class U ,class V \> Pair(const Pair< U, V > & p)
Copy constructor.

Pair(const T1 & x, const T2 & y)
Constructor initializing the elements it holds, using their copy
constructor.

Public Attributes
T1 first

The first element.

T2 second
The second element.

Public Functions Documentation
Pair

Pair ()

Constructor initializing the elements it holds, using their default constructors.

Pair
Pair (const Pair< U, V > & p)

Copy constructor.

Template Parameters:
U Generic type parameter.
V Generic type parameter.

Parameters:
p The pair to copy from.

Pair
Pair (const T1 & x ,

const T2 & y
)

Constructor initializing the elements it holds, using their copy constructor.

Parameters:
x Reference to the first element.
y Reference to the second element.

Public Attributes Documentation
first

T1 first

The first element.

second
T2 second

The second element.

Version: 4.16

PartialFrameBufferManager
This class specifies strategies for transmitting block to the display using Partial Frame Buffer.

Public Functions
void transmitRemainingBlocks()

Transmit all remaining drawn Framebuffer blocks.

void tryTransmitBlock()
Tries to transmit a drawn block.

void tryTransmitBlockFromIRQ()
Tries to transmit a drawn block in interrupt context.

Public Functions Documentation
transmitRemainingBlocks

static void transmitRemainingBlocks ()

Transmit all remaining drawn Framebuffer blocks.

NOTE

This function does not return before all blocks have been transmitted.

tryTransmitBlock
static void tryTransmitBlock ()

Tries to transmit a drawn block.

NOTE

Will return immediately if already transmitting.

tryTransmitBlockFromIRQ
static void tryTransmitBlockFromIRQ ()

Tries to transmit a drawn block in interrupt context.

NOTE

Will transmit next block immediately if drawn.

Version: 4.16

Partition
This type provides a concrete Partition of memory-slots capable of holding any of the specified list of
types. The Partition is not aware of the types stored in the Partition memory, hence it provides no
mechanism for deleting C++ objects when the Partition is clear()'ed.

This class implements AbstractPartition.

Template Parameters:

ListOfTypes Type of the list of types.
NUMBER_OF_ELEMENTS Type of the number of elements.

See: AbstractPartition

Inherits from: AbstractPartition

Public Types

enum
@0 { INTS_PR_ELEMENT = (sizeof(typename
meta::select_type_maxsize<SupportedTypesList>::type) + sizeof(int) - 1) /
sizeof(int), SIZE_OF_ELEMENT = INTS_PR_ELEMENT * sizeof(int) }
Compile-time generated constants specifying the "element" or "slot" size used
by this partition.

typedef ListOfTypes SupportedTypesList
Provides a generic public type containing the list of supported types.

Public Functions
virtual uint16_t capacity() const

Gets the capacity, i.e.

virtual uint32_t element_size()
Access to concrete element-size.

Protected Functions
virtual void * element(uint16_t index)

Access to stored element.

virtual const void * element(uint16_t index) const
Access to stored element, const version.

Additional inherited members
Public Functions inherited from AbstractPartition

void * allocate()
Gets the address of the next available storage slot.

virtual void * allocate(uint16_t size)
Gets the address of the next available storage slot.

void * allocateAt(uint16_t index)
Gets the address of the specified storage slot.

virtual void * allocateAt(uint16_t index, uint16_t size)
Gets the address of the specified index.

T & at(const uint16_t index)
Gets the object at the specified index.

const T & at(const uint16_t index) const
const version of at().

virtual void clear()
Prepares the Partition for new allocations.

void dec()
Decreases number of allocations.

Pair< T *, uint16_t > find(const void * pT)
Determines if the specified object could have been previously allocated in the
partition.

virtual uint16_t getAllocationCount() const
Gets allocation count.

virtual uint16_t indexOf(const void * address)
Determines index of previously allocated location.

virtual ~AbstractPartition()
Finalizes an instance of the AbstractPartition class.

Protected Functions inherited from AbstractPartition
AbstractPartition()
Initializes a new instance of the AbstractPartition class.

Public Types Documentation
@0

enum @0

Compile-time generated constants specifying the "element" or "slot" size used by this partition.

INTS_PR_ELEMENT
SIZE_OF_ELEMENT

SupportedTypesList
typedef ListOfTypes SupportedTypesList

Provides a generic public type containing the list of supported types.

Public Functions Documentation
capacity

virtual uint16_t capacity () const

Gets the capacity, i.e.

the maximum allocation count.

Returns:

The maximum allocation count.

Reimplements: touchgfx::AbstractPartition::capacity

element_size
virtual uint32_t element_size ()

Access to concrete element-size.

Used internally.

Returns:

An uint32_t.

Reimplements: touchgfx::AbstractPartition::element_size

Protected Functions Documentation
element

virtual void * element (uint16_t index)

Access to stored element.

Used internally.

Parameters:
index Zero-based index of the.

Returns:

null if it fails, else a void*.

Reimplements: touchgfx::AbstractPartition::element

element

virtual const void * element (uint16_t index)

Access to stored element, const version.

Parameters:
index Zero-based index of the.

Returns:

null if it fails, else a void*.

Reimplements: touchgfx::AbstractPartition::element

Version: 4.16

PixelDataWidget
A widget for displaying a buffer of pixel data. This can also be though of as a dynamic bitmap where
the dimensions of the bitmap is the same as the dimensions of the widget and the actual bitmap data
can be set and updated dynamically. The size of the buffer must match the number of bytes required
for the widget calculated as WIDTH x HEIGHT x BYTES_PER_PIXEL. If the LCD is 16 bit per pixel the
buffer must hold 2 bytes for each pixel. If the LCD is 24 bit the buffer must hold 3 bytes for each pixel.

Inherits from: Widget, Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

PixelDataWidget()

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setBitmapFormat(Bitmap::BitmapFormat format)
Set the format of the pixel data.

void setPixelData(uint8_t *const data)
Set the pixel data to display.

Protected Attributes
uint8_t alpha

The Alpha for this widget.

uint8_t * buffer
The buffer where the pixels are copied from.

Bitmap::BitmapFormat format
The pixel format for the data.

Additional inherited members
Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation

draw
virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Drawable::draw

getAlpha
uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getSolidRect
virtual Rect getSolidRect () const

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

This information is important, as any Drawable underneath the solid area does not need to be
drawn.

Returns:

The solid rectangle part of the Drawable.

NOTE

The rectangle returned must be relative to upper left corner of the Drawable, meaning that a completely
solid widget should return the full size Rect(0, 0, getWidth(), getHeight()). If no area can be guaranteed to
be solid, an empty Rect(0, 0, 0, 0) must be returned. Failing to return the correct rectangle may result in
errors on the display.

Reimplements: touchgfx::Drawable::getSolidRect

PixelDataWidget
PixelDataWidget ()

setAlpha
void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setBitmapFormat
void setBitmapFormat (Bitmap::BitmapFormat format)

Set the format of the pixel data.

The supported formats depend on the display type. For example grayscale displays do not support
color images.

Parameters:
format Describes the format to use when reading the pixel data.

setPixelData
void setPixelData (uint8_t *const data)

Set the pixel data to display.

The given pointer must contain WIDTH x HEIGHT x BYTES_PER_PIXEL bytes of addressable image
data.

Parameters:
data Image data.

See also:

setBitmapFormat

Protected Attributes Documentation
alpha

uint8_t alpha

The Alpha for this widget.

buffer
uint8_t * buffer

The buffer where the pixels are copied from.

format
Bitmap::BitmapFormat format

The pixel format for the data.

Version: 4.16

Point
A simple struct containing coordinates.

Public Functions
unsigned dist_sqr(struct Point & o)

The squared distance from this Point to another Point.

Public Attributes
int32_t x

The x coordinate.

int32_t y
The y coordinate.

Public Functions Documentation
dist_sqr

unsigned dist_sqr (struct Point & o)

The squared distance from this Point to another Point.

Parameters:
o The point to get the squared distance to.

Returns:

The squared distance.

Public Attributes Documentation

x
int32_t x

The x coordinate.

y
int32_t y

The y coordinate.

Version: 4.16

Point3D
A 3D point.

Public Attributes
float U

The U coordinate.

float V
The V coordinate.

fixed28_4 X
The X coordinate.

fixed28_4 Y
The Y coordinate.

float Z
The Z coordinate.

Public Attributes Documentation
U

float U

The U coordinate.

V
float V

The V coordinate.

X
fixed28_4 X

The X coordinate.

Y
fixed28_4 Y

The Y coordinate.

Z
float Z

The Z coordinate.

Version: 4.16

Point4
This class represents a homogeneous 3D point.

See: Quadruple

Inherits from: Quadruple

Public Functions
FORCE_INLINE_FUNCTION Point4()

Initializes a new instance of the Point4 class.

FORCE_INLINE_FUNCTION Point4(float x, float y, float z)
Initializes a new instance of the Point4 class.

Additional inherited members
Public Functions inherited from Quadruple

FORCE_INLINE_FUNCTION float getElement(int row) const
Gets an element.

FORCE_INLINE_FUNCTION float getW() const
Get w coordinate.

FORCE_INLINE_FUNCTION float getX() const
Get x coordinate.

FORCE_INLINE_FUNCTION float getY() const
Get y coordinate.

FORCE_INLINE_FUNCTION float getZ() const
Get z coordinate.

FORCE_INLINE_FUNCTION void setElement(int row, float value)
Sets an element.

FORCE_INLINE_FUNCTION void setW(float value)
Sets a w coordinate.

FORCE_INLINE_FUNCTION void setX(float value)
Sets an x coordinate.

FORCE_INLINE_FUNCTION void setY(float value)
Sets a y coordinate.

FORCE_INLINE_FUNCTION void setZ(float value)
Sets a z coordinate.

Protected Functions inherited from Quadruple
FORCE_INLINE_FUNCTION Quadruple()

Initializes a new instance of the Quadruple class.

FORCE_INLINE_FUNCTION Quadruple(float x, float y, float z, float w)
Initializes a new instance of the Quadruple class.

Protected Attributes inherited from Quadruple
float elements

The elements[4].

Public Functions Documentation
Point4

FORCE_INLINE_FUNCTION Point4 ()

Initializes a new instance of the Point4 class.

Point4
FORCE_INLINE_FUNCTION Point4 (float x ,

float y ,
float z

)

Initializes a new instance of the Point4 class.

Parameters:
x The x coordinate.
y The y coordinate.
z The z coordinate.

Version: 4.16

Presenter
The Presenter base class that all application-specific presenters should derive from. Only contains
activate and deactivate virtual functions which are called automatically during screen transition.

Public Functions
virtual void activate()

Place initialization code for the Presenter here.

virtual void deactivate()
Place cleanup code for the Presenter here.

virtual ~Presenter()
Finalizes an instance of the Presenter class.

Protected Functions
Presenter()
Initializes a new instance of the Presenter class.

Public Functions Documentation
activate

virtual void activate ()

Place initialization code for the Presenter here.

The activate function is called automatically when a screen transition causes this Presenter to
become active. Place initialization code for the Presenter here.

deactivate
virtual void deactivate ()

Place cleanup code for the Presenter here.

The deactivate function is called automatically when a screen transition causes this Presenter to
become inactive. Place cleanup code for the Presenter here.

~Presenter
virtual ~Presenter ()

Finalizes an instance of the Presenter class.

Protected Functions Documentation
Presenter

Presenter ()

Initializes a new instance of the Presenter class.

Version: 4.16

Q10
Defines a "floating point number" with 10 bits reserved for the fractional part of the decimal number.
Q10 implements some simple arithmetic operations, most yielding a Q10 number and some yielding a
Q5 number or a Q15 number as a result.

Q5*Q5=Q10, Q10/Q5=Q5, ...

See: Q5, Q15

Public Functions
operator int() const
Gets the Q10 as an integer without conversion.

Q15 operator*(const Q5 & q5) const
Multiplication operator.

Q10 operator+(const Q10 & q10) const
Addition operator.

Q10 operator-() const
Negation operator.

Q5 operator/(const Q5 & q5) const
Division operator.

Q10()
Initializes a new instance of the Q10 class.

Q10(int i)
Constructor from integer.

template \<typename T \>
T to() const

Converts the Q10 value to an int or a float.

Public Functions Documentation

operator int
operator int () const

Gets the Q10 as an integer without conversion.

Returns:

The unconverted Q10 value.

operator*
Q15 operator* (const Q5 & q5)

Multiplication operator.

The result is a Q15, not a Q10, for increased precision.

Parameters:
q5 The Q5 to multiply this with.

Returns:

The result of the operation.

operator+
Q10 operator+ (const Q10 & q10)

Addition operator.

Parameters:
q10 The Q10 to add to this.

Returns:

The result of the operation.

operator-
Q10 operator- () const

Negation operator.

Returns:

The negative value of this.

operator/
Q5 operator/ (const Q5 & q5)

Division operator.

Parameters:
q5 The Q5 to divide this by.

Returns:

The result of the operation.

Q10
Q10 ()

Initializes a new instance of the Q10 class.

Q10
explicit Q10 (int i)

Constructor from integer.

No conversion is done - the integer is assumed to already be in Q10 format.

Parameters:
i int pre-formattet in Q10 format.

to
T to () const

Converts the Q10 value to an int or a float.

Convert the Q10 value to an integer by removing the 10 bits used for the fraction, or to a floating
point value by dividing by 32 * 32, depending on the type specified as T.

Template Parameters:

T Either int or float.

Returns:

Q10 value as a type T.

Version: 4.16

Q15
Defines a "floating point number" with 15 bits reserved for the fractional part of the decimal number.
Q15 is only used for sine/cosine and for intermediate calculations when multiplying.

Q5*Q5=Q10, Q10/Q5=Q5, ...

See: Q5, Q10

Public Functions
operator int() const
Gets the Q15 as an integer without conversion.

Q15 operator+(const Q15 & q15) const
Addition operator.

Q15 operator-() const
Negation operator.

Q10 operator/(const Q5 & q5) const
Calculate Q15 / Q5 as a Q10.

Q15(int i)
Constructor from integer.

Public Functions Documentation
operator int

operator int () const

Gets the Q15 as an integer without conversion.

Returns:

The unconverted Q15 value.

operator+
Q15 operator+ (const Q15 & q15)

Addition operator.

Parameters:
q15 The Q15 to add to this.

Returns:

The result of the operation.

operator-
Q15 operator- () const

Negation operator.

Returns:

The negative value of this.

operator/
Q10 operator/ (const Q5 & q5)

Calculate Q15 / Q5 as a Q10.

Parameters:
q5 The Q5 to divide this by.

Returns:

The result of the operation.

Q15
explicit Q15 (int i)

Constructor from integer.

No conversion is done - the integer is assumed to already be in Q15 format.

Parameters:

i int pre-formattet in Q15 format.

Version: 4.16

Q5
Defines a "floating point number" with 5 bits reserved for the fractional part of the decimal number.
Q5 implements some simple arithmetic operations, most yielding a Q5 number and some yielding a
Q10 number as a result. Other operations also work with Q15 numbers.

See: Q10, Q15

Public Functions
int ceil() const

Convert the Q5 value to an integer by removing the 5 bits used for the
fraction.

operator int() const
Gets the Q5 as an integer without conversion.

Q5 operator*(const int i) const
Multiplication operator.

Q5 operator*(const Q15 & q15) const
Multiplication operator.

Q10 operator*(const Q5 & q5) const
Multiplication operator.

Q5 operator+(const Q5 & q5) const
Addition operator.

Q5 operator-() const
Negation operator.

Q5 operator-(const Q5 & q5) const
Subtraction operator.

Q5 operator/(const int i) const
Division operator.

Q5 operator/(const Q5 q5) const
Division operator.

Q5()
Initializes a new instance of the Q5 class.

Q5(const Q10 q10)
Constructor from Q10.

Q5(int i)
Constructor from integer.

int round() const
Round the Q5 value to the nearest integer value.

template \<typename T \>
T to() const

Convert the Q5 value to an integer by removing the 5 bits used for the
fraction, or to a floating point value by dividing by 32, depending on the
type specified as T.

Public Functions Documentation
ceil

int ceil () const

Convert the Q5 value to an integer by removing the 5 bits used for the fraction.

The number is rounded up to the nearest integer.

Returns:

The first integer value higher than (or equal to) the Q5 value.

operator int
operator int () const

Gets the Q5 as an integer without conversion.

Returns:

The unconverted Q5 value.

operator*
Q5 operator* (const int i)

Multiplication operator.

Parameters:
i The integer to multiply this with.

Returns:

The result of the operation.

operator*
Q5 operator* (const Q15 & q15)

Multiplication operator.

Often used in relation with sine and cosine calculation which are pre-calculated as Q15. As the
result is needed as a Q5, this operator multiplies with the given Q15 and converts the result to a
Q5.

Parameters:
q15 The Q15 to multiply this with.

Returns:

The result of the operation.

See also:

Q15

operator*
Q10 operator* (const Q5 & q5)

Multiplication operator.

The result is a Q10, not a Q5, for increased precision.

Parameters:
q5 The Q5 to multiply this with.

Returns:

The result of the operation.

See also:

Q10

operator+
Q5 operator+ (const Q5 & q5)

Addition operator.

Parameters:
q5 The Q5 to add to this.

Returns:

The result of the operation.

operator-
Q5 operator- () const

Negation operator.

Returns:

The negative value of this.

operator-
Q5 operator- (const Q5 & q5)

Subtraction operator.

Parameters:
q5 The Q5 to subtract from this.

Returns:

The result of the operation.

operator/

Q5 operator/ (const int i)

Division operator.

Parameters:
i The integer to divide this by.

Returns:

The result of the operation.

operator/
Q5 operator/ (const Q5 q5)

Division operator.

Internally this Q5 is converted to Q10 before the division to increased precision.

Parameters:
q5 The Q5 to divide this by.

Returns:

The result of the operation.

See also:

Q10

Q5
Q5 ()

Initializes a new instance of the Q5 class.

Q5
Q5 (const Q10 q10)

Constructor from Q10.

The Q10 is shifted down to convert it to Q5, thus the value is rounded down in the conversion.

Parameters:
q10 The Q10 value to convert to a Q5 value.

See also:

Q10

Q5
explicit Q5 (int i)

Constructor from integer.

No conversion is done - the integer is assumed to already be in Q5 format.

Parameters:
i Integer pre-formattet in Q5 format.

round
int round () const

Round the Q5 value to the nearest integer value.

Returns:

The integer closest to the Q5 value.

to
T to () const

Convert the Q5 value to an integer by removing the 5 bits used for the fraction, or to a floating
point value by dividing by 32, depending on the type specified as T.

Template Parameters:
T Either int or float.

Returns:

Q5 value as a type T.

NOTE

Using "to<int16_t>()" result in loss of precision. Use "(int16_t)to<int>()" instead.

Version: 4.16

Quadruple
Base class for homogeneous vectors and points.

Inherited by: Point4, Vector4

Public Functions
FORCE_INLINE_FUNCTION float getElement(int row) const

Gets an element.

FORCE_INLINE_FUNCTION float getW() const
Get w coordinate.

FORCE_INLINE_FUNCTION float getX() const
Get x coordinate.

FORCE_INLINE_FUNCTION float getY() const
Get y coordinate.

FORCE_INLINE_FUNCTION float getZ() const
Get z coordinate.

FORCE_INLINE_FUNCTION void setElement(int row, float value)
Sets an element.

FORCE_INLINE_FUNCTION void setW(float value)
Sets a w coordinate.

FORCE_INLINE_FUNCTION void setX(float value)
Sets an x coordinate.

FORCE_INLINE_FUNCTION void setY(float value)
Sets a y coordinate.

FORCE_INLINE_FUNCTION void setZ(float value)
Sets a z coordinate.

Protected Functions
FORCE_INLINE_FUNCTION Quadruple()

Initializes a new instance of the Quadruple class.

FORCE_INLINE_FUNCTION Quadruple(float x, float y, float z, float w)
Initializes a new instance of the Quadruple class.

Protected Attributes
float elements

The elements[4].

Public Functions Documentation
getElement

FORCE_INLINE_FUNCTION float getElement (int row)

Gets an element.

Parameters:
row The row (0-3).

Returns:

The element.

getW
FORCE_INLINE_FUNCTION float getW () const

Get w coordinate.

Returns:

The w coordinate.

getX

FORCE_INLINE_FUNCTION float getX () const

Get x coordinate.

Returns:

The x coordinate.

getY
FORCE_INLINE_FUNCTION float getY () const

Get y coordinate.

Returns:

The y coordinate.

getZ
FORCE_INLINE_FUNCTION float getZ () const

Get z coordinate.

Returns:

The z coordinate.

setElement
FORCE_INLINE_FUNCTION void setElement (int row ,

float value
)

Sets an element.

Parameters:
row The row (0-3).
value The new value.

setW
FORCE_INLINE_FUNCTION void setW (float value)

Sets a w coordinate.

Parameters:
value The new value.

setX
FORCE_INLINE_FUNCTION void setX (float value)

Sets an x coordinate.

Parameters:
value The new value.

setY
FORCE_INLINE_FUNCTION void setY (float value)

Sets a y coordinate.

Parameters:
value The new value.

setZ
FORCE_INLINE_FUNCTION void setZ (float value)

Sets a z coordinate.

Parameters:
value The new value.

Protected Functions Documentation
Quadruple

FORCE_INLINE_FUNCTION Quadruple ()

Initializes a new instance of the Quadruple class.

Quadruple
FORCE_INLINE_FUNCTION Quadruple (float x ,

float y ,
float z ,
float w
)

Initializes a new instance of the Quadruple class.

Parameters:
x The x coordinate.
y The y coordinate.
z The z coordinate.
w The w coordinate.

Protected Attributes Documentation
elements

float elements

The elements[4].

Version: 4.16

RadioButton
Radio button with two states. A RadioButton is a button that changes appearance (state) when it has
been pushed. Pushing the RadioButton again will return the to original state.

To make managing radio buttons much easier, they can be added to a RadioButtonGroup which then
automates deselecting radio buttons when a new radio button is pressed.

See: RadioButtonGroup

Inherits from: AbstractButton, Widget, Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

void executeDeselectedAction()
Executes the previously set action.

uint8_t getAlpha() const
Gets the current alpha value, as previously set using setAlpha.

Bitmap getCurrentlyDisplayedBitmap() const
Gets currently displayed bitmap.

bool getDeselectionEnabled() const
Gets the current deselectionEnabled state.

bool getSelected() const
Gets the current selected state.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void handleClickEvent(const ClickEvent & event)
Updates the current state of the button.

RadioButton()

void setAlpha(uint8_t alpha)
Sets the alpha channel for the RadioButton, i.e.

virtual void setBitmaps(const Bitmap & bmpUnselected, const Bitmap & bmpUnselectedPressed,
const Bitmap & bmpSelected, const Bitmap & bmpSelectedPressed)
Sets the four bitmaps used by this button.

void setDeselectedAction(GenericCallback< const AbstractButton & > & callback)
Associates an action to be performed when the RadioButton is deselected.

void setDeselectionEnabled(bool state)
Sets whether or not it is possible to deselect the RadioButton by clicking it.

void setSelected(bool newSelected)
Sets the radio buttons selected state.

Protected Attributes
uint8_t alpha

The current alpha value. 255=solid, 0=invisible.

Bitmap bitmapSelected
The image to display when radio button selected
and released.

Bitmap bitmapSelectedPressed
The image to display when radio button selected
and pressed.

Bitmap bitmapUnselected
The image to display when radio button unselected
and released.

Bitmap bitmapUnselectedPressed
The image to display when radio button unselected
and pressed.

GenericCallback< const AbstractButton & > * deselectedAction
The callback to be executed when this
AbstractButton is deselected.

bool deselectionEnabled

Is it possible to deselect by pressing a selected
RadioButton.

bool selected
The current selected state.

Additional inherited members
Public Functions inherited from AbstractButton

AbstractButton()
Sets this Widget touchable so the user can interact with buttons.

virtual void executeAction()
Executes the previously set action.

virtual bool getPressedState() const
Function to determine if the AbstractButton is currently pressed.

void setAction(GenericCallback< const AbstractButton & > & callback)
Associates an action with the button.

Protected Attributes inherited from AbstractButton
GenericCallback< const AbstractButton & > * action

The callback to be executed when this
AbstractButton is clicked.

bool pressed
Is the button pressed or released? True if pressed.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable

virtual void childGeometryChanged()
This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const

Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)

Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Drawable::draw

executeDeselectedAction
void executeDeselectedAction ()

Executes the previously set action.

See also:

setDeselectedAction

getAlpha
uint8_t getAlpha () const

Gets the current alpha value, as previously set using setAlpha.

The default alpha value (if the alpha value has not been changed using setAlpha) is 255=solid.

Returns:

The current alpha value ranging from 255=solid to 0=invisible.

See also:

setAlpha

getCurrentlyDisplayedBitmap
Bitmap getCurrentlyDisplayedBitmap () const

Gets currently displayed bitmap.

This depends on whether the RadioButton is currently selected or not and whether it is being
pressed or not, i.e. it depends on the radio button's pressed and selected state.

Returns:

The bitmap currently displayed.

getDeselectionEnabled
bool getDeselectionEnabled () const

Gets the current deselectionEnabled state.

Returns:

The current deselectionEnabled state.

See also:

setDeselectionEnabled

getSelected
bool getSelected () const

Gets the current selected state.

Returns:

The current selected state.

getSolidRect
virtual Rect getSolidRect () const

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

This information is important, as any Drawable underneath the solid area does not need to be
drawn.

Returns:

The solid rectangle part of the Drawable.

NOTE

The rectangle returned must be relative to upper left corner of the Drawable, meaning that a completely
solid widget should return the full size Rect(0, 0, getWidth(), getHeight()). If no area can be guaranteed to
be solid, an empty Rect(0, 0, 0, 0) must be returned. Failing to return the correct rectangle may result in
errors on the display.

Reimplements: touchgfx::Drawable::getSolidRect

handleClickEvent
virtual void handleClickEvent (const ClickEvent & event)

Updates the current state of the button.

The state can be either pressed or released, and if the new state is different from the current state,
the button is also invalidated to force a redraw.

If the button state is changed from ClickEvent::PRESSED to ClickEvent::RELEASED, the associated
action (if any) is also executed.

Parameters:
event Information about the click.

Reimplements: touchgfx::AbstractButton::handleClickEvent

RadioButton
RadioButton ()

setAlpha
void setAlpha (uint8_t alpha)

Sets the alpha channel for the RadioButton, i.e.

all the images used. The default alpha value on a RadioButton is 255.

Parameters:
alpha The alpha value ranging from 255=solid to 0=invisible.

See also:

getAlpha

setBitmaps
virtual void setBitmaps (const Bitmap & bmpUnselected ,

const Bitmap & bmpUnselectedPressed ,
const Bitmap & bmpSelected ,
const Bitmap & bmpSelectedPressed
)

Sets the four bitmaps used by this button.

The first two bitmaps must show the unselected Button when it is released and pressed. The last
two bitmaps must show the selected Button when it is released and pressed.

Parameters:
bmpUnselected Bitmap to use when button is unselected and released.
bmpUnselectedPressed Bitmap to use when button is unselected and pressed.
bmpSelected Bitmap to use when button is selected and released.
bmpSelectedPressed Bitmap to use when button is selected and pressed.

NOTE

It is not uncommon to have the same bitmap for released (normal) and pressed state.

setDeselectedAction
void setDeselectedAction (GenericCallback< const AbstractButton & > & callback)

Associates an action to be performed when the RadioButton is deselected.

Parameters:
callback The callback to be executed. The callback will be given a reference to the

AbstractButton.

NOTE

The action performed when the RadioButton is selected, is set using setAction().

setDeselectionEnabled
void setDeselectionEnabled (bool state)

Sets whether or not it is possible to deselect the RadioButton by clicking it.

By default it is not possible to deselect a RadioButton. The meaning of this is most clear when the
RadioButton is used in a RadioButtonGroup where exactly one RadioButton should always be
selected. Pressing the currently selected RadioButton should not deselect it, but rather select it
again. This makes the button "sticky", i.e. a button can only be deselected by selecting another
RadioButton in the same RadioButtonGroup.

Parameters:
state true if it should be possible to deselect by click. Default is false.

See also:

getDeselectionEnabled

setSelected
void setSelected (bool newSelected)

Sets the radio buttons selected state.

Note that the associated action is also performed.

Parameters:

newSelected The new selected state.

NOTE

If the RadioButton is part of a RadioButtonGroup, setting the selected state of individual RadioButtons is
not recommended.

See also:

setAction, setDeselectedAction, RadioButtonGroup

Protected Attributes Documentation
alpha

uint8_t alpha

The current alpha value. 255=solid, 0=invisible.

bitmapSelected
Bitmap bitmapSelected

The image to display when radio button selected and released.

bitmapSelectedPressed
Bitmap bitmapSelectedPressed

The image to display when radio button selected and pressed.

bitmapUnselected
Bitmap bitmapUnselected

The image to display when radio button unselected and released.

bitmapUnselectedPressed
Bitmap bitmapUnselectedPressed

The image to display when radio button unselected and pressed.

deselectedAction
GenericCallback< const AbstractButton & > * deselectedAction

The callback to be executed when this AbstractButton is deselected.

deselectionEnabled
bool deselectionEnabled

Is it possible to deselect by pressing a selected RadioButton.

selected
bool selected

The current selected state.

Version: 4.16

RadioButtonGroup
Class for handling a collection of RadioButton objects. The RadioButtonGroup handles the automatic
deselection of other radio buttons when a new RadioButton is selected. A callback is executed when a
new selection occurs reporting the newly selected RadioButton.

Template Parameters:

CAPACITY The number of RadioButtons to store in the RadioButtonGroup.

See: RadioButton

Public Functions
virtual void add(RadioButton & radioButton)

Add the RadioButton to the RadioButtonGroup.

virtual bool getDeselectionEnabled() const
Gets the current deselectionEnabled state.

virtual RadioButton * getRadioButton(uint16_t index) const
Gets the RadioButton at the specified index.

virtual RadioButton * getSelectedRadioButton() const
Gets the currently selected RadioButton.

virtual int32_t getSelectedRadioButtonIndex() const
Gets the index of the currently selected RadioButton.

RadioButtonGroup()
Initializes a new instance of the RadioButtonGroup class.

virtual void setDeselectionEnabled(bool deselectionEnabled)
Sets whether or not it is possible to deselect RadioButtons by clicking them
when they are selected.

void setRadioButtonDeselectedHandler(GenericCallback< const
AbstractButton & > & callback)
Associates an action to be performed when a radio button belonging to this
group transition from selected to unselected.

void setRadioButtonSelectedHandler(GenericCallback< const AbstractButton
& > & callback)
Associates an action to be performed when a radio button belonging to this
group is selected.

virtual void setSelected(RadioButton & radioButton)
Sets the specified RadioButton to be selected.

virtual ~RadioButtonGroup()
Finalizes an instance of the RadioButtonGroup class.

Protected Functions
virtual void radioButtonClickedHandler(const AbstractButton & radioButton)

Handles the event that a RadioButton has been selected.

virtual void radioButtonDeselectedHandler(const AbstractButton & radioButton)
Handles the event that a RadioButton has been deselected.

Protected Attributes
Callback< RadioButtonGroup, const AbstractButton & > radioButtonClicked

Callback that is attached to the
RadioButtons.

GenericCallback< const AbstractButton & > * radioButtonDeselectedCallback
The callback to be executed when a
radio button belonging to this group is
deselected.

RadioButton * radioButtons
The list of added RadioButtons.

GenericCallback< const AbstractButton & > * radioButtonSelectedCallback
The callback to be executed when a
radio button belonging to this group is
selected.

Callback< RadioButtonGroup, const AbstractButton & > radioButtonUnselected

Callback that is attached to the
RadioButtons.

uint16_t size
The current number of added
RadioButtons.

Public Functions Documentation
add

virtual void add (RadioButton & radioButton)

Add the RadioButton to the RadioButtonGroup.

Adding more radio buttons than the CAPACITY of the RadioButtonGroup raises an assert.

Parameters:
radioButton The RadioButton to add.

getDeselectionEnabled
virtual bool getDeselectionEnabled () const

Gets the current deselectionEnabled state.

Returns:

The current deselectionEnabled state.

See also:

setDeselectionEnabled

getRadioButton
virtual RadioButton * getRadioButton (uint16_t index)

Gets the RadioButton at the specified index.

Parameters:
index the index of the RadioButton to return.

Returns:

the RadioButton at the specified index. Returns 0 if the index is illegal.

getSelectedRadioButton
virtual RadioButton * getSelectedRadioButton () const

Gets the currently selected RadioButton.

Returns:

a pointer to the selected RadioButton. Returns 0 if no RadioButton is selected.

getSelectedRadioButtonIndex
virtual int32_t getSelectedRadioButtonIndex () const

Gets the index of the currently selected RadioButton.

Returns:

the index of the selected RadioButton. Returns -1 if no RadioButton is selected.

RadioButtonGroup
RadioButtonGroup ()

Initializes a new instance of the RadioButtonGroup class.

setDeselectionEnabled
virtual void setDeselectionEnabled (bool deselectionEnabled)

Sets whether or not it is possible to deselect RadioButtons by clicking them when they are selected.

If deselection is enabled, it will be possible to select a RadioButton (and as a result deselect all
other radio buttons) and the push the same RadioButton again to deselect it. The result is that no
RadioButton is selected.

Parameters:
deselectionEnabled true if it should be possible to deselect by click.

See also:

getDeselectionEnabled

setRadioButtonDeselectedHandler
void setRadioButtonDeselectedHandler (GenericCallback< const AbstractButton & > & callback)

Associates an action to be performed when a radio button belonging to this group transition from
selected to unselected.

Parameters:
callback The callback to be executed. The callback will be given a reference to the RadioButton

that was selected.

See also:

GenericCallback

setRadioButtonSelectedHandler
void setRadioButtonSelectedHandler (GenericCallback< const AbstractButton & > & callback)

Associates an action to be performed when a radio button belonging to this group is selected.

Parameters:
callback The callback to be executed. The callback will be given a reference to the RadioButton

that was selected.

See also:

GenericCallback

setSelected
virtual void setSelected (RadioButton & radioButton)

Sets the specified RadioButton to be selected.

Sets the specified RadioButton to be selected and all other radio buttons to be deselected. Do not
call this function before all RadioButton objects have been added to the RadioButtonGroup. Will
call the radioButtonSelected callback.

Parameters:
radioButton the RadioButton to be selected.

~RadioButtonGroup
virtual ~RadioButtonGroup ()

Finalizes an instance of the RadioButtonGroup class.

Protected Functions Documentation
radioButtonClickedHandler

virtual void radioButtonClickedHandler (const AbstractButton & radioButton)

Handles the event that a RadioButton has been selected.

deselects all other RadioButtons.

Parameters:
radioButton the RadioButton that has been selected.

radioButtonDeselectedHandler
virtual void radioButtonDeselectedHandler (const AbstractButton & radioButton)

Handles the event that a RadioButton has been deselected.

Parameters:
radioButton the RadioButton that has been deselected.

Protected Attributes Documentation
radioButtonClicked

Callback< RadioButtonGroup, const AbstractButton & > radioButtonClicked

Callback that is attached to the RadioButtons.

radioButtonDeselectedCallback

GenericCallback< const AbstractButton & > * radioButtonDeselectedCallback

The callback to be executed when a radio button belonging to this group is deselected.

radioButtons
RadioButton * radioButtons

The list of added RadioButtons.

radioButtonSelectedCallback
GenericCallback< const AbstractButton & > * radioButtonSelectedCallback

The callback to be executed when a radio button belonging to this group is selected.

radioButtonUnselected
Callback< RadioButtonGroup, const AbstractButton & > radioButtonUnselected

Callback that is attached to the RadioButtons.

size
uint16_t size

The current number of added RadioButtons.

Version: 4.16

Rect
Class representing a Rectangle with a few convenient methods.

Public Functions
uint32_t area() const

Calculate the area of the rectangle.

FORCE_INLINE_FUNCTION int16_t bottom() const
Gets the y coordinate of the bottom edge of the Rect.

void expandToFit(const Rect & other)
Increases the area covered by this rectangle to encompass the
area covered by supplied rectangle.

bool includes(const Rect & other) const
Determines whether the specified rectangle is completely
included in this rectangle.

bool intersect(const Rect & other) const
Determines whether specified rectangle intersects with this
rectangle.

bool intersect(int16_t otherX, int16_t otherY) const
Determines whether specified point lies inside this rectangle.

bool isEmpty() const
Query if this object is empty.

bool operator!=(const Rect & other) const
Opposite of the == operator.

Rect operator&(const Rect & other) const
Gets a rectangle describing the intersecting area between this
rectangle and the supplied rectangle.

void operator&=(const Rect & other)
Assigns this Rect to the intersection of the current Rect and the
assigned Rect.

bool operator==(const Rect & other) const
Compares equality of two Rect by the dimensions and position of
these.

Rect()
Default constructor.

Rect(int16_t x, int16_t y, int16_t width, int16_t height)
Initializes a new instance of the Rect class.

FORCE_INLINE_FUNCTION int16_t right() const
Gets the x coordinate of the right edge of the Rect.

Public Attributes
int16_t height

The height.

int16_t width
The width.

int16_t x
The x coordinate.

int16_t y
The y coordinate.

Public Functions Documentation
area

uint32_t area () const

Calculate the area of the rectangle.

Returns:

area of the rectangle.

bottom
FORCE_INLINE_FUNCTION int16_t bottom () const

Gets the y coordinate of the bottom edge of the Rect.

Returns:

y coordinate of the buttom edge.

expandToFit
void expandToFit (const Rect & other)

Increases the area covered by this rectangle to encompass the area covered by supplied rectangle.

Parameters:
other The other rectangle.

includes
bool includes (const Rect & other)

Determines whether the specified rectangle is completely included in this rectangle.

Parameters:
other The other rectangle.

Returns:

true if the specified rectangle is completely included.

intersect
bool intersect (const Rect & other)

Determines whether specified rectangle intersects with this rectangle.

Parameters:
other The other rectangle.

Returns:

true if the two rectangles intersect.

intersect
bool intersect (int16_t otherX , const

int16_t otherY const
) const

Determines whether specified point lies inside this rectangle.

Parameters:
otherX The x coordinate of the point.
otherY The y coordinate of the point.

Returns:

true if point lies inside rectangle.

isEmpty
bool isEmpty () const

Query if this object is empty.

Returns:

true if any of the dimensions are 0.

operator!=
bool operator!= (const Rect & other)

Opposite of the == operator.

Parameters:
other The Rect to compare with.

Returns:

true if the compared Rect differ in dimensions or coordinates.

operator&
Rect operator& (const Rect & other)

Gets a rectangle describing the intersecting area between this rectangle and the supplied rectangle.

Parameters:
other The other rectangle.

Returns:

Intersecting rectangle or Rect(0, 0, 0, 0) in case of no intersection.

operator&=
void operator&= (const Rect & other)

Assigns this Rect to the intersection of the current Rect and the assigned Rect.

The assignment will result in a Rect(0, 0, 0, 0) if they do not intersect.

Parameters:
other The rect to intersect with.

operator==
bool operator== (const Rect & other)

Compares equality of two Rect by the dimensions and position of these.

Parameters:
other The Rect to compare with.

Returns:

true if the compared Rect have the same dimensions and coordinates.

Rect
Rect ()

Default constructor.

Resulting in an empty Rect with coordinates 0,0.

Rect
Rect (int16_t x ,

int16_t y ,
int16_t width ,
int16_t height
)

Initializes a new instance of the Rect class.

Parameters:
x The x coordinate.
y The y coordinate.
width The width.
height The height.

right
FORCE_INLINE_FUNCTION int16_t right () const

Gets the x coordinate of the right edge of the Rect.

Returns:

x coordinate of the right edge.

Public Attributes Documentation
height

int16_t height

The height.

width
int16_t width

The width.

x

int16_t x

The x coordinate.

y
int16_t y

The y coordinate.

Version: 4.16

RepeatButton
A RepeatButton is similar to a regular Button, but it will 'repeat' if pressed for a long period of time.
The RepeatButton differs from a regular Button with regards to activation. A Button is activated when
the button is released, whereas a RepeatButton is activated immediately when pressed and then at
regular intervals. A RepeatButton does not activate when released.

As for other well-known repeat buttons, the interval from the first activation until the second
activation as well as the subsequent interval between activations can be set for the RepeatButton.

The default values for initial delay is 10 ticks, and the default value for the following delays between
button activations is 5 ticks.

Inherits from: Button, AbstractButton, Widget, Drawable

Public Functions
virtual int getDelay()

Gets the delay in ticks from first button activation until next activation.

virtual int getInterval()
The interval between repeated activations, measured in ticks.

virtual void handleClickEvent(const ClickEvent & event)
Updates the current state of the button.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to timer
ticks.

RepeatButton()

virtual void setDelay(int delay)
Sets the delay (in number of ticks) from the first button activation until the next time it
will be automatically activated.

virtual void setInterval(int interval)
Sets the interval in number of ticks between each each activation of the pressed button
after the second activation.

Additional inherited members
Public Functions inherited from Button

Button()

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

Bitmap getCurrentlyDisplayedBitmap() const
Gets currently displayed bitmap.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setBitmaps(const Bitmap & bitmapReleased, const Bitmap & bitmapPressed)
Sets the two bitmaps used by this button.

Protected Attributes inherited from Button
uint8_t alpha

The current alpha value. 255=solid, 0=invisible.

Bitmap down
The image to display when button is pressed.

Bitmap up
The image to display when button is released (normal state).

Public Functions inherited from AbstractButton
AbstractButton()
Sets this Widget touchable so the user can interact with buttons.

virtual void executeAction()
Executes the previously set action.

virtual bool getPressedState() const
Function to determine if the AbstractButton is currently pressed.

void setAction(GenericCallback< const AbstractButton & > & callback)
Associates an action with the button.

Protected Attributes inherited from AbstractButton
GenericCallback< const AbstractButton & > * action

The callback to be executed when this
AbstractButton is clicked.

bool pressed
Is the button pressed or released? True if pressed.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const

Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
getDelay

virtual int getDelay ()

Gets the delay in ticks from first button activation until next activation.

Returns:

The delay, measured in ticks, between first activation and second activation.

See also:

setDelay

getInterval
virtual int getInterval ()

The interval between repeated activations, measured in ticks.

This is the number of ticks between the an activation beyond the first and the following activation.

Returns:

The interval between repeated activations, measured in ticks.

See also:

setInterval

handleClickEvent
virtual void handleClickEvent (const ClickEvent & event)

Updates the current state of the button.

The state can be either pressed or released, and if the new state is different from the current state,
the button is also invalidated to force a redraw.

If the button state is changed from ClickEvent::PRESSED to ClickEvent::RELEASED, the associated
action (if any) is also executed.

Parameters:
event Information about the click.

Reimplements: touchgfx::AbstractButton::handleClickEvent

handleTickEvent
virtual void handleTickEvent ()

Called periodically by the framework if the Drawable instance has subscribed to timer ticks.

See also:

Application::registerTimerWidget

Reimplements: touchgfx::Drawable::handleTickEvent

RepeatButton
RepeatButton ()

setDelay
virtual void setDelay (int delay)

Sets the delay (in number of ticks) from the first button activation until the next time it will be
automatically activated.

Parameters:
delay The delay, measured in ticks, between first activation and second activation.

See also:

setInterval, getDelay

setInterval
virtual void setInterval (int interval)

Sets the interval in number of ticks between each each activation of the pressed button after the
second activation.

Parameters:
interval The interval between repeated activations, measured in ticks.

See also:

setDelay, getInterval

Version: 4.16

RepeatButtonTrigger
A repeat button trigger. This trigger will create a button that reacts to a consistent touch. This means it
will call the set action repeatedly as long as it is touched. The RepeatButtonTrigger can be combined
with one or more of the ButtonStyle classes to create a fully functional button.

Inherits from: AbstractButtonContainer, Container, Drawable

Public Functions
int getDelay()

Gets the delay in ticks from first button activation until next activation.

int getInterval()
The interval between repeated activations, measured in ticks.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to timer
ticks.

RepeatButtonTrigger()

void setDelay(int delay)
Sets the delay (in number of ticks) from the first button activation until the next time it
will be automatically activated.

void setInterval(int interval)
Sets the interval in number of ticks between each each activation of the pressed button
after the second activation.

Additional inherited members
Public Functions inherited from AbstractButtonContainer

AbstractButtonContainer()

virtual void executeAction()
Executes the previously set action.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

bool getPressed()
Gets the pressed state.

void setAction(GenericCallback< const AbstractButtonContainer & > & callback)
Sets an action callback to be executed by the subclass of AbstractContainerButton.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setPressed(bool isPressed)
Sets the pressed state to the given state.

Protected Functions inherited from AbstractButtonContainer
virtual void handleAlphaUpdated()

Handles what should happen when the alpha is updated.

virtual void handlePressedUpdated()
Handles what should happen when the pressed state is updated.

Protected Attributes inherited from AbstractButtonContainer
GenericCallback< const AbstractButtonContainer & > * action

The action to be executed.

uint8_t alpha
The current alpha value. 255 denotes
solid, 0 denotes completely invisible.

bool pressed
True if pressed.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()

Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const

Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
getDelay

int getDelay ()

Gets the delay in ticks from first button activation until next activation.

Returns:

The delay, measured in ticks, between first activation and second activation.

See also:

setDelay

getInterval
int getInterval ()

The interval between repeated activations, measured in ticks.

This is the number of ticks between the an activation beyond the first and the following activation.

Returns:

The interval between repeated activations, measured in ticks.

See also:

setInterval

handleClickEvent
virtual void handleClickEvent (const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

The default implementation ignores the event. The event is only received if the Drawable is
touchable and visible.

Parameters:
evt The ClickEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleClickEvent

handleTickEvent
virtual void handleTickEvent ()

Called periodically by the framework if the Drawable instance has subscribed to timer ticks.

See also:

Application::registerTimerWidget

Reimplements: touchgfx::Drawable::handleTickEvent

RepeatButtonTrigger
RepeatButtonTrigger ()

setDelay
void setDelay (int delay)

Sets the delay (in number of ticks) from the first button activation until the next time it will be
automatically activated.

Parameters:
delay The delay, measured in ticks, between first activation and second activation.

See also:

setInterval, getDelay

setInterval
void setInterval (int interval)

Sets the interval in number of ticks between each each activation of the pressed button after the
second activation.

Parameters:
interval The interval between repeated activations, measured in ticks.

See also:

setDelay, getInterval

Version: 4.16

ScalableImage
Widget for representing a scaled version of a bitmap. Simply change the width/height of the widget to
resize the image. The quality of the scaled image depends of the rendering algorithm used. The
rendering algorithm can be changed dynamically. Please note that scaling images is done at runtime
and may require a lot of calculations.

Note: Note that this widget does not support 1 bit per pixel color depth.

Inherits from: Image, Widget, Drawable

Public Types
enum ScalingAlgorithm { NEAREST_NEIGHBOR, BILINEAR_INTERPOLATION }

Rendering algorithm to use when scaling the bitmap.

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

virtual ScalingAlgorithm getScalingAlgorithm()
Gets the algorithm used when rendering.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid
(opaque).

ScalableImage(const Bitmap & bitmap =Bitmap())
Constructs a new ScalableImage with a default alpha value of 255 (solid)
and a default Bitmap (undefined) if none is specified.

virtual void setScalingAlgorithm(ScalingAlgorithm algorithm)
Sets the algorithm to be used.

Protected Attributes

ScalingAlgorithm currentScalingAlgorithm
The current scaling algorithm.

Additional inherited members
Public Functions inherited from Image

uint8_t getAlpha() const
Gets the current alpha value of the widget.

Bitmap getBitmap() const
Gets the Bitmap currently assigned to the Image widget.

BitmapId getBitmapId() const
Gets the BitmapId currently assigned to the Image widget.

Image(const Bitmap & bitmap =Bitmap())
Constructs a new Image with a default alpha value of 255 (solid) and a default Bitmap
(undefined) if none is specified.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setBitmap(const Bitmap & bitmap)
Sets the bitmap for this Image and updates the width and height of this widget to
match those of the Bitmap.

Protected Attributes inherited from Image
uint8_t alpha

The Alpha for this image.

Bitmap bitmap
The Bitmap to display.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const

Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)

Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Types Documentation
ScalingAlgorithm

enum ScalingAlgorithm

Rendering algorithm to use when scaling the bitmap.

NEAREST_NEIGHBOR Fast but not a very good image quality. Good for fast animations.
BILINEAR_INTERPOLATION Slower but better image quality. Good for static representation of a

scaled image.

Public Functions Documentation

draw
virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Image::draw

getScalingAlgorithm
virtual ScalingAlgorithm getScalingAlgorithm ()

Gets the algorithm used when rendering.

Returns:

The algorithm used when rendering.

See also:

ScalingAlgorithm

getSolidRect
virtual Rect getSolidRect () const

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

This information is important, as any Drawable underneath the solid area does not need to be
drawn.

Returns:

The solid rectangle part of the Drawable.

NOTE

The rectangle returned must be relative to upper left corner of the Drawable, meaning that a completely
solid widget should return the full size Rect(0, 0, getWidth(), getHeight()). If no area can be guaranteed to

be solid, an empty Rect(0, 0, 0, 0) must be returned. Failing to return the correct rectangle may result in
errors on the display.

Reimplements: touchgfx::Image::getSolidRect

ScalableImage
ScalableImage (const Bitmap & bitmap =Bitmap())

Constructs a new ScalableImage with a default alpha value of 255 (solid) and a default Bitmap
(undefined) if none is specified.

If a Bitmap is passed to the constructor, the width and height of this widget is set to those of the
bitmap.

Parameters:
bitmap (Optional) The bitmap to display.

See also:

setBitmap

setScalingAlgorithm
virtual void setScalingAlgorithm (ScalingAlgorithm algorithm)

Sets the algorithm to be used.

In short, there is currently a value for fast (nearest neighbor) and a value for slow (bi-linear
interpolation).

Parameters:
algorithm The algorithm to use when rendering.

See also:

ScalingAlgorithm

Protected Attributes Documentation
currentScalingAlgorithm

ScalingAlgorithm currentScalingAlgorithm

The current scaling algorithm.

Version: 4.16

Screen
A Screen represents a full-screen drawable area. Applications create specific screens by subclassing
this class. Each Screen has a root container to which drawables are added. The Screen makes sure to
delegate draw requests and various events to the appropriate drawables in correct order.

Inherited by: View< T >

Public Functions
virtual void afterTransition()

Called by Application::handleTickEvent() when the transition to the screen is done.

void bindTransition(Transition & trans)
Enables the transition to access the containers.

void draw()
Tells the screen to draw its entire area.

virtual void draw(Rect & rect)
Tell the screen to draw the specified area.

Container & getRootContainer()
Obtain a reference to the root container of this screen.

virtual void handleClickEvent(const ClickEvent & evt)
Traverse the drawables in reverse z-order and notify them of a click event.

virtual void handleDragEvent(const DragEvent & evt)
Traverse the drawables in reverse z-order and notify them of a drag event.

virtual void handleGestureEvent(const GestureEvent & evt)
Handle gestures.

virtual void handleKeyEvent(uint8_t key)
Called by the Application on the reception of a "key", the meaning of which is
platform/application specific.

virtual void handleTickEvent()

Called by the Application on the current screen with a frequency of
Application::TICK_INTERVAL_MS.

void JSMOC(const Rect & invalidatedArea, Drawable * widgetToDraw)
Recursive JSMOC function.

Screen()
Initializes a new instance of the Screen class.

virtual void setupScreen()
Called by Application::switchScreen() when this screen is going to be displayed.

void startSMOC(const Rect & invalidatedArea)
Starts a JSMOC run, analyzing what parts of what widgets should be redrawn.

virtual void tearDownScreen()
Called by Application::switchScreen() when this screen will no longer be displayed.

bool usingSMOC() const
Determines if using JSMOC.

virtual ~Screen()
Finalizes an instance of the Screen class.

Protected Functions
void add(Drawable & d)

Add a drawable to the content container.

void remove(Drawable & d)
Removes a drawable from the content container.

void useSMOCDrawing(bool enabled)
Determines whether to use JSMOC or painter's algorithm for drawing.

Protected Attributes
Container container

The container contains the contents of the screen.

Drawable * focus
The drawable currently in focus (set when DOWN_PRESSED is received).

Public Functions Documentation
afterTransition

virtual void afterTransition ()

Called by Application::handleTickEvent() when the transition to the screen is done.

Base version does nothing, but override to do screen specific initialization code that has to be done
after the transition to the screen.

See also:

Application::handleTickEvent

bindTransition
void bindTransition (Transition & trans)

Enables the transition to access the containers.

Parameters:
trans The transition to bind.

draw
void draw ()

Tells the screen to draw its entire area.

NOTE

The more specific draw(Rect&) version is preferred when possible.

draw
virtual void draw (Rect & rect)

Tell the screen to draw the specified area.

Will traverse the drawables tree from in z-order and delegate draw to them.

Parameters:
rect The area in absolute coordinates.

NOTE

The given rect must be in absolute coordinates.

getRootContainer
Container & getRootContainer ()

Obtain a reference to the root container of this screen.

Returns:

The root container.

handleClickEvent
virtual void handleClickEvent (const ClickEvent & evt)

Traverse the drawables in reverse z-order and notify them of a click event.

Parameters:
evt The event to handle.

handleDragEvent
virtual void handleDragEvent (const DragEvent & evt)

Traverse the drawables in reverse z-order and notify them of a drag event.

Parameters:
evt The event to handle.

handleGestureEvent

virtual void handleGestureEvent (const GestureEvent & evt)

Handle gestures.

Traverses drawables in reverse-z and notifies them of the gesture.

Parameters:
evt The event to handle.

handleKeyEvent
virtual void handleKeyEvent (uint8_t key)

Called by the Application on the reception of a "key", the meaning of which is
platform/application specific.

Default implementation does nothing.

Parameters:
key The key to handle.

handleTickEvent
virtual void handleTickEvent ()

Called by the Application on the current screen with a frequency of
Application::TICK_INTERVAL_MS.

JSMOC
void JSMOC (const Rect & invalidatedArea ,

Drawable * widgetToDraw
)

Recursive JSMOC function.

This is the actual occlusion culling implementation.

Parameters:
invalidatedArea The area to redraw, expressed in absolute coordinates.
widgetToDraw Widget currently being drawn.

NOTE

JSMOC is an abbreviation of Jesper, Sren & Martin's Occlusion Culling.

Screen
Screen ()

Initializes a new instance of the Screen class.

setupScreen
virtual void setupScreen ()

Called by Application::switchScreen() when this screen is going to be displayed.

Base version does nothing, but place any screen specific initialization code in an overridden version.

See also:

Application::switchScreen

startSMOC
void startSMOC (const Rect & invalidatedArea)

Starts a JSMOC run, analyzing what parts of what widgets should be redrawn.

Parameters:
invalidatedArea The area to redraw, expressed in absolute coordinates.

NOTE

SMOC is an abbreviation of Sren & Martin's Occlusion Culling.

tearDownScreen
virtual void tearDownScreen ()

Called by Application::switchScreen() when this screen will no longer be displayed.

Base version does nothing, but place any screen specific cleanup code in an overridden version.

See also:

Application::switchScreen

usingSMOC
bool usingSMOC () const

Determines if using JSMOC.

Returns:

true if this screen uses the JSMOC drawing algorithm.

~Screen
virtual ~Screen ()

Finalizes an instance of the Screen class.

Protected Functions Documentation
add

void add (Drawable & d)

Add a drawable to the content container.

Parameters:
d The Drawable to add.

NOTE

Must not be called with a Drawable that was already added to the screen. If in doubt, call remove() first.

remove
void remove (Drawable & d)

Removes a drawable from the content container.

Safe to call even if the drawable was never added (in which case nothing happens).

Parameters:
d The Drawable to remove.

useSMOCDrawing
void useSMOCDrawing (bool enabled)

Determines whether to use JSMOC or painter's algorithm for drawing.

Parameters:
enabled true if JSMOC should be enabled, false if disabled (meaning painter's algorithm is

employed instead).

Protected Attributes Documentation
container

Container container

The container contains the contents of the screen.

focus
Drawable * focus

The drawable currently in focus (set when DOWN_PRESSED is received).

Version: 4.16

ScrollableContainer
A ScrollableContainer is a container that allows its contents to be scrolled. It will intercept drag
operations and move child nodes accordingly.

A standard Container will simply clip children that are either larger than the container itself, or children
that extend beyond the borders of the container or children that are placed outside the borders of the
container. A ScrollableContainer behaves much like a Container, except it enables the user to scroll the
children and thereby act like a viewport. When the contents of the ScrollableContainer is scrollable,
scrollbars can be seen near the edge of the ScrollableContainer.

See: Container

Note: The ScrollableContainer will consume all DragEvents in the area covered by the container.

Inherits from: Container, Drawable

Public Functions
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

virtual void childGeometryChanged()
Used to signal that the size or position of one or more children have changed.

void enableHorizontalScroll(bool enable)
Enables horizontal scrolling.

void enableVerticalScroll(bool enable)
Enables vertical scrolling.

virtual Rect getContainedArea() const
Gets the area that contains all children added to the ScrollableContainer.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

uint16_t getScrollDurationSlowdown() const
Gets scroll duration speedup divisor.

uint16_t getScrollDurationSpeedup() const
Gets scroll duration speedup multiplier.

int16_t getScrolledX() const
Gets the distance scrolled for the x-axis.

int16_t getScrolledY() const
Gets the distance scrolled for the y-axis.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to timer
ticks.

virtual void isScrollableXY(bool & scrollX, bool & scrollY)
Is the ClickableContainer scrollable in either direction? Takes the width of the contained
elements into account and also checks to see if horizontal or vertical scrolling is allowed.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

void reset()
Resets the ScrollableContainer to its original state, before the user started dragging
the contents.

ScrollableContainer()

void setMaxVelocity(uint16_t max)
Sets the maximum velocity of a scroll due to a swipe.

void setScrollbarPadding(uint8_t padding)
Sets the amount of space between the scrollbar and the edge of the
ScrollableContainer.

void setScrollbarsAlpha(uint8_t alpha)

Sets the alpha value (transparency) of the scrollbars.

void setScrollbarsColor(colortype color)
Sets the color of the scrollbars.

void setScrollbarsPermanentlyVisible(bool permanentlyVisible =true)
Make scrollbars permanently visible regardless of the size and position of the children of
the ScrollableContainer.

void setScrollbarsVisible(bool newVisible)
Sets the visibility of the scrollbars, when the scrollable area is pressed.

void setScrollbarWidth(uint8_t width)
Sets the width of the scrollbar measured in pixels.

void setScrollDurationSlowdown(uint16_t slowdown)
Sets scroll duration speedup divisor.

void setScrollDurationSpeedup(uint16_t speedup)
Sets scroll duration speedup multiplier.

void setScrollThreshold(int16_t t)
Change the threshold which the first drag event received must exceed before initiating a
scroll.

Protected Functions
virtual bool doScroll(int16_t deltaX, int16_t deltaY)

Method to actually scroll the container.

Rect getXBorder(const Rect & xBar, const Rect & yBar) const
Gets the area where the horizontal scrollbar can move.

Rect getXScrollbar() const
Gets x coordinate of the scrollbar.

Rect getYBorder(const Rect & xBar, const Rect & yBar) const
Gets the area where the vertical scrollbar can move.

Rect getYScrollbar() const
Gets y coordinate of the scrollbar.

void invalidateScrollbars()
Invalidate the scrollbars.

Protected Attributes
GestureEvent::GestureEventType accelDirection

The current direction (horizontal or vertical) of scroll.

bool animate
Is scroll animation currently active.

uint16_t animationCounter
Current step/tick in scroll animation.

int16_t beginningValue
Initial X or Y for calculated values in scroll animation.

int16_t fingerAdjustmentX
How much should the finger be adjusted horizontally.

int16_t fingerAdjustmentY
and how much vertically

bool hasIssuedCancelEvent
true if the pressed drawable has received cancel event

bool isPressed
Is the container currently pressed (maybe show scrollbars)

bool isScrolling
Is the container scrolling (i.e. has overcome the initial larger drag
that is required to initiate a scroll).

Drawable * lastDraggableChild
The drawable child of this container which should receive drag
events. Note that only drag events in directions which cannot be
scrolled by this ScrollableContainer will be forwarded to
children.

uint16_t maxVelocity
The maximum velocity of a scroll (due to a swipe)

Drawable * pressedDrawable
The drawable child of this container which received the last
ClickEvent::PRESSED notification. When scrolling, send this
drawable a CANCEL event if the new x/y coords no longer
matches this drawable.

int16_t pressedX
The x coordinate where the last ClickEvent::PRESSED was
received.

int16_t pressedY
The y coordinate where the last ClickEvent::PRESSED was
received.

bool scrollableX
Is the container scrollable in the horizontal direction.

bool scrollableY
Is the container scrollable in the vertical direction.

uint8_t scrollbarAlpha
The scrollbar is semitransparent.

colortype scrollbarColor
The color of the scrollbar.

uint8_t scrollbarPadding
The amount of padding. The scrollbar will have a bit of space to
the borders of the container.

bool scrollbarsPermanentlyVisible
Are scrollbars always visible.

bool scrollbarsVisible
Are scrollbars visible.

uint8_t scrollbarWidth
The width of the scrollbar.

uint16_t scrollDuration
Number of ticks the scroll animation should use.

uint16_t scrollDurationSlowdown
The scroll durations is divided by this number.

uint16_t scrollDurationSpeedup
The scroll durations is multipled by this number.

int16_t scrolledXDistance
The scrolled horizontal distance.

int16_t scrolledYDistance
The scrolled vertical distance.

int16_t scrollThreshold
The threshold which the first drag event received must exceed
before scrolling. Default is 5.

int16_t targetValue
Target X or Y value for scroll animation.

Box xSlider
The horizontal scrollbar drawable.

Box ySlider
The vertical scrollbar drawable.

const uint8_t SCROLLBAR_LINE
The scrollbar line.

const uint16_t SCROLLBAR_MAX_VELOCITY
The (default) maximum velocity of a scroll due to a swipe.

const uint16_t SCROLLBAR_MIN_VELOCITY
The minimum velocity of a scroll due to a swipe.

Additional inherited members
Public Functions inherited from Container

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void draw(const Rect & invalidatedArea) const =0

Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)

Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const

Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
add

virtual void add (Drawable & d)

Adds a Drawable instance as child to this Container.

The Drawable added will be placed as the element to be drawn last, and thus appear on top of all
previously added drawables in the Container.

Parameters:
d The Drawable to add.

NOTE

Never add a drawable more than once!

Reimplements: touchgfx::Container::add

childGeometryChanged
virtual void childGeometryChanged ()

Used to signal that the size or position of one or more children have changed.

This function can be called on parent nodes to signal that the size of one or more of its children
have changed.

Reimplements: touchgfx::Drawable::childGeometryChanged

enableHorizontalScroll
void enableHorizontalScroll (bool enable)

Enables horizontal scrolling.

By default, scrolling in either direction is enabled, provided that the content is larger than the size
of the ScrollableContainer. This function can be used to explicitly (dis)allow horizontal scrolling,
even if the content is larger than the container.

Parameters:
enable If true (default), horizontal scrolling is enabled. If false, horizontal scrolling is disabled.

See also:

enableVerticalScroll

enableVerticalScroll
void enableVerticalScroll (bool enable)

Enables vertical scrolling.

By default, scrolling in either direction is enabled, provided that the content is larger than the size
of the ScrollableContainer. This function can be used to explicitly (dis)allow vertical scrolling, even
if the content is larger than the container.

Parameters:
enable If true (default), vertical scrolling is enabled. If false, vertical scrolling is disabled.

See also:

enableHorizontalScroll

getContainedArea
virtual Rect getContainedArea () const

Gets the area that contains all children added to the ScrollableContainer.

The scrollbars are not considered in this operation.

Returns:

The contained area.

Reimplements: touchgfx::Container::getContainedArea

getLastChild
virtual void getLastChild (int16_t x ,

int16_t y ,
Drawable ** last
)

Gets the last child in the list of children in this Container.

If this Container is touchable (isTouchable()), it will be passed back as the result. Otherwise all
visible children are traversed recursively to find the Drawable that intersects with the given
coordinate.

Parameters:
x The x coordinate of the intersection.
y The y coordinate of the intersection.
last out parameter in which the result is placed.

See also:

isVisible, isTouchable

Reimplements: touchgfx::Container::getLastChild

getScrollDurationSlowdown
uint16_t getScrollDurationSlowdown () const

Gets scroll duration speedup divisor.

Returns:

The scroll duration speedup divisor.

See also:

setScrollDurationSlowdown

getScrollDurationSpeedup
uint16_t getScrollDurationSpeedup () const

Gets scroll duration speedup multiplier.

Returns:

The swipe acceleration.

See also:

setScrollDurationSpeedup, getScrollDurationSlowdown

getScrolledX
int16_t getScrolledX () const

Gets the distance scrolled for the x-axis.

Returns:

the distance scrolled for the x-axis.

getScrolledY
int16_t getScrolledY () const

Gets the distance scrolled for the y-axis.

Returns:

the distance scrolled for the y-axis.

handleClickEvent
virtual void handleClickEvent (const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

The default implementation ignores the event. The event is only received if the Drawable is
touchable and visible.

Parameters:
evt The ClickEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleClickEvent

handleDragEvent
virtual void handleDragEvent (const DragEvent & evt)

Defines the event handler interface for DragEvents.

The default implementation ignores the event. The event is only received if the drawable is
touchable and visible.

Parameters:
evt The DragEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleDragEvent

handleGestureEvent
virtual void handleGestureEvent (const GestureEvent & evt)

Defines the event handler interface for GestureEvents.

The default implementation ignores the event. The event is only received if the Drawable is
touchable and visible.

Parameters:
evt The GestureEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleGestureEvent

handleTickEvent
virtual void handleTickEvent ()

Called periodically by the framework if the Drawable instance has subscribed to timer ticks.

See also:

Application::registerTimerWidget

Reimplements: touchgfx::Drawable::handleTickEvent

isScrollableXY
virtual void isScrollableXY (bool & scrollX ,

bool & scrollY
)

Is the ClickableContainer scrollable in either direction? Takes the width of the contained elements
into account and also checks to see if horizontal or vertical scrolling is allowed.

Parameters:
scrollX True if the container is able to scroll horizontally.
scrollY True if the container is able to scroll vertically.

See also:

enableHorizontalScroll, enableVerticalScroll

moveChildrenRelative

virtual void moveChildrenRelative (int16_t deltaX ,
int16_t deltaY
)

Calls moveRelative on all children.

Parameters:
deltaX Horizontal displacement.
deltaY Vertical displacement.

NOTE

Takes care not to move the scrollbars, which are also children.

Reimplements: touchgfx::Container::moveChildrenRelative

reset
void reset ()

Resets the ScrollableContainer to its original state, before the user started dragging the contents.

This reset the x/y coordinates of children to the position they were in before the first drag event
was received.

ScrollableContainer
ScrollableContainer ()

setMaxVelocity
void setMaxVelocity (uint16_t max)

Sets the maximum velocity of a scroll due to a swipe.

This can be used to force smooth scrolling by limiting the speed of any swipe gesture.

Parameters:
max The maximum velocity of the scroll.

See also:

GestureEvent::getVelocity

setScrollbarPadding
void setScrollbarPadding (uint8_t padding)

Sets the amount of space between the scrollbar and the edge of the ScrollableContainer.

Parameters:
padding The padding.

setScrollbarsAlpha
void setScrollbarsAlpha (uint8_t alpha)

Sets the alpha value (transparency) of the scrollbars.

Parameters:
alpha The alpha value. 255 being completely solid, 0 being completely invisible.

setScrollbarsColor
void setScrollbarsColor (colortype color)

Sets the color of the scrollbars.

Parameters:
color The color of the box.

setScrollbarsPermanentlyVisible
void setScrollbarsPermanentlyVisible (bool permanentlyVisible =true)

Make scrollbars permanently visible regardless of the size and position of the children of the
ScrollableContainer.

Normally the scrollbars are hidden and only shown when dragging the contents of the
ScrollableContainer (unless prohibited using setScrollbarsVisible()).

Parameters:
permanentlyVisible (Optional) True to show the scrollbars permanently, false for default

behavior.

See also:

setScrollbarsVisible

setScrollbarsVisible
void setScrollbarsVisible (bool newVisible)

Sets the visibility of the scrollbars, when the scrollable area is pressed.

By default the scrollbars are hidden, but shown when the contents of the ScrollableContainer is
being dragged around. Using setScrollbarsVisible, it is possble to hide the scrollbars when dragging
the contents.

Parameters:
newVisible If true (default), the scrollbars are visible when scrollable area is pressed. If false,

scrollbars are always hidden.

See also:

setScrollbarsPermanentlyVisible

setScrollbarWidth
void setScrollbarWidth (uint8_t width)

Sets the width of the scrollbar measured in pixels.

Parameters:
width The width of the scrollbar.

setScrollDurationSlowdown
void setScrollDurationSlowdown (uint16_t slowdown)

Sets scroll duration speedup divisor.

Default value is 1.

Parameters:
slowdown The scroll duration speedup divisor.

See also:

setScrollDurationSpeedup, getScrollDurationSlowdown

setScrollDurationSpeedup
void setScrollDurationSpeedup (uint16_t speedup)

Sets scroll duration speedup multiplier.

Default value is 7 which gives a nice speedup on gestures.

Parameters:
speedup The scroll duration speedup multiplier.

See also:

getScrollDurationSpeedup, setScrollDurationSlowdown

setScrollThreshold
void setScrollThreshold (int16_t t)

Change the threshold which the first drag event received must exceed before initiating a scroll.

This can be used to avoid touching the screen and moving the finger only a few pixels resulting in
the contents being scrolled.

Parameters:
t The new threshold value.

NOTE

All subsequent scrolls will be processed regardless of threshold value until a ClickEvent::RELEASED is
received.

Protected Functions Documentation
doScroll

virtual bool doScroll (int16_t deltaX ,
int16_t deltaY
)

Method to actually scroll the container.

Passing negative values will scroll the items in the ScrollableContainer up / left, whereas positive
values will scroll items down / right.

If the distance is larger than allowed, the deltas are adjusted down to make sure the contained
items stay inside view.

Parameters:
deltaX The horizontal amount to scroll.
deltaY The vertical amount to scroll.

Returns:

did the container actually scroll. The call doScroll(0,0) will always return false.

getXBorder
Rect getXBorder (const Rect & xBar , const

const Rect & yBar const
) const

Gets the area where the horizontal scrollbar can move.

Parameters:
xBar The current horizontal scrollbar, supplied for caching reasons.
yBar The current vertical scrollbar, supplied for caching reasons.

Returns:

The area.

getXScrollbar
Rect getXScrollbar () const

Gets x coordinate of the scrollbar.

Returns:

The horizontal scrollbar area.

getYBorder
Rect getYBorder (const Rect & xBar , const

const Rect & yBar const

) const

Gets the area where the vertical scrollbar can move.

Parameters:
xBar The current horizontal scrollbar, supplied for caching reasons.
yBar The current vertical scrollbar, supplied for caching reasons.

Returns:

The area.

getYScrollbar
Rect getYScrollbar () const

Gets y coordinate of the scrollbar.

Returns:

The vertical scrollbar area.

invalidateScrollbars
void invalidateScrollbars ()

Invalidate the scrollbars.

Protected Attributes Documentation
accelDirection

GestureEvent::GestureEventType accelDirection

The current direction (horizontal or vertical) of scroll.

animate
bool animate

Is scroll animation currently active.

animationCounter
uint16_t animationCounter

Current step/tick in scroll animation.

beginningValue
int16_t beginningValue

Initial X or Y for calculated values in scroll animation.

fingerAdjustmentX
int16_t fingerAdjustmentX

How much should the finger be adjusted horizontally.

fingerAdjustmentY
int16_t fingerAdjustmentY

and how much vertically

hasIssuedCancelEvent
bool hasIssuedCancelEvent

true if the pressed drawable has received cancel event

isPressed
bool isPressed

Is the container currently pressed (maybe show scrollbars)

isScrolling
bool isScrolling

Is the container scrolling (i.e. has overcome the initial larger drag that is required to initiate a scroll).

lastDraggableChild
Drawable * lastDraggableChild

The drawable child of this container which should receive drag events. Note that only drag events
in directions which cannot be scrolled by this ScrollableContainer will be forwarded to children.

maxVelocity
uint16_t maxVelocity

The maximum velocity of a scroll (due to a swipe)

pressedDrawable
Drawable * pressedDrawable

The drawable child of this container which received the last ClickEvent::PRESSED notification.
When scrolling, send this drawable a CANCEL event if the new x/y coords no longer matches this
drawable.

pressedX
int16_t pressedX

The x coordinate where the last ClickEvent::PRESSED was received.

pressedY
int16_t pressedY

The y coordinate where the last ClickEvent::PRESSED was received.

scrollableX
bool scrollableX

Is the container scrollable in the horizontal direction.

scrollableY
bool scrollableY

Is the container scrollable in the vertical direction.

scrollbarAlpha
uint8_t scrollbarAlpha

The scrollbar is semitransparent.

scrollbarColor
colortype scrollbarColor

The color of the scrollbar.

scrollbarPadding
uint8_t scrollbarPadding

The amount of padding. The scrollbar will have a bit of space to the borders of the container.

scrollbarsPermanentlyVisible
bool scrollbarsPermanentlyVisible

Are scrollbars always visible.

scrollbarsVisible
bool scrollbarsVisible

Are scrollbars visible.

scrollbarWidth
uint8_t scrollbarWidth

The width of the scrollbar.

scrollDuration
uint16_t scrollDuration

Number of ticks the scroll animation should use.

scrollDurationSlowdown
uint16_t scrollDurationSlowdown

The scroll durations is divided by this number.

scrollDurationSpeedup
uint16_t scrollDurationSpeedup

The scroll durations is multipled by this number.

scrolledXDistance
int16_t scrolledXDistance

The scrolled horizontal distance.

scrolledYDistance

int16_t scrolledYDistance

The scrolled vertical distance.

scrollThreshold
int16_t scrollThreshold

The threshold which the first drag event received must exceed before scrolling. Default is 5.

targetValue
int16_t targetValue

Target X or Y value for scroll animation.

xSlider
Box xSlider

The horizontal scrollbar drawable.

ySlider
Box ySlider

The vertical scrollbar drawable.

SCROLLBAR_LINE
const uint8_t SCROLLBAR_LINE = 0

The scrollbar line.

SCROLLBAR_MAX_VELOCITY

const uint16_t SCROLLBAR_MAX_VELOCITY = 17

The (default) maximum velocity of a scroll due to a swipe.

SCROLLBAR_MIN_VELOCITY
const uint16_t SCROLLBAR_MIN_VELOCITY = 5

The minimum velocity of a scroll due to a swipe.

Version: 4.16

ScrollBase
The ScrollBase class is an abstract class used for Widgets that needs to show (a lot of) elements in a
DrawableList that can be scrolled. Due to memory limitations, this is implemented by re-using the
Drawables in the DrawableList - once an element is moved off screen, it is filled with new content and
moved to the other end and the of the scrolling list.

Lists can be horizontal or vertical and the can be circular (infinite scrolling).

See:

ScrollList, ScrollWheel, ScrollWheelWithSelectionStyle
ScrollWheelBase, DrawableList

Inherits from: Container, Drawable

Inherited by: ScrollList, ScrollWheelBase

Protected Types
enum AnimationState { NO_ANIMATION, ANIMATING_GESTURE, ANIMATING_DRAG }

Values that represent animation states.

Public Functions
void allowHorizontalDrag(bool enable)

Enables horizontal scrolling to be passed to the children in the list (in case a child
widget is able to handle drag events).

void allowVerticalDrag(bool enable)
Enables the vertical scroll.

virtual void animateToItem(int16_t itemIndex, int16_t animationSteps =-1)
Go to a specific item, possibly with animation.

uint16_t getAnimationSteps() const
Gets animation steps as set in setAnimationSteps.

virtual bool getCircular() const
Gets the circular setting, previously set using setCircular().

uint16_t getDragAcceleration() const
Gets drag acceleration (times 10).

virtual int16_t getDrawableMargin() const
Gets drawable margin as set through the second parameter in most recent call to
setDrawableSize().

virtual int16_t getDrawableSize() const
Gets drawable size as set through the first parameter in most recent call to
setDrawableSize().

virtual bool getHorizontal() const
Gets the orientation of the drawables, previously set using setHorizontal().

uint16_t getMaxSwipeItems() const
Gets maximum swipe items as set by setMaxSwipeItems.

virtual int16_t getNumberOfItems() const
Gets number of items in the DrawableList, as previously set using
setNumberOfItems().

uint16_t getSwipeAcceleration() const
Gets swipe acceleration (times 10).

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to timer
ticks.

virtual void initialize()
Removed all drawables and initializes the content of these items.

bool isAnimating() const
Query if an animation is ongoing.

virtual void itemChanged(int itemIndex)

Inform the scroll list that the contents of an item has changed and force all drawables
with the given item index to be updated via the callback provided.

ScrollBase()

void setAnimationEndedCallback(GenericCallback<> & callback)
Callback, called when the set animation ended.

void setAnimationSteps(int16_t steps)
Sets animation steps (in ticks) when moving to a new selected item.

virtual void setCircular(bool circular)
Sets whether the list is circular (infinite) or not.

void setDragAcceleration(uint16_t acceleration)
Sets drag acceleration times 10, so "10" means "1", "15" means "1.5".

void setDrawableSize(int16_t drawableSize, int16_t drawableMargin)
Sets drawables size.

void setEasingEquation(EasingEquation equation)
Sets easing equation when changing the selected item, for example via swipe or
AnimateTo.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setHorizontal(bool horizontal)
Sets a horizontal or vertical layout.

void setItemPressedCallback(GenericCallback< int16_t > & callback)
Set Callback which will be called when a item is pressed.

void setItemSelectedCallback(GenericCallback< int16_t > & callback)
Sets Callback which will be called when the selected item is clicked.

void setMaxSwipeItems(uint16_t maxItems)
Sets maximum swipe items.

virtual void setNumberOfItems(int16_t numberOfItems)
Sets number of items in the DrawableList.

void setSwipeAcceleration(uint16_t acceleration)

Sets swipe acceleration (times 10).

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void stopAnimation()
Stops an animation if one is ongoing.

Protected Functions
virtual void animateToPosition(int32_t position, int16_t steps =-1)

Animate to a new position/offset using the given number of steps.

virtual int32_t getNearestAlignedOffset(int32_t offset) const
Gets nearest offset aligned to a multiple of itemSize.

int getNormalizedOffset(int offset) const
Gets normalized offset from a given offset from 0 down to -numItems*itemSize.

virtual int32_t getOffset() const
Gets display offset of first item.

virtual int32_t getPositionForItem(int16_t itemIndex) =0
Get the position for an item.

virtual int32_t keepOffsetInsideLimits(int32_t newOffset, int16_t overShoot) const =0
Keep offset inside limits.

virtual void setOffset(int32_t offset)
Sets display offset of first item.

Protected Attributes
GenericCallback * animationEndedCallback

The animation ended callback.

AnimationState currentAnimationState
The current animation state.

uint16_t defaultAnimationSteps
The animation steps.

int16_t distanceBeforeAlignedItem
The distance before aligned item.

uint16_t dragAcceleration
The drag acceleration x10.

bool draggableX
Is the container draggable in the horizontal direction.

bool draggableY
Is the container draggable in the vertical direction.

EasingEquation easingEquation
The easing equation used for animation.

int gestureEnd
The gesture end.

int gestureStart
The gesture start.

int gestureStep
The current gesture step.

int gestureStepsTotal
The total gesture steps.

int32_t initialSwipeOffset
The initial swipe offset.

GenericCallback * itemLockedInCallback
The item locked in callback.

GenericCallback< int16_t > * itemPressedCallback
The item pressed callback.

GenericCallback< int16_t > * itemSelectedCallback
The item selected callback.

int16_t itemSize

Size of the item (including margin)

DrawableList list
The list.

uint16_t maxSwipeItems
The maximum swipe items.

int16_t numberOfDrawables
Number of drawables.

uint16_t swipeAcceleration
The swipe acceleration x10.

int16_t xClick
The x coordinate of a click.

int16_t yClick
The y coordinate of a click.

Additional inherited members
Public Functions inherited from Container

virtual void add(Drawable & d)
Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const

Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

void setWidthHeight(const Bitmap & bitmap)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect

The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Protected Types Documentation
AnimationState

enum AnimationState

Values that represent animation states.

NO_ANIMATION No animation.
ANIMATING_GESTURE Animating a gesture.
ANIMATING_DRAG Animating a drag.

Public Functions Documentation
allowHorizontalDrag

void allowHorizontalDrag (bool enable)

Enables horizontal scrolling to be passed to the children in the list (in case a child widget is able to
handle drag events).

By default, scrolling in either direction is disabled. This function can be used to explicitly (dis)allow
scrolling in the horizontal direction.

Parameters:
enable If true, horizontal scrolling is enabled. If false (default), scrolling is disabled.

allowVerticalDrag
void allowVerticalDrag (bool enable)

Enables the vertical scroll.

Enables the vertical scroll to be passed to the children in the list (in case a child widget is able to
handle drag events). By default, scrolling in either direction is disabled. This function can be used to
explicitly (dis)allow scrolling in the vertical direction.

Parameters:
enable If true, vertical scrolling is enabled. If false (default), scrolling is disabled.

animateToItem
virtual void animateToItem (int16_t itemIndex ,

int16_t animationSteps =-1
)

Go to a specific item, possibly with animation.

The given item index is scrolled into view. If animationSteps is omitted, the default number of
animation steps is used. If animationSteps is 0 no animation will be used, otherwise the number of
animation steps specified is used.

Parameters:
itemIndex Zero-based index of the item.
animationSteps (Optional) The steps to use for the animation. 0 means no animation. If

omitted, default animation steps are used.

See also:

setAnimationSteps

getAnimationSteps
uint16_t getAnimationSteps () const

Gets animation steps as set in setAnimationSteps.

Returns:

The animation steps.

See also:

setAnimationSteps, setEasingEquation

getCircular
virtual bool getCircular () const

Gets the circular setting, previously set using setCircular().

Returns:

True if the list is circular (infinite), false if the list is not circular (finite).

See also:

DrawableList::getCircular, setCircular

getDragAcceleration
uint16_t getDragAcceleration () const

Gets drag acceleration (times 10).

Returns:

The drag acceleration.

NOTE

The reason for multiplying the acceleration by 10 is to avoid introducing floating point arithmetic.

See also:

setDragAcceleration

getDrawableMargin
virtual int16_t getDrawableMargin () const

Gets drawable margin as set through the second parameter in most recent call to
setDrawableSize().

Returns:

The drawable margin.

See also:

setDrawableSize

getDrawableSize
virtual int16_t getDrawableSize () const

Gets drawable size as set through the first parameter in most recent call to setDrawableSize().

Returns:

The drawable size.

See also:

setDrawableSize

getHorizontal
virtual bool getHorizontal () const

Gets the orientation of the drawables, previously set using setHorizontal().

Returns:

True if it horizontal, false if it is vertical.

See also:

DrawableList::getHorizontal, setHorizontal

getMaxSwipeItems
uint16_t getMaxSwipeItems () const

Gets maximum swipe items as set by setMaxSwipeItems.

Returns:

The maximum swipe items, 0 means "no limit".

See also:

setMaxSwipeItems

getNumberOfItems
virtual int16_t getNumberOfItems () const

Gets number of items in the DrawableList, as previously set using setNumberOfItems().

Returns:

The number of items.

See also:

setNumberOfItems, DrawableList::getNumberOfItems

getSwipeAcceleration
uint16_t getSwipeAcceleration () const

Gets swipe acceleration (times 10).

Returns:

The swipe acceleration.

NOTE

The reason for multiplying the acceleration by 10 is to avoid introducing floating point arithmetic.

See also:

setSwipeAcceleration

handleDragEvent
virtual void handleDragEvent (const DragEvent & evt)

Defines the event handler interface for DragEvents.

The default implementation ignores the event. The event is only received if the drawable is
touchable and visible.

Parameters:
evt The DragEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleDragEvent

Reimplemented by: touchgfx::ScrollWheelBase::handleDragEvent

handleGestureEvent
virtual void handleGestureEvent (const GestureEvent & evt)

Defines the event handler interface for GestureEvents.

The default implementation ignores the event. The event is only received if the Drawable is
touchable and visible.

Parameters:
evt The GestureEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleGestureEvent

Reimplemented by: touchgfx::ScrollWheelBase::handleGestureEvent

handleTickEvent
virtual void handleTickEvent ()

Called periodically by the framework if the Drawable instance has subscribed to timer ticks.

See also:

Application::registerTimerWidget

Reimplements: touchgfx::Drawable::handleTickEvent

initialize
virtual void initialize ()

Removed all drawables and initializes the content of these items.

Reimplemented by: touchgfx::ScrollWheelWithSelectionStyle::initialize

isAnimating
bool isAnimating () const

Query if an animation is ongoing.

This can be good to know if getSelectedItem() is called, as the result might not be as expected if
isAnimating() returns true, since the display is not showing the selected item in the right place yet.

Returns:

true if animating, false if not.

itemChanged
virtual void itemChanged (int itemIndex)

Inform the scroll list that the contents of an item has changed and force all drawables with the
given item index to be updated via the callback provided.

This is important as a circular list with very few items might display the same item more than once
and all these items should be updated.

Parameters:
itemIndex Zero-based index of the changed item.

Reimplemented by: touchgfx::ScrollWheelWithSelectionStyle::itemChanged

ScrollBase
ScrollBase ()

setAnimationEndedCallback
void setAnimationEndedCallback (GenericCallback<> & callback)

Callback, called when the set animation ended.

Parameters:
callback The ended callback.

setAnimationSteps
void setAnimationSteps (int16_t steps)

Sets animation steps (in ticks) when moving to a new selected item.

The default value is 30.

Parameters:
steps The animation steps.

See also:

setEasingEquation, getAnimationSteps

setCircular
virtual void setCircular (bool circular)

Sets whether the list is circular (infinite) or not.

A circular list is a list where the first drawable re-appears after the last item in the list - and the last
item in the list appears before the first item in the list.

Parameters:
circular True if the list should be circular, false if the list should not be circular.

See also:

DrawableList::setCircular, getCircular

Reimplemented by: touchgfx::ScrollWheelWithSelectionStyle::setCircular

setDragAcceleration
void setDragAcceleration (uint16_t acceleration)

Sets drag acceleration times 10, so "10" means "1", "15" means "1.5".

10 makes the containers follow the finger, higher values makes the containers move faster. This can
often be useful if the list is very long.

Parameters:
acceleration The drag acceleration.

NOTE

The reason for multiplying the acceleration by 10 is to avoid introducing floating point arithmetic.

See also:

getDragAcceleration

setDrawableSize
void setDrawableSize (int16_t drawableSize ,

int16_t drawableMargin
)

Sets drawables size.

The drawable is is the size of each drawable in the list in the set direction of the list (this is enforced
by the DrawableList class). The specified margin is added above and below each item for spacing.
The entire size of an item is thus size + 2 * spacing.

For a horizontal list each element will be drawableSize high and have the same width as set using
setWidth(). For a vertical list each element will be drawableSize wide and have the same height as
set using setHeight().

Parameters:
drawableSize The size of the drawable.
drawableMargin The margin around drawables (margin before and margin after).

See also:

setWidth, setHeight, setHorizontal

setEasingEquation
void setEasingEquation (EasingEquation equation)

Sets easing equation when changing the selected item, for example via swipe or AnimateTo.

Parameters:
equation The equation.

See also:

setAnimationSteps, getAnimationSteps

setHeight
virtual void setHeight (int16_t height)

Sets the height of this drawable.

Parameters:
height The new height.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.Also sets the
height of the children.

Reimplements: touchgfx::Drawable::setHeight

Reimplemented by: touchgfx::ScrollWheelWithSelectionStyle::setHeight

setHorizontal
virtual void setHorizontal (bool horizontal)

Sets a horizontal or vertical layout.

If parameter horizontal is set true, all drawables are arranged side by side. If horizontal is set false,
the drawables are arranged above and below each other (vertically).

Parameters:
horizontal True to align drawables horizontal, false to align drawables vertically.

NOTE

Default value is false, i.e. vertical layout.

See also:

DrawableList::setHorizontal, getHorizontal

Reimplemented by: touchgfx::ScrollWheelWithSelectionStyle::setHorizontal

setItemPressedCallback
void setItemPressedCallback (GenericCallback< int16_t > & callback)

Set Callback which will be called when a item is pressed.

Parameters:
callback The callback.

setItemSelectedCallback
void setItemSelectedCallback (GenericCallback< int16_t > & callback)

Sets Callback which will be called when the selected item is clicked.

Parameters:
callback The callback.

setMaxSwipeItems
void setMaxSwipeItems (uint16_t maxItems)

Sets maximum swipe items.

Often useful when there are e.g. five visible items on the screen and a swipe action should at most
swipe the next/previous five items into view to achieve sort of a paging effect.

Parameters:
maxItems The maximum items, 0 means "no limit" (which is also the default).

See also:

getMaxSwipeItems

setNumberOfItems
virtual void setNumberOfItems (int16_t numberOfItems)

Sets number of items in the DrawableList.

This forces all drawables to be updated to ensure that the content is correct. For example a date
selector might switch number of days between 28, 29, 30, and 31 depending on the month. A
circular list might show 27-28-29-30-31 and might need to update this to show 27-28-1-2-3.

Parameters:
numberOfItems Number of items.

NOTE

The DrawableList is refreshed to reflect the change.

Reimplemented by: touchgfx::ScrollWheelWithSelectionStyle::setNumberOfItems

setSwipeAcceleration
void setSwipeAcceleration (uint16_t acceleration)

Sets swipe acceleration (times 10).

Default value, if not set, is 10, i.e. 1.0.

Parameters:
acceleration The acceleration times 10, so "9" means "0.9" and "75" means "7.5".

NOTE

The reason for multiplying the acceleration by 10 is to avoid introducing floating point arithmetic.

See also:

getSwipeAcceleration

setWidth
virtual void setWidth (int16_t width)

Sets the width of this drawable.

Parameters:
width The new width.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.Also sets the
width of the children.

Reimplements: touchgfx::Drawable::setWidth

Reimplemented by: touchgfx::ScrollWheelWithSelectionStyle::setWidth

stopAnimation
void stopAnimation ()

Stops an animation if one is ongoing.

Immediately moves to the item which is being animated to.

Protected Functions Documentation
animateToPosition

virtual void animateToPosition (int32_t position ,
int16_t steps =-1
)

Animate to a new position/offset using the given number of steps.

Parameters:
position The new position.
steps (Optional) The steps.

Reimplemented by: touchgfx::ScrollWheelBase::animateToPosition

getNearestAlignedOffset
virtual int32_t getNearestAlignedOffset (int32_t offset)

Gets nearest offset aligned to a multiple of itemSize.

Parameters:
offset The offset.

Returns:

The nearest aligned offset.

Reimplemented by: touchgfx::ScrollList::getNearestAlignedOffset

getNormalizedOffset
int getNormalizedOffset (int offset)

Gets normalized offset from a given offset from 0 down to -numItems*itemSize.

Parameters:
offset The offset.

Returns:

The normalized offset.

getOffset
virtual int32_t getOffset () const

Gets display offset of first item.

Returns:

The offset.

getPositionForItem
virtual int32_t getPositionForItem (int16_t itemIndex)

Get the position for an item.

The position should ensure that the item is in view as defined by the semantics of the actual scroll
class. If the item is already in view, the current offset is returned and not the offset of the given
item.

Parameters:
itemIndex Zero-based index of the item.

Returns:

The position for item.

Reimplemented by: touchgfx::ScrollList::getPositionForItem,
touchgfx::ScrollWheelBase::getPositionForItem

keepOffsetInsideLimits
virtual int32_t keepOffsetInsideLimits (int32_t newOffset , const =0

int16_t overShoot const =0
) const =0

Keep offset inside limits.

Return the new offset that is inside the limits of the scroll list, with the overShoot value added at
both ends of the list.

Parameters:
newOffset The new offset.
overShoot The over shoot.

Returns:

The new offset inside the limits.

Reimplemented by: touchgfx::ScrollList::keepOffsetInsideLimits,
touchgfx::ScrollWheelBase::keepOffsetInsideLimits

setOffset

virtual void setOffset (int32_t offset)

Sets display offset of first item.

Parameters:
offset The offset.

Reimplemented by: touchgfx::ScrollWheelWithSelectionStyle::setOffset

Protected Attributes Documentation
animationEndedCallback

GenericCallback * animationEndedCallback

The animation ended callback.

currentAnimationState
AnimationState currentAnimationState

The current animation state.

defaultAnimationSteps
uint16_t defaultAnimationSteps

The animation steps.

distanceBeforeAlignedItem
int16_t distanceBeforeAlignedItem

The distance before aligned item.

dragAcceleration

uint16_t dragAcceleration

The drag acceleration x10.

draggableX
bool draggableX

Is the container draggable in the horizontal direction.

draggableY
bool draggableY

Is the container draggable in the vertical direction.

easingEquation
EasingEquation easingEquation

The easing equation used for animation.

gestureEnd
int gestureEnd

The gesture end.

gestureStart
int gestureStart

The gesture start.

gestureStep

int gestureStep

The current gesture step.

gestureStepsTotal
int gestureStepsTotal

The total gesture steps.

initialSwipeOffset
int32_t initialSwipeOffset

The initial swipe offset.

itemLockedInCallback
GenericCallback * itemLockedInCallback

The item locked in callback.

itemPressedCallback
GenericCallback< int16_t > * itemPressedCallback

The item pressed callback.

itemSelectedCallback
GenericCallback< int16_t > * itemSelectedCallback

The item selected callback.

itemSize

int16_t itemSize

Size of the item (including margin)

list
DrawableList list

The list.

maxSwipeItems
uint16_t maxSwipeItems

The maximum swipe items.

numberOfDrawables
int16_t numberOfDrawables

Number of drawables.

swipeAcceleration
uint16_t swipeAcceleration

The swipe acceleration x10.

xClick
int16_t xClick

The x coordinate of a click.

yClick

int16_t yClick

The y coordinate of a click.

Version: 4.16

ScrollList
A simple list of scrolling drawables. Since a long list of drawables only display a few of items at any
one time, the drawables are re-used to preserve resources.

See: DrawableList

Inherits from: ScrollBase, Container, Drawable

Public Functions
int16_t getItem(int16_t drawableIndex)

Gets an item.

int16_t getPaddingAfter() const
Gets distance after last drawable in ScrollList.

int16_t getPaddingBefore() const
Gets distance before first drawable in ScrollList.

bool getSnapping() const
Gets the current snap stetting.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

ScrollList()

virtual void setDrawables(DrawableListItemsInterface & drawableListItems, GenericCallback<
DrawableListItemsInterface *, int16_t, int16_t > & updateDrawableCallback)
Setup a list of drawables and provide a function to call to update a given Drawable with
new contents.

void setPadding(int16_t paddingBefore, int16_t paddingAfter)
Sets distance offset before and after the "visible" drawables in the ScrollList.

void setSnapping(bool snap)
Set snapping.

void setWindowSize(int16_t items)

Sets window size, i.e.

Protected Functions
virtual int32_t getNearestAlignedOffset(int32_t offset) const

Gets nearest offset aligned to a multiple of itemSize.

virtual int32_t getPositionForItem(int16_t itemIndex)
Get the position for an item.

virtual int32_t keepOffsetInsideLimits(int32_t newOffset, int16_t overShoot) const
Keep offset inside limits.

Protected Attributes
int16_t paddingAfterLastItem

The distance after last item.

bool snapping
Is snapping enabled?

int windowSize
Number of items that should always be visible.

Additional inherited members
Protected Types inherited from ScrollBase

enum AnimationState { NO_ANIMATION, ANIMATING_GESTURE, ANIMATING_DRAG }
Values that represent animation states.

Public Functions inherited from ScrollBase
void allowHorizontalDrag(bool enable)

Enables horizontal scrolling to be passed to the children in the list (in case a child
widget is able to handle drag events).

void allowVerticalDrag(bool enable)
Enables the vertical scroll.

virtual void animateToItem(int16_t itemIndex, int16_t animationSteps =-1)
Go to a specific item, possibly with animation.

uint16_t getAnimationSteps() const
Gets animation steps as set in setAnimationSteps.

virtual bool getCircular() const
Gets the circular setting, previously set using setCircular().

uint16_t getDragAcceleration() const
Gets drag acceleration (times 10).

virtual int16_t getDrawableMargin() const
Gets drawable margin as set through the second parameter in most recent call to
setDrawableSize().

virtual int16_t getDrawableSize() const
Gets drawable size as set through the first parameter in most recent call to
setDrawableSize().

virtual bool getHorizontal() const
Gets the orientation of the drawables, previously set using setHorizontal().

uint16_t getMaxSwipeItems() const
Gets maximum swipe items as set by setMaxSwipeItems.

virtual int16_t getNumberOfItems() const
Gets number of items in the DrawableList, as previously set using
setNumberOfItems().

uint16_t getSwipeAcceleration() const
Gets swipe acceleration (times 10).

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to timer
ticks.

virtual void initialize()
Removed all drawables and initializes the content of these items.

bool isAnimating() const
Query if an animation is ongoing.

virtual void itemChanged(int itemIndex)
Inform the scroll list that the contents of an item has changed and force all drawables
with the given item index to be updated via the callback provided.

ScrollBase()

void setAnimationEndedCallback(GenericCallback<> & callback)
Callback, called when the set animation ended.

void setAnimationSteps(int16_t steps)
Sets animation steps (in ticks) when moving to a new selected item.

virtual void setCircular(bool circular)
Sets whether the list is circular (infinite) or not.

void setDragAcceleration(uint16_t acceleration)
Sets drag acceleration times 10, so "10" means "1", "15" means "1.5".

void setDrawableSize(int16_t drawableSize, int16_t drawableMargin)
Sets drawables size.

void setEasingEquation(EasingEquation equation)
Sets easing equation when changing the selected item, for example via swipe or
AnimateTo.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setHorizontal(bool horizontal)
Sets a horizontal or vertical layout.

void setItemPressedCallback(GenericCallback< int16_t > & callback)
Set Callback which will be called when a item is pressed.

void setItemSelectedCallback(GenericCallback< int16_t > & callback)
Sets Callback which will be called when the selected item is clicked.

void setMaxSwipeItems(uint16_t maxItems)
Sets maximum swipe items.

virtual void setNumberOfItems(int16_t numberOfItems)
Sets number of items in the DrawableList.

void setSwipeAcceleration(uint16_t acceleration)
Sets swipe acceleration (times 10).

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void stopAnimation()
Stops an animation if one is ongoing.

Protected Functions inherited from ScrollBase
virtual void animateToPosition(int32_t position, int16_t steps =-1)

Animate to a new position/offset using the given number of steps.

int getNormalizedOffset(int offset) const
Gets normalized offset from a given offset from 0 down to -numItems*itemSize.

virtual int32_t getOffset() const
Gets display offset of first item.

virtual void setOffset(int32_t offset)
Sets display offset of first item.

Protected Attributes inherited from ScrollBase
GenericCallback * animationEndedCallback

The animation ended callback.

AnimationState currentAnimationState
The current animation state.

uint16_t defaultAnimationSteps

The animation steps.

int16_t distanceBeforeAlignedItem
The distance before aligned item.

uint16_t dragAcceleration
The drag acceleration x10.

bool draggableX
Is the container draggable in the horizontal direction.

bool draggableY
Is the container draggable in the vertical direction.

EasingEquation easingEquation
The easing equation used for animation.

int gestureEnd
The gesture end.

int gestureStart
The gesture start.

int gestureStep
The current gesture step.

int gestureStepsTotal
The total gesture steps.

int32_t initialSwipeOffset
The initial swipe offset.

GenericCallback * itemLockedInCallback
The item locked in callback.

GenericCallback< int16_t > * itemPressedCallback
The item pressed callback.

GenericCallback< int16_t > * itemSelectedCallback
The item selected callback.

int16_t itemSize
Size of the item (including margin)

DrawableList list
The list.

uint16_t maxSwipeItems
The maximum swipe items.

int16_t numberOfDrawables
Number of drawables.

uint16_t swipeAcceleration
The swipe acceleration x10.

int16_t xClick
The x coordinate of a click.

int16_t yClick
The y coordinate of a click.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const

Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)

Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
getItem

int16_t getItem (int16_t drawableIndex)

Gets an item.

Parameters:
drawableIndex Zero-based index of the drawable.

Returns:

The item.

getPaddingAfter
int16_t getPaddingAfter () const

Gets distance after last drawable in ScrollList.

Returns:

The distance after the last drawable in the ScrollList.

See also:

setPadding, getPaddingBefore

getPaddingBefore
int16_t getPaddingBefore () const

Gets distance before first drawable in ScrollList.

Returns:

The distance before.

See also:

setPadding, getPaddingAfter

getSnapping
bool getSnapping () const

Gets the current snap stetting.

Returns:

true if snapping is set, false otherwise.

See also:

setSnapping

handleClickEvent
virtual void handleClickEvent (const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

The default implementation ignores the event. The event is only received if the Drawable is
touchable and visible.

Parameters:
evt The ClickEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleClickEvent

ScrollList
ScrollList ()

setDrawables
virtual void setDrawables (DrawableListItemsInterface & drawableListItems ,

GenericCallback< DrawableListItemsInterface
*, int16_t, int16_t > & updateDrawableCallback

)

Setup a list of drawables and provide a function to call to update a given Drawable with new
contents.

Parameters:
drawableListItems The drawables allocated.
updateDrawableCallback A callback to update the contents of a specific drawable with a

specific item.

See also:

DrawableList::setDrawables

setPadding
void setPadding (int16_t paddingBefore ,

int16_t paddingAfter
)

Sets distance offset before and after the "visible" drawables in the ScrollList.

This allows the actual area where widgets are placed to have a little extra area where parts of
drawables can be seen. For example if the ScrollList is 200, each drawable is 50 and distance
before and distance after are 25, then there is room for three visible drawables inside the ScrollList.
When scrolling, part of the scrolled out drawables can be seen before and after the three
drawables. In this case 25/50 = 50% of a drawable can be seen before and after the three
drawables in the ScrollList.

Parameters:
paddingBefore The distance before the first drawable in the ScrollList.
paddingAfter The distance after the last drawable in the ScrollList.

See also:

getPaddingBefore, getPaddingAfter

setSnapping

void setSnapping (bool snap)

Set snapping.

If snapping is false, the items can flow freely. If snapping is true, the items will snap into place so an
item is always in the "selected" spot.

Parameters:
snap true to snap.

See also:

getSnapping

setWindowSize
void setWindowSize (int16_t items)

Sets window size, i.e.

the number of items that should always be visible. The default value is 1. If three items are visible
on the display and window size is set to three, no part of the screen will be blank (unless the list
contains less than three items and the list is not circular).

Parameters:
items The number of items that should always be visible.

NOTE

This only applies to non-circular lists.

Protected Functions Documentation
getNearestAlignedOffset

virtual int32_t getNearestAlignedOffset (int32_t offset)

Gets nearest offset aligned to a multiple of itemSize.

Parameters:
offset The offset.

Returns:

The nearest aligned offset.

Reimplements: touchgfx::ScrollBase::getNearestAlignedOffset

getPositionForItem
virtual int32_t getPositionForItem (int16_t itemIndex)

Get the position for an item.

The position should ensure that the item is in view as defined by the semantics of the actual scroll
class. If the item is already in view, the current offset is returned and not the offset of the given
item.

Parameters:
itemIndex Zero-based index of the item.

Returns:

The position for item.

Reimplements: touchgfx::ScrollBase::getPositionForItem

keepOffsetInsideLimits
virtual int32_t keepOffsetInsideLimits (int32_t newOffset , const

int16_t overShoot const
) const

Keep offset inside limits.

Return the new offset that is inside the limits of the scroll list, with the overShoot value added at
both ends of the list.

Parameters:
newOffset The new offset.
overShoot The over shoot.

Returns:

The new offset inside the limits.

Reimplements: touchgfx::ScrollBase::keepOffsetInsideLimits

Protected Attributes Documentation
paddingAfterLastItem

int16_t paddingAfterLastItem

The distance after last item.

snapping
bool snapping

Is snapping enabled?

windowSize
int windowSize

Number of items that should always be visible.

Version: 4.16

ScrollWheel
A scroll wheel is very much like the digit selector on a padlock with numbers. The digits always snap
into place and exactly one number is always the "selected" number. Thus, a scroll wheel is a list of
identically styled drawables which can be scrolled through. One of the items in the list is the "selected"
one, and scrolling through the list can be done in various ways. The ScrollWheel uses the DrawableList
to make it possible to handle a huge number of items using only a limited number of drawables by
reusing drawables that are no longer in view.

See: ScrollWheelBase, DrawableList, ScrollWheelWithSelectionStyle

Inherits from: ScrollWheelBase, ScrollBase, Container, Drawable

Public Functions
virtual void setDrawables(DrawableListItemsInterface & drawableListItems, GenericCallback<

DrawableListItemsInterface *, int16_t, int16_t > & updateDrawableCallback)
Sets the drawables used by the scroll wheel.

Additional inherited members
Public Functions inherited from ScrollWheelBase

int getSelectedItem() const
Gets selected item.

virtual int16_t getSelectedItemOffset() const
Gets offset of selected item measured in pixels relative to the start of the widget.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual int32_t keepOffsetInsideLimits(int32_t newOffset, int16_t overShoot) const
Keep offset inside limits.

ScrollWheelBase()

void setAnimateToCallback(GenericCallback< int16_t > & callback)
Sets Callback which will be called when the ScrollWheel animates to a new item.

virtual void setSelectedItemOffset(int16_t offset)
Sets selected item offset, measured in pixels, from the edge of the widget.

Protected Functions inherited from ScrollWheelBase
virtual void animateToPosition(int32_t position, int16_t steps =-1)

Animate to a new position/offset using the given number of steps.

virtual int32_t getPositionForItem(int16_t itemIndex)
Get the position for an item.

Protected Attributes inherited from ScrollWheelBase
GenericCallback< int16_t > * animateToCallback

The animate to callback.

Protected Types inherited from ScrollBase
enum AnimationState { NO_ANIMATION, ANIMATING_GESTURE, ANIMATING_DRAG }

Values that represent animation states.

Public Functions inherited from ScrollBase
void allowHorizontalDrag(bool enable)

Enables horizontal scrolling to be passed to the children in the list (in case a child
widget is able to handle drag events).

void allowVerticalDrag(bool enable)
Enables the vertical scroll.

virtual void animateToItem(int16_t itemIndex, int16_t animationSteps =-1)
Go to a specific item, possibly with animation.

uint16_t getAnimationSteps() const
Gets animation steps as set in setAnimationSteps.

virtual bool getCircular() const
Gets the circular setting, previously set using setCircular().

uint16_t getDragAcceleration() const
Gets drag acceleration (times 10).

virtual int16_t getDrawableMargin() const
Gets drawable margin as set through the second parameter in most recent call to
setDrawableSize().

virtual int16_t getDrawableSize() const
Gets drawable size as set through the first parameter in most recent call to
setDrawableSize().

virtual bool getHorizontal() const
Gets the orientation of the drawables, previously set using setHorizontal().

uint16_t getMaxSwipeItems() const
Gets maximum swipe items as set by setMaxSwipeItems.

virtual int16_t getNumberOfItems() const
Gets number of items in the DrawableList, as previously set using
setNumberOfItems().

uint16_t getSwipeAcceleration() const
Gets swipe acceleration (times 10).

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to timer
ticks.

virtual void initialize()

Removed all drawables and initializes the content of these items.

bool isAnimating() const
Query if an animation is ongoing.

virtual void itemChanged(int itemIndex)
Inform the scroll list that the contents of an item has changed and force all drawables
with the given item index to be updated via the callback provided.

ScrollBase()

void setAnimationEndedCallback(GenericCallback<> & callback)
Callback, called when the set animation ended.

void setAnimationSteps(int16_t steps)
Sets animation steps (in ticks) when moving to a new selected item.

virtual void setCircular(bool circular)
Sets whether the list is circular (infinite) or not.

void setDragAcceleration(uint16_t acceleration)
Sets drag acceleration times 10, so "10" means "1", "15" means "1.5".

void setDrawableSize(int16_t drawableSize, int16_t drawableMargin)
Sets drawables size.

void setEasingEquation(EasingEquation equation)
Sets easing equation when changing the selected item, for example via swipe or
AnimateTo.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setHorizontal(bool horizontal)
Sets a horizontal or vertical layout.

void setItemPressedCallback(GenericCallback< int16_t > & callback)
Set Callback which will be called when a item is pressed.

void setItemSelectedCallback(GenericCallback< int16_t > & callback)
Sets Callback which will be called when the selected item is clicked.

void setMaxSwipeItems(uint16_t maxItems)

Sets maximum swipe items.

virtual void setNumberOfItems(int16_t numberOfItems)
Sets number of items in the DrawableList.

void setSwipeAcceleration(uint16_t acceleration)
Sets swipe acceleration (times 10).

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void stopAnimation()
Stops an animation if one is ongoing.

Protected Functions inherited from ScrollBase
virtual void animateToPosition(int32_t position, int16_t steps =-1)

Animate to a new position/offset using the given number of steps.

virtual int32_t getNearestAlignedOffset(int32_t offset) const
Gets nearest offset aligned to a multiple of itemSize.

int getNormalizedOffset(int offset) const
Gets normalized offset from a given offset from 0 down to -numItems*itemSize.

virtual int32_t getOffset() const
Gets display offset of first item.

virtual int32_t getPositionForItem(int16_t itemIndex) =0
Get the position for an item.

virtual int32_t keepOffsetInsideLimits(int32_t newOffset, int16_t overShoot) const =0
Keep offset inside limits.

virtual void setOffset(int32_t offset)
Sets display offset of first item.

Protected Attributes inherited from ScrollBase
GenericCallback * animationEndedCallback

The animation ended callback.

AnimationState currentAnimationState
The current animation state.

uint16_t defaultAnimationSteps
The animation steps.

int16_t distanceBeforeAlignedItem
The distance before aligned item.

uint16_t dragAcceleration
The drag acceleration x10.

bool draggableX
Is the container draggable in the horizontal direction.

bool draggableY
Is the container draggable in the vertical direction.

EasingEquation easingEquation
The easing equation used for animation.

int gestureEnd
The gesture end.

int gestureStart
The gesture start.

int gestureStep
The current gesture step.

int gestureStepsTotal
The total gesture steps.

int32_t initialSwipeOffset
The initial swipe offset.

GenericCallback * itemLockedInCallback
The item locked in callback.

GenericCallback< int16_t > * itemPressedCallback
The item pressed callback.

GenericCallback< int16_t > * itemSelectedCallback

The item selected callback.

int16_t itemSize
Size of the item (including margin)

DrawableList list
The list.

uint16_t maxSwipeItems
The maximum swipe items.

int16_t numberOfDrawables
Number of drawables.

uint16_t swipeAcceleration
The swipe acceleration x10.

int16_t xClick
The x coordinate of a click.

int16_t yClick
The y coordinate of a click.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const

Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)

Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const

Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
setDrawables

virtual void setDrawables (DrawableListItemsInterface & drawableListItems ,
GenericCallback< DrawableListItemsInterface
*, int16_t, int16_t > & updateDrawableCallback

)

Sets the drawables used by the scroll wheel.

The drawables are updated through a callback will put the right data in the drawable.

Parameters:
drawableListItems Number of drawables.
updateDrawableCallback The update drawable callback.

Version: 4.16

ScrollWheelBase
A base class for a scroll wheel. A scroll wheel is very much like the digit selector on a padlock with
numbers. The digits always snap into place and exactly one number is always the "selected" number.
Using ScrollWheel, all elements look the same, but an underlying bitmap can help emphasize the
"selected" element. The ScrollWheelWithSelectionStyle can have a completely different style on the
"selected" item - the font can be larger or bold and images can change color - this can help to give a
kind of 3D effect using very few resources.

See: ScrollWheel, ScrollWheelWithSelectionStyle

Inherits from: ScrollBase, Container, Drawable

Inherited by: ScrollWheel, ScrollWheelWithSelectionStyle

Public Functions
int getSelectedItem() const

Gets selected item.

virtual int16_t getSelectedItemOffset() const
Gets offset of selected item measured in pixels relative to the start of the widget.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual int32_t keepOffsetInsideLimits(int32_t newOffset, int16_t overShoot) const
Keep offset inside limits.

ScrollWheelBase()

void setAnimateToCallback(GenericCallback< int16_t > & callback)
Sets Callback which will be called when the ScrollWheel animates to a new item.

virtual void setSelectedItemOffset(int16_t offset)
Sets selected item offset, measured in pixels, from the edge of the widget.

Protected Functions
virtual void animateToPosition(int32_t position, int16_t steps =-1)

Animate to a new position/offset using the given number of steps.

virtual int32_t getPositionForItem(int16_t itemIndex)
Get the position for an item.

Protected Attributes
GenericCallback< int16_t > * animateToCallback

The animate to callback.

Additional inherited members
Protected Types inherited from ScrollBase

enum AnimationState { NO_ANIMATION, ANIMATING_GESTURE, ANIMATING_DRAG }
Values that represent animation states.

Public Functions inherited from ScrollBase
void allowHorizontalDrag(bool enable)

Enables horizontal scrolling to be passed to the children in the list (in case a child
widget is able to handle drag events).

void allowVerticalDrag(bool enable)
Enables the vertical scroll.

virtual void animateToItem(int16_t itemIndex, int16_t animationSteps =-1)
Go to a specific item, possibly with animation.

uint16_t getAnimationSteps() const
Gets animation steps as set in setAnimationSteps.

virtual bool getCircular() const
Gets the circular setting, previously set using setCircular().

uint16_t getDragAcceleration() const
Gets drag acceleration (times 10).

virtual int16_t getDrawableMargin() const
Gets drawable margin as set through the second parameter in most recent call to
setDrawableSize().

virtual int16_t getDrawableSize() const
Gets drawable size as set through the first parameter in most recent call to
setDrawableSize().

virtual bool getHorizontal() const
Gets the orientation of the drawables, previously set using setHorizontal().

uint16_t getMaxSwipeItems() const
Gets maximum swipe items as set by setMaxSwipeItems.

virtual int16_t getNumberOfItems() const
Gets number of items in the DrawableList, as previously set using
setNumberOfItems().

uint16_t getSwipeAcceleration() const
Gets swipe acceleration (times 10).

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to timer
ticks.

virtual void initialize()
Removed all drawables and initializes the content of these items.

bool isAnimating() const
Query if an animation is ongoing.

virtual void itemChanged(int itemIndex)
Inform the scroll list that the contents of an item has changed and force all drawables
with the given item index to be updated via the callback provided.

ScrollBase()

void setAnimationEndedCallback(GenericCallback<> & callback)
Callback, called when the set animation ended.

void setAnimationSteps(int16_t steps)
Sets animation steps (in ticks) when moving to a new selected item.

virtual void setCircular(bool circular)
Sets whether the list is circular (infinite) or not.

void setDragAcceleration(uint16_t acceleration)
Sets drag acceleration times 10, so "10" means "1", "15" means "1.5".

void setDrawableSize(int16_t drawableSize, int16_t drawableMargin)
Sets drawables size.

void setEasingEquation(EasingEquation equation)
Sets easing equation when changing the selected item, for example via swipe or
AnimateTo.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setHorizontal(bool horizontal)
Sets a horizontal or vertical layout.

void setItemPressedCallback(GenericCallback< int16_t > & callback)
Set Callback which will be called when a item is pressed.

void setItemSelectedCallback(GenericCallback< int16_t > & callback)
Sets Callback which will be called when the selected item is clicked.

void setMaxSwipeItems(uint16_t maxItems)
Sets maximum swipe items.

virtual void setNumberOfItems(int16_t numberOfItems)
Sets number of items in the DrawableList.

void setSwipeAcceleration(uint16_t acceleration)
Sets swipe acceleration (times 10).

virtual void setWidth(int16_t width)

Sets the width of this drawable.

void stopAnimation()
Stops an animation if one is ongoing.

Protected Functions inherited from ScrollBase
virtual int32_t getNearestAlignedOffset(int32_t offset) const

Gets nearest offset aligned to a multiple of itemSize.

int getNormalizedOffset(int offset) const
Gets normalized offset from a given offset from 0 down to -numItems*itemSize.

virtual int32_t getOffset() const
Gets display offset of first item.

virtual void setOffset(int32_t offset)
Sets display offset of first item.

Protected Attributes inherited from ScrollBase
GenericCallback * animationEndedCallback

The animation ended callback.

AnimationState currentAnimationState
The current animation state.

uint16_t defaultAnimationSteps
The animation steps.

int16_t distanceBeforeAlignedItem
The distance before aligned item.

uint16_t dragAcceleration
The drag acceleration x10.

bool draggableX
Is the container draggable in the horizontal direction.

bool draggableY
Is the container draggable in the vertical direction.

EasingEquation easingEquation
The easing equation used for animation.

int gestureEnd
The gesture end.

int gestureStart
The gesture start.

int gestureStep
The current gesture step.

int gestureStepsTotal
The total gesture steps.

int32_t initialSwipeOffset
The initial swipe offset.

GenericCallback * itemLockedInCallback
The item locked in callback.

GenericCallback< int16_t > * itemPressedCallback
The item pressed callback.

GenericCallback< int16_t > * itemSelectedCallback
The item selected callback.

int16_t itemSize
Size of the item (including margin)

DrawableList list
The list.

uint16_t maxSwipeItems
The maximum swipe items.

int16_t numberOfDrawables
Number of drawables.

uint16_t swipeAcceleration
The swipe acceleration x10.

int16_t xClick

The x coordinate of a click.

int16_t yClick
The y coordinate of a click.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()

Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const

Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
getSelectedItem

int getSelectedItem () const

Gets selected item.

If an animation is in progress, the item that is being scrolled to is returned, not the item that
happens to be flying by at the time.

Returns:

The selected item.

getSelectedItemOffset
virtual int16_t getSelectedItemOffset () const

Gets offset of selected item measured in pixels relative to the start of the widget.

Returns:

The selected item offset.

See also:

setSelectedItemOffset

handleClickEvent
virtual void handleClickEvent (const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

The default implementation ignores the event. The event is only received if the Drawable is
touchable and visible.

Parameters:
evt The ClickEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleClickEvent

handleDragEvent
virtual void handleDragEvent (const DragEvent & evt)

Defines the event handler interface for DragEvents.

The default implementation ignores the event. The event is only received if the drawable is
touchable and visible.

Parameters:
evt The DragEvent received from the HAL.

Reimplements: touchgfx::ScrollBase::handleDragEvent

handleGestureEvent
virtual void handleGestureEvent (const GestureEvent & evt)

Defines the event handler interface for GestureEvents.

The default implementation ignores the event. The event is only received if the Drawable is
touchable and visible.

Parameters:
evt The GestureEvent received from the HAL.

Reimplements: touchgfx::ScrollBase::handleGestureEvent

keepOffsetInsideLimits
virtual int32_t keepOffsetInsideLimits (int32_t newOffset , const

int16_t overShoot const
) const

Keep offset inside limits.

Return the new offset that is inside the limits of the scroll list, with the overShoot value added at
both ends of the list.

Parameters:
newOffset The new offset.
overShoot The over shoot.

Returns:

The new offset inside the limits.

Reimplements: touchgfx::ScrollBase::keepOffsetInsideLimits

ScrollWheelBase
ScrollWheelBase ()

setAnimateToCallback
void setAnimateToCallback (GenericCallback< int16_t > & callback)

Sets Callback which will be called when the ScrollWheel animates to a new item.

Parameters:
callback The callback.

setSelectedItemOffset
virtual void setSelectedItemOffset (int16_t offset)

Sets selected item offset, measured in pixels, from the edge of the widget.

The offset is the relative x coordinate if the ScrollWheel is horizontal, otherwise it is the relative y
coordinate. If this value is zero, the selected item is placed at the very start of the widget.

Parameters:
offset The offset.

See also:

getSelectedItemOffset

Reimplemented by: touchgfx::ScrollWheelWithSelectionStyle::setSelectedItemOffset

Protected Functions Documentation
animateToPosition

virtual void animateToPosition (int32_t position ,
int16_t steps =-1
)

Animate to a new position/offset using the given number of steps.

Parameters:

position The new position.
steps (Optional) The steps.

Reimplements: touchgfx::ScrollBase::animateToPosition

getPositionForItem
virtual int32_t getPositionForItem (int16_t itemIndex)

Get the position for an item.

The position should ensure that the item is in view as defined by the semantics of the actual scroll
class. If the item is already in view, the current offset is returned and not the offset of the given
item.

Parameters:
itemIndex Zero-based index of the item.

Returns:

The position for item.

Reimplements: touchgfx::ScrollBase::getPositionForItem

Protected Attributes Documentation
animateToCallback

GenericCallback< int16_t > * animateToCallback

The animate to callback.

Version: 4.16

ScrollWheelWithSelectionStyle
A scroll wheel is very much like the digit selector on a padlock with numbers. The digits always snap into place
and exactly one number is always the "selected" number. Similar to an ordinary ScrollWheel, but with a different
style for the selected item which can thus be bold, have a different color or similar effect to highlight it and help
create a 3D effect using very few resources.

See: DrawableList, ScrollWheel

Inherits from: ScrollWheelBase, ScrollBase, Container, Drawable

Public Functions
virtual int16_t getSelectedItemExtraSizeAfter() const

Gets selected item extra size after.

virtual int16_t getSelectedItemExtraSizeBefore() const
Gets selected item extra size before.

virtual int16_t getSelectedItemMarginAfter() const
Gets selected item margin after.

virtual int16_t getSelectedItemMarginBefore() const
Gets selected item margin before.

virtual void initialize()
Removed all drawables and initializes the content of these items.

virtual void itemChanged(int itemIndex)
Inform the scroll list that the contents of an item has changed and force all drawables with the
given item index to be updated via the callback provided.

ScrollWheelWithSelectionStyle()

virtual void setCircular(bool circular)
Sets whether the list is circular (infinite) or not.

virtual void
setDrawables(DrawableListItemsInterface & drawableListItems, GenericCallback<
DrawableListItemsInterface , int16_t, int16_t > & updateDrawableCallback,
DrawableListItemsInterface & centerDrawableListItems, GenericCallback<
DrawableListItemsInterface , int16_t, int16_t > & updateCenterDrawableCallback)
Setups the widget.

virtual void setDrawableSize(int16_t drawableSize, int16_t drawableMargin)

Sets drawables size.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setHorizontal(bool horizontal)
Sets a horizontal or vertical layout.

virtual void setNumberOfItems(int16_t numberOfItems)
Sets number of items in the DrawableList.

virtual void setSelectedItemExtraSize(int16_t extraSizeBefore, int16_t extraSizeAfter)
Sets selected item extra size to make the size of the area for the center drawables larger.

virtual void setSelectedItemMargin(int16_t marginBefore, int16_t marginAfter)
Sets margin around selected item.

virtual void setSelectedItemOffset(int16_t offset)
Sets selected item offset, measured in pixels, from the edge of the widget.

virtual void setSelectedItemPosition(int16_t offset, int16_t extraSizeBefore, int16_t extraSizeAfter, int16_t
marginBefore, int16_t marginAfter)
Sets the selected item offset.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

Protected Functions
void refreshDrawableListsLayout()

Refresh drawable lists layout.

virtual void setOffset(int32_t offset)
Sets display offset of first item.

Protected Attributes
DrawableListItemsInterface * centerDrawables

The drawables at the center of the scroll
wheel.

DrawableListItemsInterface * drawables
The drawables at the beginning and end
of the scroll wheel.

int16_t drawablesInFirstList
List of drawables in firsts.

int16_t extraSizeAfterSelectedItem
The distance after selected item.

int16_t extraSizeBeforeSelectedItem
The distance before selected item.

DrawableList list1
The center list.

DrawableList list2
The list for items not in the center.

int16_t marginAfterSelectedItem
The distance after selected item.

int16_t marginBeforeSelectedItem
The distance before selected item.

GenericCallback< DrawableListItemsInterface , int16_t, int16_t > originalUpdateCenterDrawableCallback
The original update center drawable
callback.

GenericCallback< DrawableListItemsInterface , int16_t, int16_t > originalUpdateDrawableCallback
The original update drawable callback.

Additional inherited members
Public Functions inherited from ScrollWheelBase

int getSelectedItem() const
Gets selected item.

virtual int16_t getSelectedItemOffset() const
Gets offset of selected item measured in pixels relative to the start of the widget.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)

Defines the event handler interface for GestureEvents.

virtual int32_t keepOffsetInsideLimits(int32_t newOffset, int16_t overShoot) const
Keep offset inside limits.

ScrollWheelBase()

void setAnimateToCallback(GenericCallback< int16_t > & callback)
Sets Callback which will be called when the ScrollWheel animates to a new item.

Protected Functions inherited from ScrollWheelBase
virtual void animateToPosition(int32_t position, int16_t steps =-1)

Animate to a new position/offset using the given number of steps.

virtual int32_t getPositionForItem(int16_t itemIndex)
Get the position for an item.

Protected Attributes inherited from ScrollWheelBase
GenericCallback< int16_t > * animateToCallback

The animate to callback.

Protected Types inherited from ScrollBase
enum AnimationState { NO_ANIMATION, ANIMATING_GESTURE, ANIMATING_DRAG }

Values that represent animation states.

Public Functions inherited from ScrollBase
void allowHorizontalDrag(bool enable)

Enables horizontal scrolling to be passed to the children in the list (in case a child widget is able
to handle drag events).

void allowVerticalDrag(bool enable)
Enables the vertical scroll.

virtual void animateToItem(int16_t itemIndex, int16_t animationSteps =-1)
Go to a specific item, possibly with animation.

uint16_t getAnimationSteps() const
Gets animation steps as set in setAnimationSteps.

virtual bool getCircular() const
Gets the circular setting, previously set using setCircular().

uint16_t getDragAcceleration() const
Gets drag acceleration (times 10).

virtual int16_t getDrawableMargin() const
Gets drawable margin as set through the second parameter in most recent call to
setDrawableSize().

virtual int16_t getDrawableSize() const
Gets drawable size as set through the first parameter in most recent call to setDrawableSize().

virtual bool getHorizontal() const
Gets the orientation of the drawables, previously set using setHorizontal().

uint16_t getMaxSwipeItems() const
Gets maximum swipe items as set by setMaxSwipeItems.

virtual int16_t getNumberOfItems() const
Gets number of items in the DrawableList, as previously set using setNumberOfItems().

uint16_t getSwipeAcceleration() const
Gets swipe acceleration (times 10).

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to timer ticks.

bool isAnimating() const
Query if an animation is ongoing.

ScrollBase()

void setAnimationEndedCallback(GenericCallback<> & callback)
Callback, called when the set animation ended.

void setAnimationSteps(int16_t steps)
Sets animation steps (in ticks) when moving to a new selected item.

void setDragAcceleration(uint16_t acceleration)
Sets drag acceleration times 10, so "10" means "1", "15" means "1.5".

void setEasingEquation(EasingEquation equation)
Sets easing equation when changing the selected item, for example via swipe or AnimateTo.

void setItemPressedCallback(GenericCallback< int16_t > & callback)
Set Callback which will be called when a item is pressed.

void setItemSelectedCallback(GenericCallback< int16_t > & callback)
Sets Callback which will be called when the selected item is clicked.

void setMaxSwipeItems(uint16_t maxItems)
Sets maximum swipe items.

void setSwipeAcceleration(uint16_t acceleration)
Sets swipe acceleration (times 10).

void stopAnimation()
Stops an animation if one is ongoing.

Protected Functions inherited from ScrollBase
virtual void animateToPosition(int32_t position, int16_t steps =-1)

Animate to a new position/offset using the given number of steps.

virtual int32_t getNearestAlignedOffset(int32_t offset) const
Gets nearest offset aligned to a multiple of itemSize.

int getNormalizedOffset(int offset) const
Gets normalized offset from a given offset from 0 down to -numItems*itemSize.

virtual int32_t getOffset() const
Gets display offset of first item.

virtual int32_t getPositionForItem(int16_t itemIndex) =0
Get the position for an item.

virtual int32_t keepOffsetInsideLimits(int32_t newOffset, int16_t overShoot) const =0
Keep offset inside limits.

Protected Attributes inherited from ScrollBase
GenericCallback * animationEndedCallback

The animation ended callback.

AnimationState currentAnimationState

The current animation state.

uint16_t defaultAnimationSteps
The animation steps.

int16_t distanceBeforeAlignedItem
The distance before aligned item.

uint16_t dragAcceleration
The drag acceleration x10.

bool draggableX
Is the container draggable in the horizontal direction.

bool draggableY
Is the container draggable in the vertical direction.

EasingEquation easingEquation
The easing equation used for animation.

int gestureEnd
The gesture end.

int gestureStart
The gesture start.

int gestureStep
The current gesture step.

int gestureStepsTotal
The total gesture steps.

int32_t initialSwipeOffset
The initial swipe offset.

GenericCallback * itemLockedInCallback
The item locked in callback.

GenericCallback< int16_t > * itemPressedCallback
The item pressed callback.

GenericCallback< int16_t > * itemSelectedCallback
The item selected callback.

int16_t itemSize
Size of the item (including margin)

DrawableList list

The list.

uint16_t maxSwipeItems
The maximum swipe items.

int16_t numberOfDrawables
Number of drawables.

uint16_t swipeAcceleration
The swipe acceleration x10.

int16_t xClick
The x coordinate of a click.

int16_t yClick
The y coordinate of a click.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)

Removes a Drawable from the container by removing it from the linked list of children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through firstChild's
nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of one or
more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in absolute
coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the specified
point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by getSolidRect())
expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to timer
ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
getSelectedItemExtraSizeAfter

virtual int16_t getSelectedItemExtraSizeAfter () const

Gets selected item extra size after.

Returns:

The selected item extra size after.

See also:

setSelectedItemExtraSize

getSelectedItemExtraSizeBefore
virtual int16_t getSelectedItemExtraSizeBefore () const

Gets selected item extra size before.

Returns:

The selected item extra size before.

See also:

setSelectedItemExtraSize

getSelectedItemMarginAfter
virtual int16_t getSelectedItemMarginAfter () const

Gets selected item margin after.

Returns:

The selected item margin after.

See also:

setSelectedItemMargin

getSelectedItemMarginBefore
virtual int16_t getSelectedItemMarginBefore () const

Gets selected item margin before.

Returns:

The selected item margin before.

See also:

setSelectedItemMargin

initialize
virtual void initialize ()

Removed all drawables and initializes the content of these items.

Reimplements: touchgfx::ScrollBase::initialize

itemChanged
virtual void itemChanged (int itemIndex)

Inform the scroll list that the contents of an item has changed and force all drawables with the given item
index to be updated via the callback provided.

This is important as a circular list with very few items might display the same item more than once and all
these items should be updated.

Parameters:
itemIndex Zero-based index of the changed item.

Reimplements: touchgfx::ScrollBase::itemChanged

ScrollWheelWithSelectionStyle
ScrollWheelWithSelectionStyle ()

setCircular
virtual void setCircular (bool circular)

Sets whether the list is circular (infinite) or not.

A circular list is a list where the first drawable re-appears after the last item in the list - and the last item in
the list appears before the first item in the list.

Parameters:
circular True if the list should be circular, false if the list should not be circular.

See also:

DrawableList::setCircular, getCircular

Reimplements: touchgfx::ScrollBase::setCircular

setDrawables
virtual void setDrawables (DrawableListItemsInterface & drawableListItems ,

GenericCallback< DrawableListItemsInterface *,
int16_t, int16_t > & updateDrawableCallback ,

DrawableListItemsInterface & centerDrawableListItems ,
GenericCallback< DrawableListItemsInterface *,
int16_t, int16_t > & updateCenterDrawableCallback

)

Setups the widget.

Numerous parameters control the position of the widget, the two scroll lists inside and the values in them.

Parameters:
drawableListItems Number of drawables in outer array.
updateDrawableCallback The callback to update a drawable.
centerDrawableListItems Number of drawables in center array.
updateCenterDrawableCallback The callback to update a center drawable.

setDrawableSize
virtual void setDrawableSize (int16_t drawableSize ,

int16_t drawableMargin
)

Sets drawables size.

The drawable is is the size of each drawable in the list in the set direction of the list (this is enforced by the
DrawableList class). The specified margin is added above and below each item for spacing. The entire size
of an item is thus size + 2 * spacing.

For a horizontal list each element will be drawableSize high and have the same width as set using
setWidth(). For a vertical list each element will be drawableSize wide and have the same height as set using
setHeight().

Parameters:
drawableSize The size of the drawable.
drawableMargin The margin around drawables (margin before and margin after).

See also:

setWidth, setHeight, setHorizontal

setHeight
virtual void setHeight (int16_t height)

Sets the height of this drawable.

Parameters:
height The new height.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.Also sets the height of the
children.

Reimplements: touchgfx::ScrollBase::setHeight

setHorizontal
virtual void setHorizontal (bool horizontal)

Sets a horizontal or vertical layout.

If parameter horizontal is set true, all drawables are arranged side by side. If horizontal is set false, the
drawables are arranged above and below each other (vertically).

Parameters:
horizontal True to align drawables horizontal, false to align drawables vertically.

NOTE

Default value is false, i.e. vertical layout.

See also:

DrawableList::setHorizontal, getHorizontal

Reimplements: touchgfx::ScrollBase::setHorizontal

setNumberOfItems
virtual void setNumberOfItems (int16_t numberOfItems)

Sets number of items in the DrawableList.

This forces all drawables to be updated to ensure that the content is correct. For example a date selector
might switch number of days between 28, 29, 30, and 31 depending on the month. A circular list might show
27-28-29-30-31 and might need to update this to show 27-28-1-2-3.

Parameters:
numberOfItems Number of items.

NOTE

The DrawableList is refreshed to reflect the change.

Reimplements: touchgfx::ScrollBase::setNumberOfItems

setSelectedItemExtraSize
virtual void setSelectedItemExtraSize (int16_t extraSizeBefore ,

int16_t extraSizeAfter

)

Sets selected item extra size to make the size of the area for the center drawables larger.

Parameters:
extraSizeBefore The extra size before.
extraSizeAfter The extra size after.

See also:

setSelectedItemOffset

setSelectedItemMargin
virtual void setSelectedItemMargin (int16_t marginBefore ,

int16_t marginAfter
)

Sets margin around selected item.

This like an invisible area added before and after the selected item (including extra size).

Parameters:
marginBefore The margin before.
marginAfter The margin after.

See also:

setSelectedItemOffset, setSelectedItemExtraSize

setSelectedItemOffset
virtual void setSelectedItemOffset (int16_t offset)

Sets selected item offset, measured in pixels, from the edge of the widget.

The offset is the relative x coordinate if the ScrollWheel is horizontal, otherwise it is the relative y
coordinate. If this value is zero, the selected item is placed at the very start of the widget.

Parameters:
offset The offset.

See also:

getSelectedItemOffset

Reimplements: touchgfx::ScrollWheelBase::setSelectedItemOffset

setSelectedItemPosition

virtual void setSelectedItemPosition (int16_t offset ,
int16_t extraSizeBefore ,
int16_t extraSizeAfter ,
int16_t marginBefore ,
int16_t marginAfter
)

Sets the selected item offset.

This is the distance from the beginning of the ScrollWheel measured in pixels. The distance before and after
that should also be drawn using the center drawables - for example to extend area of emphasized elements
- can also be specified. Further, if a gap is needed between the "normal" drawables and the center drawables
- for example to give the illusion that that items disappear under a graphical element, only to appear in the
center.

This is a combination of setSelectedItemOffset, setSelectedItemExtraSize and setSelectedItemMargin.

Parameters:
offset The offset of the selected item.
extraSizeBefore The extra size before the selected item.
extraSizeAfter The extra size after the selected item.
marginBefore The margin before the selected item.
marginAfter The margin after the selected item.

See also:

setSelectedItemOffset, setSelectedItemExtraSize, setSelectedItemMargin

setWidth
virtual void setWidth (int16_t width)

Sets the width of this drawable.

Parameters:
width The new width.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a redraw.Also sets the width of the
children.

Reimplements: touchgfx::ScrollBase::setWidth

Protected Functions Documentation
refreshDrawableListsLayout

void refreshDrawableListsLayout ()

Refresh drawable lists layout.

Ensure that the three DrawableLists are places correctly and setup properly. This is typically done after the
ScrollWheelWithSelectionStyle has been resized or the size of the selected item is changed.

setOffset
virtual void setOffset (int32_t offset)

Sets display offset of first item.

Parameters:
offset The offset.

Reimplements: touchgfx::ScrollBase::setOffset

Protected Attributes Documentation
centerDrawables

DrawableListItemsInterface * centerDrawables

The drawables at the center of the scroll wheel.

drawables
DrawableListItemsInterface * drawables

The drawables at the beginning and end of the scroll wheel.

drawablesInFirstList
int16_t drawablesInFirstList

List of drawables in firsts.

extraSizeAfterSelectedItem
int16_t extraSizeAfterSelectedItem

The distance after selected item.

extraSizeBeforeSelectedItem
int16_t extraSizeBeforeSelectedItem

The distance before selected item.

list1
DrawableList list1

The center list.

list2
DrawableList list2

The list for items not in the center.

marginAfterSelectedItem
int16_t marginAfterSelectedItem

The distance after selected item.

marginBeforeSelectedItem
int16_t marginBeforeSelectedItem

The distance before selected item.

originalUpdateCenterDrawableCallback
GenericCallback< DrawableListItemsInterface , int16_t, int16_t >
originalUpdateCenterDrawableCallback

The original update center drawable callback.

originalUpdateDrawableCallback
GenericCallback< DrawableListItemsInterface , int16_t, int16_t > originalUpdateDrawableCallback

The original update drawable callback.

Version: 4.16

SDL2TouchController
TouchController for the simulator.

See: TouchController

Inherits from: TouchController

Public Functions
virtual void init()

Initializes touch controller.

virtual bool sampleTouch(int32_t & x, int32_t & y)
Checks whether the touch screen is being touched, and if so, what coordinates.

Additional inherited members
Public Functions inherited from TouchController

virtual ~TouchController()
Finalizes an instance of the TouchController class.

Public Functions Documentation
init

virtual void init ()

Initializes touch controller.

Reimplements: touchgfx::TouchController::init

sampleTouch

virtual bool sampleTouch (int32_t & x ,
int32_t & y
)

Checks whether the touch screen is being touched, and if so, what coordinates.

Parameters:
x The x position of the touch.
y The y position of the touch.

Returns:

True if a touch has been detected, otherwise false.

Reimplements: touchgfx::TouchController::sampleTouch

Version: 4.16

SDLTouchController
TouchController for the simulator.

See: TouchController

Inherits from: TouchController

Public Functions
virtual void init()

Initializes touch controller.

virtual bool sampleTouch(int32_t & x, int32_t & y)
Checks whether the touch screen is being touched, and if so, what coordinates.

Additional inherited members
Public Functions inherited from TouchController

virtual ~TouchController()
Finalizes an instance of the TouchController class.

Public Functions Documentation
init

virtual void init ()

Initializes touch controller.

Reimplements: touchgfx::TouchController::init

sampleTouch

virtual bool sampleTouch (int32_t & x ,
int32_t & y
)

Checks whether the touch screen is being touched, and if so, what coordinates.

Parameters:
x The x position of the touch.
y The y position of the touch.

Returns:

True if a touch has been detected, otherwise false.

Reimplements: touchgfx::TouchController::sampleTouch

Version: 4.16

Shape
Simple widget capable of drawing a fully filled shape. The shape can be scaled and rotated. The Shape
class allows the user to draw any shape and allows the defined shape to be scaled, rotated and moved
freely. Example uses could be the hands of a clock.

See: AbstractShape

Inherits from: AbstractShape, CanvasWidget, Widget, Drawable

Public Functions
virtual CWRUtil::Q5 getCornerX(int i) const

Gets the x coordinate of a corner (a point) of the shape.

virtual CWRUtil::Q5 getCornerY(int i) const
Gets the y coordinate of a corner (a point) of the shape.

virtual int getNumPoints() const
Gets number of points used to make up the shape.

virtual void setCorner(int i, CWRUtil::Q5 x, CWRUtil::Q5 y)
Sets one of the points (a corner) of the shape in CWRUtil::Q5 format.

Protected Functions
virtual CWRUtil::Q5 getCacheX(int i) const

Gets cached x coordinate of a point/corner.

virtual CWRUtil::Q5 getCacheY(int i) const
Gets cached y coordinate of a point/corner.

virtual void setCache(int i, CWRUtil::Q5 x, CWRUtil::Q5 y)
Sets the cached coordinates of a given point/corner.

Additional inherited members

Public Classes inherited from AbstractShape
struct ShapePoint

Defines an alias for a single point.

Public Functions inherited from AbstractShape
AbstractShape()

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const
Draw canvas widget for the given invalidated area.

int getAngle() const
Gets the current angle of the abstractShape.

void getAngle(T & angle)
Gets the abstractShape's angle.

void getOrigin(T & dx, T & dy) const
Gets the position of the shapes (0,0).

void getScale(T & x, T & y) const
Gets the x scale and y scale of the shape as previously set using setScale.

void moveOrigin(T x, T y)
Sets the position of the shape's (0,0) in the widget.

void setAngle(T angle)
Sets the absolute angle to turn the AbstractShape.

void setOrigin(T x, T y)
Sets the position of the shape's (0,0) in the widget.

void setScale(T newXScale, T newYScale)
Scale the AbstractShape the given amounts in the x direction and the y direction.

void setScale(T scale)
Scale the AbstractShape the given amount in the x direction and the y direction.

void setShape(const ShapePoint< T > * points)
Sets a shape the struct Points.

void setShape(ShapePoint< T > * points)
Sets a shape the struct Points.

void updateAbstractShapeCache()
Updates the AbstractShape cache.

void updateAngle(T angle)
Sets the absolute angle to turn the AbstractShape.

void updateScale(T newXScale, T newYScale)
Scale the AbstractShape the given amount in the x direction and the y direction.

Protected Functions inherited from AbstractShape
virtual Rect getMinimalRect() const

Gets minimal rectangle containing the shape drawn by this widget.

Public Functions inherited from CanvasWidget
CanvasWidget()

virtual void draw(const Rect & invalidatedArea) const
Draws the given invalidated area.

virtual bool drawCanvasWidget(const Rect & invalidatedArea) const =0
Draw canvas widget for the given invalidated area.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getMinimalRect() const
Gets minimal rectangle containing the shape drawn by this widget.

virtual AbstractPainter & getPainter() const
Gets the current painter for the CanvasWidget.

virtual Rect getSolidRect() const
Gets the largest solid (non-transparent) rectangle.

virtual void invalidate() const

Invalidates the area covered by this CanvasWidget.

void resetMaxRenderLines()
Resets the maximum render lines.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setPainter(AbstractPainter & painter)
Sets a painter for the CanvasWidget.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()

Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
getCornerX

virtual CWRUtil::Q5 getCornerX (int i)

Gets the x coordinate of a corner (a point) of the shape.

Parameters:
i Zero-based index of the corner.

Returns:

The corner x coordinate in CWRUtil::Q5 format.

Reimplements: touchgfx::AbstractShape::getCornerX

getCornerY
virtual CWRUtil::Q5 getCornerY (int i)

Gets the y coordinate of a corner (a point) of the shape.

Parameters:
i Zero-based index of the corner.

Returns:

The corner y coordinate in CWRUtil::Q5 format.

Reimplements: touchgfx::AbstractShape::getCornerY

getNumPoints
virtual int getNumPoints () const

Gets number of points used to make up the shape.

Returns:

The number of points.

Reimplements: touchgfx::AbstractShape::getNumPoints

setCorner
virtual void setCorner (int i ,

CWRUtil::Q5 x ,
CWRUtil::Q5 y
)

Sets one of the points (a corner) of the shape in CWRUtil::Q5 format.

Parameters:
i Zero-based index of the corner.
x The x coordinate in CWRUtil::Q5 format.
y The y coordinate in CWRUtil::Q5 format.

NOTE

Remember to call updateAbstractShapeCache() after calling setCorner one or more times, to make sure
that the cached outline of the shape is correct.

See also:

updateAbstractShapeCache

Reimplements: touchgfx::AbstractShape::setCorner

Protected Functions Documentation
getCacheX

virtual CWRUtil::Q5 getCacheX (int i)

Gets cached x coordinate of a point/corner.

Parameters:
i Zero-based index of the point/corner.

Returns:

The cached x coordinate, or zero if nothing is cached for the given i.

Reimplements: touchgfx::AbstractShape::getCacheX

getCacheY
virtual CWRUtil::Q5 getCacheY (int i)

Gets cached y coordinate of a point/corner.

Parameters:
i Zero-based index of the point/corner.

Returns:

The cached y coordinate, or zero if nothing is cached for the given i.

Reimplements: touchgfx::AbstractShape::getCacheY

setCache
virtual void setCache (int i ,

CWRUtil::Q5 x ,
CWRUtil::Q5 y
)

Sets the cached coordinates of a given point/corner.

The coordinates in the cache are the coordinates from the corners after rotation and scaling has
been applied to the coordinate.

Parameters:
i Zero-based index of the corner.
x The x coordinate.
y The y coordinate.

Reimplements: touchgfx::AbstractShape::setCache

Version: 4.16

ShapePoint
Defines an alias for a single point. Users of the AbstractShape can chose to store the coordinates as int
or float depending on the needs. This will help setting up the abstractShape very easily using
setAbstractShape().

Template Parameters:

T Generic type parameter, either int or float.

See: setShape

Public Attributes
T x

The x coordinate of the points.

T y
The y coordinate of the points.

Public Attributes Documentation
x

T x

The x coordinate of the points.

y
T y

The y coordinate of the points.

Version: 4.16

SlideMenu
SlideMenu is a menu that can expand and collapse at the touch of a button. The SlideMenu can expand in
any of the four directions. Menu items can be added, just like items are added to a normal container.

The relative positions of the background and state change button is configurable as is the direction in which
the SlideMenu expands and collapses. How much of the SlideMenu that is visible when collapsed can also be
set with the. It is, of course, important that the state change button is accessible when collapsed. The
SlideMenu will collapse after a given timeout is reached. The timer can be reset, for example when the user
interacts with elements in the list.

Menu elements are added normally using the add() method and are positioned relative to the SlideMenu.

Inherits from: Container, Drawable

Public Types
enum ExpandDirection { SOUTH, NORTH, EAST, WEST }

Values that represent the expand directions.

enum State { COLLAPSED, EXPANDED }
Values that represent the SlideMenu states.

Public Functions
virtual void add(Drawable & d)

Adds a drawable to the container.

virtual void animateToState(SlideMenu::State newState)
Animate to the given expanded or collapsed state.

virtual uint16_t getAnimationDuration() const
Gets the animation duration.

virtual EasingEquation getAnimationEasingEquation() const
Gets the animation easing equation.

virtual int16_t getBackgroundX() const
Gets the background Image x coordinate.

virtual int16_t getBackgroundY() const

Gets the background Image y coordinate.

virtual SlideMenu::ExpandDirection getExpandDirection() const
Gets the expand direction.

virtual uint16_t getExpandedStateTimeout() const
Gets expanded state timeout.

virtual uint16_t getExpandedStateTimer() const
Gets the expanded state timer.

virtual int16_t getHiddenPixelsWhenExpanded() const
Gets the hidden pixels when expanded.

virtual SlideMenu::State getState()
Gets the current expanded or collapsed state.

virtual int16_t getStateChangeButtonX() const
Gets the state change button x coordinate.

virtual int16_t getStateChangeButtonY() const
Gets the state change button y coordinate.

virtual int16_t getVisiblePixelsWhenCollapsed() const
Gets the visible pixels when collapsed.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has
subscribed to timer ticks.

virtual void remove(Drawable & d)
Removes the drawable from the container.

virtual void resetExpandedStateTimer()
Resets the expanded state timer.

virtual void setAnimationDuration(uint16_t duration)
Sets the animation duration.

virtual void setAnimationEasingEquation(EasingEquation
animationEasingEquation)
Sets the animation easing equation.

virtual void setExpandDirection(SlideMenu::ExpandDirection
newExpandDirection)
Sets the expand direction.

virtual void setExpandedStateTimeout(uint16_t timeout)
Sets the expanded state timeout in ticks.

virtual void setHiddenPixelsWhenExpanded(int16_t hiddenPixels)
Sets the amount of hidden pixels when expanded.

virtual void setState(SlideMenu::State newState)
Sets the state of the SlideMenu.

virtual void setStateChangedAnimationEndedCallback(GenericCallback<
const SlideMenu & > & callback)
Set the state change animation ended callback.

virtual void setStateChangedCallback(GenericCallback< const SlideMenu & >
& callback)
Set the state changed callback.

virtual void
setup(SlideMenu::ExpandDirection newExpandDirection, const
Bitmap & backgroundBMP, const Bitmap &
stateChangeButtonBMP, const Bitmap &
stateChangeButtonPressedBMP)
Setup the SlideMenu by positioning the stateChangeButton next to
background image relative to the expand direction, and center it in
the other dimension.

virtual void

setup(SlideMenu::ExpandDirection newExpandDirection, const
Bitmap & backgroundBMP, const Bitmap &
stateChangeButtonBMP, const Bitmap &
stateChangeButtonPressedBMP, int16_t backgroundX, int16_t
backgroundY, int16_t stateChangeButtonX, int16_t
stateChangeButtonY)
Setup method for the SlideMenu.

virtual void
setup(SlideMenu::ExpandDirection newExpandDirection, const
Bitmap & backgroundBMP, int16_t backgroundX, int16_t
backgroundY)
Setup method for the SlideMenu.

virtual void setVisiblePixelsWhenCollapsed(int16_t visiblePixels)
Sets the amount of visible pixels when collapsed.

SlideMenu()

virtual ~SlideMenu()

Protected Functions

void animationEndedHandler(const MoveAnimator< Container > & container)
Handler for the state change animation ended event.

virtual int16_t getCollapsedXCoordinate()
Gets the x coordinate for the collapsed state.

virtual int16_t getCollapsedYCoordinate()
Gets the y coordinate for the collapsed state.

virtual int16_t getExpandedXCoordinate()
Gets the x coordinate for the expanded state.

virtual int16_t getExpandedYCoordinate()
Gets the y coordinate for the expanded state.

void stateChangeButtonClickedHandler(const AbstractButton & button)
Handler for the state change button clicked event.

Protected Attributes
uint16_t animationDuration

The animation duration of the state
change animation.

Callback< SlideMenu, const MoveAnimator< Container > & > animationEndedCallback
The local state changed animation ended
callback.

EasingEquation animationEquation
The easing equation used for the state
change animation.

Image background
The background of the SlideMenu.

SlideMenu::State currentState
The current state of the SlideMenu.

SlideMenu::ExpandDirection expandDirection
The expand direction of the SlideMenu.

uint16_t expandedStateTimeout
The expanded state timeout.

uint16_t expandedStateTimer

The timer that counts towards the
expandedStateTimeout. If reached the
SlideMenu will animate to COLLAPSED.

int16_t hiddenPixelsWhenExpanded
The number of hidden pixels when
expanded.

MoveAnimator< Container > menuContainer
The container holding the actual menu
items. This is the container that performs
the state change animation.

Callback< SlideMenu, const AbstractButton & > onStateChangeButtonClicked
The local state changed button clicked
callback.

Button stateChangeButton
The state change button that toggles the
SlideMenu state.

GenericCallback< const SlideMenu & > * stateChangedAnimationEndedCallback
The public state changed animation
ended callback.

GenericCallback< const SlideMenu & > * stateChangedCallback
The public state changed button clicked
callback.

int16_t visiblePixelsWhenCollapsed
The number of visible pixels when
collapsed.

Additional inherited members
Public Functions inherited from Container

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of one or
more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0

Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in absolute
coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by getSolidRect())
expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)

Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x and y
coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect

The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Types Documentation
ExpandDirection

enum ExpandDirection

Values that represent the expand directions.

SOUTH Menu expands downwards (Towards the south)
NORTH Menu expands upwards (Towards the north)
EAST Menu expands to the right (Towards the east)
WEST Menu expands to the left (Towards the west)

State
enum State

Values that represent the SlideMenu states.

COLLAPSED Menu is currently collapsed.
EXPANDED Menu is currently expanded.

Public Functions Documentation
add

virtual void add (Drawable & d)

Adds a drawable to the container.

Make sure the x and y coordinates of the Drawable is correct relative to the SlideMenu.

Parameters:
d The drawable to add.

Reimplements: touchgfx::Container::add

animateToState
virtual void animateToState (SlideMenu::State newState)

Animate to the given expanded or collapsed state.

Parameters:
newState The new state of the SlideMenu.

See also:

setState, getState

getAnimationDuration
virtual uint16_t getAnimationDuration () const

Gets the animation duration.

Returns:

The animation duration.

getAnimationEasingEquation
virtual EasingEquation getAnimationEasingEquation () const

Gets the animation easing equation.

Returns:

The animation easing equation.

getBackgroundX
virtual int16_t getBackgroundX () const

Gets the background Image x coordinate.

Returns:

The background Image x coordinate.

getBackgroundY
virtual int16_t getBackgroundY () const

Gets the background Image y coordinate.

Returns:

The background Image y coordinate.

getExpandDirection
virtual SlideMenu::ExpandDirection getExpandDirection () const

Gets the expand direction.

Returns:

The expand direction.

getExpandedStateTimeout
virtual uint16_t getExpandedStateTimeout () const

Gets expanded state timeout.

Returns:

The expanded state timeout.

getExpandedStateTimer
virtual uint16_t getExpandedStateTimer () const

Gets the expanded state timer.

Returns:

The expanded state timer.

See also:

resetExpandedStateTimer

getHiddenPixelsWhenExpanded
virtual int16_t getHiddenPixelsWhenExpanded () const

Gets the hidden pixels when expanded.

Returns:

The hidden pixels when expanded.

getState
virtual SlideMenu::State getState ()

Gets the current expanded or collapsed state.

Returns:

The current state.

See also:

setState, animateToState

getStateChangeButtonX
virtual int16_t getStateChangeButtonX () const

Gets the state change button x coordinate.

Returns:

The state change button x coordinate.

getStateChangeButtonY
virtual int16_t getStateChangeButtonY () const

Gets the state change button y coordinate.

Returns:

The state change button y coordinate.

getVisiblePixelsWhenCollapsed
virtual int16_t getVisiblePixelsWhenCollapsed () const

Gets the visible pixels when collapsed.

Returns:

The visible pixels when collapsed.

handleTickEvent
virtual void handleTickEvent ()

Called periodically by the framework if the Drawable instance has subscribed to timer ticks.

See also:

Application::registerTimerWidget

Reimplements: touchgfx::Drawable::handleTickEvent

remove
virtual void remove (Drawable & d)

Removes the drawable from the container.

Parameters:
d The drawable to remove.

Reimplements: touchgfx::Container::remove

resetExpandedStateTimer
virtual void resetExpandedStateTimer ()

Resets the expanded state timer.

The SlideMenu will automatically animate to the COLLAPSED state after a number of ticks, as set with
setExpandedStateTimeout(). This method resets this timer.

See also:

getExpandedStateTimer

setAnimationDuration
virtual void setAnimationDuration (uint16_t duration)

Sets the animation duration.

Parameters:
duration The animation duration.

setAnimationEasingEquation

virtual void setAnimationEasingEquation (EasingEquation animationEasingEquation)

Sets the animation easing equation.

Parameters:
animationEasingEquation The animation easing equation.

setExpandDirection
virtual void setExpandDirection (SlideMenu::ExpandDirection newExpandDirection)

Sets the expand direction.

Parameters:
newExpandDirection The new expand direction.

setExpandedStateTimeout
virtual void setExpandedStateTimeout (uint16_t timeout)

Sets the expanded state timeout in ticks.

The SlideMenu will animate to the COLLAPSED state when this number of ticks has been executed while
the SlideMenu is in the EXPANDED state. The timer can be reset with the resetExpandedStateTimer
method.

Parameters:
timeout The timeout in ticks.

setHiddenPixelsWhenExpanded
virtual void setHiddenPixelsWhenExpanded (int16_t hiddenPixels)

Sets the amount of hidden pixels when expanded.

Parameters:
hiddenPixels The hidden pixels.

setState
virtual void setState (SlideMenu::State newState)

Sets the state of the SlideMenu.

No animation is performed.

Parameters:
newState The new state of the SlideMenu.

See also:

animateToState, getState

setStateChangedAnimationEndedCallback

virtual void setStateChangedAnimationEndedCallback (GenericCallback< const SlideMenu & >
& callback)

Set the state change animation ended callback.

This callback is called when a state change animation has ended.

Parameters:
callback The callback.

setStateChangedCallback
virtual void setStateChangedCallback (GenericCallback< const SlideMenu & > & callback)

Set the state changed callback.

This callback is called when the state change button is clicked.

Parameters:
callback The callback.

setup
virtual void setup (SlideMenu::ExpandDirection newExpandDirection ,

const Bitmap & backgroundBMP ,
const Bitmap & stateChangeButtonBMP ,
const Bitmap & stateChangeButtonPressedBMP
)

Setup the SlideMenu by positioning the stateChangeButton next to background image relative to the
expand direction, and center it in the other dimension.

The width and height of the SlideMenu will be automatically set to span both elements. Default values
are: expandedStateTimeout = 200, visiblePixelsWhenCollapsed = 0, hiddenPixelsWhenExpanded = 0,
animationDuration = 10, animationEquation = cubicEaseInOut.

Parameters:
newExpandDirection The new expand direction.
backgroundBMP The background bitmap.
stateChangeButtonBMP The state change button bitmap.
stateChangeButtonPressedBMP The state change button pressed bitmap.

setup
virtual void setup (SlideMenu::ExpandDirection newExpandDirection ,

const Bitmap & backgroundBMP ,
const Bitmap & stateChangeButtonBMP ,
const Bitmap & stateChangeButtonPressedBMP ,
int16_t backgroundX ,
int16_t backgroundY ,
int16_t stateChangeButtonX ,
int16_t stateChangeButtonY
)

Setup method for the SlideMenu.

Positioning of the background image and the stateChangeButton is done by stating the X and Y
coordinates for the elements (relative to the SlideMenu). The width and height of the SlideMenu will be
automatically set to span both elements. Default values are: expandedStateTimeout = 200,
visiblePixelsWhenCollapsed = 0, hiddenPixelsWhenExpanded = 0, animationDuration = 10,
animationEquation = cubicEaseInOut.

Parameters:
newExpandDirection The new expand direction.
backgroundBMP The background bitmap.
stateChangeButtonBMP The state change button bitmap.
stateChangeButtonPressedBMP The state change button pressed bitmap.
backgroundX The background x coordinate.
backgroundY The background y coordinate.
stateChangeButtonX The state change button x coordinate.
stateChangeButtonY The state change button y coordinate.

setup
virtual void setup (SlideMenu::ExpandDirection newExpandDirection ,

const Bitmap & backgroundBMP ,
int16_t backgroundX ,
int16_t backgroundY
)

Setup method for the SlideMenu.

Positioning of the background is done by stating the X and Y coordinates for the element (relative to the
SlideMenu). The width and height of the SlideMenu will be automatically set to the size of the
background. Default values are: expandedStateTimeout = 200, visiblePixelsWhenCollapsed = 0,
hiddenPixelsWhenExpanded = 0, animationDuration * = 10, animationEquation = cubicEaseInOut.

Parameters:
newExpandDirection The new expand direction.
backgroundBMP The background bitmap.
backgroundX The background x coordinate.
backgroundY The background y coordinate.

setVisiblePixelsWhenCollapsed
virtual void setVisiblePixelsWhenCollapsed (int16_t visiblePixels)

Sets the amount of visible pixels when collapsed.

Parameters:
visiblePixels The visible pixels.

SlideMenu
SlideMenu ()

~SlideMenu
virtual ~SlideMenu ()

Protected Functions Documentation
animationEndedHandler

void animationEndedHandler (const MoveAnimator< Container > & container)

Handler for the state change animation ended event.

Parameters:
container The menuContainer.

getCollapsedXCoordinate

virtual int16_t getCollapsedXCoordinate ()

Gets the x coordinate for the collapsed state.

Returns:

The collapsed x coordinate.

getCollapsedYCoordinate
virtual int16_t getCollapsedYCoordinate ()

Gets the y coordinate for the collapsed state.

Returns:

The collapsed y coordinate.

getExpandedXCoordinate
virtual int16_t getExpandedXCoordinate ()

Gets the x coordinate for the expanded state.

Returns:

The expanded x coordinate.

getExpandedYCoordinate
virtual int16_t getExpandedYCoordinate ()

Gets the y coordinate for the expanded state.

Returns:

The expanded y coordinate.

stateChangeButtonClickedHandler
void stateChangeButtonClickedHandler (const AbstractButton & button)

Handler for the state change button clicked event.

Parameters:
button The state change button.

Protected Attributes Documentation
animationDuration

uint16_t animationDuration

The animation duration of the state change animation.

animationEndedCallback
Callback< SlideMenu, const MoveAnimator< Container > & > animationEndedCallback

The local state changed animation ended callback.

animationEquation
EasingEquation animationEquation

The easing equation used for the state change animation.

background
Image background

The background of the SlideMenu.

currentState
SlideMenu::State currentState

The current state of the SlideMenu.

expandDirection
SlideMenu::ExpandDirection expandDirection

The expand direction of the SlideMenu.

expandedStateTimeout

p
uint16_t expandedStateTimeout

The expanded state timeout.

expandedStateTimer
uint16_t expandedStateTimer

The timer that counts towards the expandedStateTimeout. If reached the SlideMenu will animate to
COLLAPSED.

hiddenPixelsWhenExpanded
int16_t hiddenPixelsWhenExpanded

The number of hidden pixels when expanded.

menuContainer
MoveAnimator< Container > menuContainer

The container holding the actual menu items. This is the container that performs the state change
animation.

onStateChangeButtonClicked
Callback< SlideMenu, const AbstractButton & > onStateChangeButtonClicked

The local state changed button clicked callback.

stateChangeButton
Button stateChangeButton

The state change button that toggles the SlideMenu state.

stateChangedAnimationEndedCallback
GenericCallback< const SlideMenu & > * stateChangedAnimationEndedCallback

The public state changed animation ended callback.

stateChangedCallback
GenericCallback< const SlideMenu & > * stateChangedCallback

The public state changed button clicked callback.

visiblePixelsWhenCollapsed
int16_t visiblePixelsWhenCollapsed

The number of visible pixels when collapsed.

Version: 4.16

Slider
A slider is a graphical element with which the user may set a value by moving an indicator on a slider,
or simply by clicking the slider. The slider can operate in horizontal or vertical mode. The slider has two
bitmaps. One bitmap is used on one side of the indicator. The other is used on the other side. They
can be used in indicating the part of the slider value range that is currently selected.

The slider operates on an integer value range that can be set by the user.

Inherits from: Container, Drawable

Protected Types
enum SliderOrientation { HORIZONTAL, VERTICAL }

Values that represent slider orientations.

Public Functions
virtual uint16_t getIndicatorMax() const

Gets indicator maximum previous set using setupHorizontalSlider() or
setupVerticalSlider().

virtual uint16_t getIndicatorMin() const
Gets indicator minimum previously set using setupHorizontalSlider() or
setupVerticalSlider().

virtual uint16_t getMaxValue() const
Gets the maximum value previously set using setValueRange().

virtual uint16_t getMinValue() const
Gets the minimum value previously set using setValueRange().

int getValue()
Gets the current value represented by the indicator.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

void setBitmaps(const Bitmap & sliderBackground, const Bitmap &
sliderBackgroundSelected, const Bitmap & indicator)
Sets all the bitmaps for the Slider.

void setBitmaps(const BitmapId sliderBackground, const BitmapId
sliderBackgroundSelected, const BitmapId indicator)
Sets all the bitmaps for the Slider.

void setNewValueCallback(GenericCallback< const Slider &, int > & callback)
Associates an action to be performed when the slider changes its value.

void setStartValueCallback(GenericCallback< const Slider &, int > & callback)
Associates an action to be performed when an interaction with the slider is initiated
(click or drag).

void setStopValueCallback(GenericCallback< const Slider &, int > & callback)
Associates an action to be performed when an interaction with the slider ends (click
or drag).

virtual void setupHorizontalSlider(uint16_t backgroundX, uint16_t backgroundY, uint16_t
indicatorY, uint16_t indicatorMinX, uint16_t indicatorMaxX)
Sets up the slider in horizontal mode with the range going from the left to right.

virtual void setupVerticalSlider(uint16_t backgroundX, uint16_t backgroundY, uint16_t
indicatorX, uint16_t indicatorMinY, uint16_t indicatorMaxY)
Sets up the slider in vertical mode with the range going from the bottom to top.

virtual void setValue(int value)
Places the indicator at the specified value relative to the specified value range.

virtual void setValueRange(int minValue, int maxValue)
Sets the value range of the slider.

virtual void setValueRange(int minValue, int maxValue, int newValue)
Sets the value range of the slider.

Slider()

Protected Functions

virtual int getIndicatorPositionRangeSize() const
Gets the indicator position range, i.e.

virtual uint16_t getIndicatorRadius() const
Gets the indicator radius, which is half the size of the indicator.

virtual int getValueRangeSize() const
Gets the value range, i.e.

virtual int positionToValue(int16_t position) const
Translate a position (x coordinate in horizontal mode and y in vertical mode) in the
indicator position range to the corresponding value in the value range.

virtual void updateIndicatorPosition(int16_t position)
Updates the indicator position described by position.

virtual int16_t valueToPosition(int value) const
Translate a value in the value range to the corresponding position in the indicator
position range (x coordinate in horizontal mode and y in vertical mode).

Protected Attributes
Image background

The background image.

Image backgroundSelected
The backgroundSelected image.

Container backgroundSelectedViewPort
The backgroundSelected view port. Controls the visible
part of the backgroundSelected image.

int currentValue
The current value represented by the slider.

Image indicator
The indicator image.

int16_t indicatorMaxPosition
The maximum position of the indicator (either x
coordinate in horizontal mode or y coordinate in vertical
mode)

int16_t indicatorMinPosition
The minimum position of the indicator (either x
coordinate in horizontal mode or y coordinate in vertical
mode)

GenericCallback< const Slider &, int > * newValueCallback
The new value callback (called when the indicator is
moved)

SliderOrientation sliderOrientation
The selected slider orientation.

GenericCallback< const Slider &, int > * startValueCallback
The start value callback (called when an interaction with
the indicator is initiated)

GenericCallback< const Slider &, int > * stopValueCallback
The stop value callback (called when an interaction with
the indicator ends)

int valueRangeMax
The value range max.

int valueRangeMin
The value range min.

Additional inherited members
Public Functions inherited from Container

virtual void add(Drawable & d)
Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Protected Types Documentation
SliderOrientation

enum SliderOrientation

Values that represent slider orientations.

HORIZONTAL The Slider can be moved horizontally between left and right.
VERTICAL The Slider can be moved vertically between top and bottom.

Public Functions Documentation
getIndicatorMax

virtual uint16_t getIndicatorMax () const

Gets indicator maximum previous set using setupHorizontalSlider() or setupVerticalSlider().

Returns:

The calculated indicator maximum.

See also:

setupHorizontalSlider, setupVerticalSlider, getIndicatorMin

getIndicatorMin
virtual uint16_t getIndicatorMin () const

Gets indicator minimum previously set using setupHorizontalSlider() or setupVerticalSlider().

Returns:

The indicator minimum.

See also:

setupHorizontalSlider, setupVerticalSlider, getIndicatorMax

getMaxValue
virtual uint16_t getMaxValue () const

Gets the maximum value previously set using setValueRange().

Returns:

The maximum value.

See also:

setValueRange, getMinValue

getMinValue
virtual uint16_t getMinValue () const

Gets the minimum value previously set using setValueRange().

Returns:

The minimum value.

See also:

setValueRange, getMaxValue

getValue
int getValue ()

Gets the current value represented by the indicator.

Returns:

The current value.

handleClickEvent
virtual void handleClickEvent (const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

The default implementation ignores the event. The event is only received if the Drawable is
touchable and visible.

Parameters:
evt The ClickEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleClickEvent

handleDragEvent
virtual void handleDragEvent (const DragEvent & evt)

Defines the event handler interface for DragEvents.

The default implementation ignores the event. The event is only received if the drawable is
touchable and visible.

Parameters:
evt The DragEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleDragEvent

setBitmaps

void setBitmaps (const Bitmap & sliderBackground ,
const Bitmap & sliderBackgroundSelected ,
const Bitmap & indicator
)

Sets all the bitmaps for the Slider.

The Slider shows the sliderBackgroundSelected bitmap in the region of the Slider that is selected,
that is the area to the left of the indicator for a horizontal Slider and below the indicator for a
vertical Slider. The sliderBackground is shown on the other side of the Slider. To ignore this effect
simply use the same bitmap for both the sliderBackground and the sliderBackgroundSelected.

Parameters:
sliderBackground The slider background with the slider range unselected.
sliderBackgroundSelected The slider background with the slider range selected.
indicator The indicator.

setBitmaps
void setBitmaps (const BitmapId sliderBackground ,

const BitmapId sliderBackgroundSelected ,
const BitmapId indicator
)

Sets all the bitmaps for the Slider.

The Slider shows the sliderBackgroundSelected bitmap in the region of the Slider that is selected,
that is the area to the left of the indicator for a horizontal Slider and below the indicator for a
vertical Slider. The sliderBackground is shown on the other side of the Slider. To ignore this effect
simply use the same bitmap for both the sliderBackground and the sliderBackgroundSelected.

Parameters:
sliderBackground The slider background with the slider range unselected.
sliderBackgroundSelected The slider background with the slider range selected.
indicator The indicator.

setNewValueCallback
void setNewValueCallback (GenericCallback< const Slider &, int > & callback)

Associates an action to be performed when the slider changes its value.

Parameters:

callback The callback to be executed. The callback will be given a reference to the Slider and
the current value of the slider.

See also:

GenericCallback

setStartValueCallback
void setStartValueCallback (GenericCallback< const Slider &, int > & callback)

Associates an action to be performed when an interaction with the slider is initiated (click or drag).

Parameters:
callback The callback to be executed. The callback will be given a reference to the Slider and

the current value of the slider at interaction start.

See also:

GenericCallback

setStopValueCallback
void setStopValueCallback (GenericCallback< const Slider &, int > & callback)

Associates an action to be performed when an interaction with the slider ends (click or drag).

Parameters:
callback The callback to be executed. The callback will be given a reference to the Slider and

the current value of the slider at interaction end.

See also:

GenericCallback

setupHorizontalSlider
virtual void setupHorizontalSlider (uint16_t backgroundX ,

uint16_t backgroundY ,
uint16_t indicatorY ,
uint16_t indicatorMinX ,
uint16_t indicatorMaxX
)

Sets up the slider in horizontal mode with the range going from the left to right.

Places the backgrounds and the indicator inside the Slider container. It is possible to place the end
points of the indicator outside the background image if it needs to go beyond the boundaries of
the background. The width and height of the Slider will be adjusted appropriately so that both the
background and the indicator will be fully visible in both the minimum and maximum indicator
positions.

Calls setValue() with the current value (default 0) and triggers the newSliderValue callback.

Parameters:
backgroundX The background x coordinate inside the slider.
backgroundY The background y coordinate inside the slider.
indicatorY The indicator y coordinate inside the slider.
indicatorMinX The indicator minimum x coordinate inside the slider. This is the position used

when the slider is at its minimum value. Must be less than indicatorMaxX.
indicatorMaxX The indicator maximum x coordinate inside the slider. This is the position used

when the slider is at its maximum value. Must be greater than indicatorMinX.

NOTE

The x and y position of the Slider will either be the left/top of the background or the left/top of the
indicator in its minimum x coordinate.

setupVerticalSlider
virtual void setupVerticalSlider (uint16_t backgroundX ,

uint16_t backgroundY ,
uint16_t indicatorX ,
uint16_t indicatorMinY ,
uint16_t indicatorMaxY
)

Sets up the slider in vertical mode with the range going from the bottom to top.

Places the backgrounds and the indicator inside the Slider container. It is possible to place the end
points of the indicator outside the background image if it needs to go beyond the boundaries of
the background. The width and height of the Slider will be adjusted appropriately so that both the
background and the indicator will be fully visible in both the minimum and maximum indicator
positions.

Calls setValue with the current value (default 0) and triggers the newSliderValue callback.

Parameters:

backgroundX The background x coordinate inside the slider.
backgroundY The background y coordinate inside the slider.
indicatorX The indicator x coordinate inside the slider.
indicatorMinY The indicator minimum y coordinate inside the slider. This is the position used

when the slider is at its maximum value. Must be less than indicatorMaxX.
indicatorMaxY The indicator maximum y coordinate inside the slider. This is the position used

when the slider is at its minimum value. Must be greater than indicatorMinX.

NOTE

The x and y position of the Slider will either be the left/top of the background or the left/top of the
indicator in its minimum y coordinate.

setValue
virtual void setValue (int value)

Places the indicator at the specified value relative to the specified value range.

Values beyond the value range will be rounded to the min/max value in the value range.

Parameters:
value The value.

NOTE

The value update triggers a newSliderValue callback just as a drag or click does. If the value range is larger
than the number of pixels specified for the indicator min and indicator max, some values will not be
represented by the slider and thus is not possible to set with this method. In this case the value will be
rounded to the nearest value that is represented in the current setting.

See also:

setValueRange

setValueRange
virtual void setValueRange (int minValue ,

int maxValue
)

Sets the value range of the slider.

Values accepted and returned by the slider will be in this range.

The slider will set its value to the current value or round to minValue or maxValue if the current
value is outside the new range.

Parameters:
minValue The minimum value. Must be less than maxValue.
maxValue The maximum value. Must be greater than minValue.

NOTE

If the range is larger than the number of pixels specified for the indicator min and indicator max, some
values will not be represented by the slider.

setValueRange
virtual void setValueRange (int minValue ,

int maxValue ,
int newValue
)

Sets the value range of the slider.

Values accepted and returned by the slider will be in this range.

The slider will set its value to the specified new value.

Parameters:
minValue The minimum value. Must be less than maxValue.
maxValue The maximum value. Must be greater than minValue.
newValue The new value.

NOTE

If the range is larger than the number of pixels specified for the indicator min and max some values will not
be represented by the slider.

Slider
Slider ()

Protected Functions Documentation

getIndicatorPositionRangeSize
virtual int getIndicatorPositionRangeSize () const

Gets the indicator position range, i.e.

the difference between max and min for the position of the indicator.

Returns:

The indicator position range.

getIndicatorRadius
virtual uint16_t getIndicatorRadius () const

Gets the indicator radius, which is half the size of the indicator.

Returns:

The the indicator radius.

getValueRangeSize
virtual int getValueRangeSize () const

Gets the value range, i.e.

the difference between max and min for the value range.

Returns:

The value range.

positionToValue
virtual int positionToValue (int16_t position)

Translate a position (x coordinate in horizontal mode and y in vertical mode) in the indicator
position range to the corresponding value in the value range.

Parameters:
position The position.

Returns:

The value that corresponds to the coordinate.

updateIndicatorPosition
virtual void updateIndicatorPosition (int16_t position)

Updates the indicator position described by position.

Calls the newSliderValueCallback with the new value.

Parameters:
position The position (x coordinate in horizontal mode and y coordinate in vertical mode).

valueToPosition
virtual int16_t valueToPosition (int value)

Translate a value in the value range to the corresponding position in the indicator position range (x
coordinate in horizontal mode and y in vertical mode).

Parameters:
value The value.

Returns:

The coordinate that corresponds to the value.

Protected Attributes Documentation
background

Image background

The background image.

backgroundSelected
Image backgroundSelected

The backgroundSelected image.

backgroundSelectedViewPort
Container backgroundSelectedViewPort

The backgroundSelected view port. Controls the visible part of the backgroundSelected image.

currentValue
int currentValue

The current value represented by the slider.

indicator
Image indicator

The indicator image.

indicatorMaxPosition
int16_t indicatorMaxPosition

The maximum position of the indicator (either x coordinate in horizontal mode or y coordinate in
vertical mode)

indicatorMinPosition
int16_t indicatorMinPosition

The minimum position of the indicator (either x coordinate in horizontal mode or y coordinate in
vertical mode)

newValueCallback

GenericCallback< const Slider &, int > * newValueCallback

The new value callback (called when the indicator is moved)

sliderOrientation
SliderOrientation sliderOrientation

The selected slider orientation.

startValueCallback
GenericCallback< const Slider &, int > * startValueCallback

The start value callback (called when an interaction with the indicator is initiated)

stopValueCallback
GenericCallback< const Slider &, int > * stopValueCallback

The stop value callback (called when an interaction with the indicator ends)

valueRangeMax
int valueRangeMax

The value range max.

valueRangeMin
int valueRangeMin

The value range min.

Version: 4.16

SlideTransition
A Transition that slides from one screen to the next. It does so by moving a SnapShotWidget with a
snapshot of the Screen transitioning away from, and by moving the contents of Screen transitioning
to.

See: Transition

Inherits from: Transition

Public Functions
virtual void handleTickEvent()

Handles the tick event when transitioning.

virtual void init()
Initializes the transition.

SlideTransition(const uint8_t transitionSteps =20)
Initializes a new instance of the SlideTransition class.

virtual void tearDown()
Tears down the Animation.

Protected Functions
virtual void initMoveDrawable(Drawable & d)

Moves the Drawable to its initial position, just outside the actual display.

virtual void tickMoveDrawable(Drawable & d)
Moves the Drawable.

Protected Attributes
SnapshotWidget snapshot

The SnapshotWidget that is moved when transitioning.

SnapshotWidget * snapshotPtr
Pointer pointing to the snapshot used in this transition.The snapshot pointer.

Additional inherited members
Public Functions inherited from Transition

virtual void invalidate()
Invalidates the screen when starting the Transition.

bool isDone() const
Query if the transition is done transitioning.

virtual void setScreenContainer(Container & cont)
Sets the ScreenContainer.

Transition()
Initializes a new instance of the Transition class.

virtual ~Transition()
Finalizes an instance of the Transition class.

Protected Attributes inherited from Transition
bool done

Flag that indicates when the transition is done. This should be set by implementing
classes.

Container * screenContainer
The screen Container of the Screen transitioning to.

Public Functions Documentation
handleTickEvent

virtual void handleTickEvent ()

Handles the tick event when transitioning.

It moves the contents of the Screen's container and a SnapshotWidget with a snapshot of the
previous Screen. The direction of the transition determines the direction the contents of the
container and the SnapshotWidget moves.

Reimplements: touchgfx::Transition::handleTickEvent

init
virtual void init ()

Initializes the transition.

Called after the constructor is called, when the application changes the transition.

Reimplements: touchgfx::Transition::init

SlideTransition
SlideTransition (const uint8_t transitionSteps =20)

Initializes a new instance of the SlideTransition class.

Parameters:
transitionSteps (Optional) Number of steps (ticks) in the transition animation, default is 20.

tearDown
virtual void tearDown ()

Tears down the Animation.

Called before the destructor is called, when the application changes the transition.

Reimplements: touchgfx::Transition::tearDown

Protected Functions Documentation
initMoveDrawable

virtual void initMoveDrawable (Drawable & d)

Moves the Drawable to its initial position, just outside the actual display.

Parameters:
d The Drawable to move.

tickMoveDrawable
virtual void tickMoveDrawable (Drawable & d)

Moves the Drawable.

Parameters:
d The Drawable to move.

Protected Attributes Documentation
snapshot

SnapshotWidget snapshot

The SnapshotWidget that is moved when transitioning.

snapshotPtr
SnapshotWidget * snapshotPtr

Pointer pointing to the snapshot used in this transition.The snapshot pointer.

Version: 4.16

Snapper
A mix-in that will make class T draggable and able to snap to a position when a drag operation has
ended. The mix-in is able to perform callbacks when the snapper gets dragged and when the Snapper
snaps to its snap position.

Template Parameters:

T specifies the type to enable the Snap behavior to.

See: Draggable<T>

Inherits from: touchgfx::Draggable< T >, T

Public Functions
virtual void handleClickEvent(const ClickEvent & evt)

Handles the click events when the Snapper is clicked.

virtual void handleDragEvent(const DragEvent & evt)
Called when dragging the Draggable object.

void setDragAction(GenericCallback< const DragEvent & > & callback)
Associates an action to be performed when the Snapper is dragged.

void setSnappedAction(GenericCallback<> & callback)
Associates an action to be performed when the Snapper is snapped.

void setSnapPosition(int16_t x, int16_t y)
Sets the position the Snapper should snap to.

Snapper()

Additional inherited members
Public Functions inherited from touchgfx::Draggable< T >

Draggable()
Initializes a new instance of the Draggable class.

Public Functions Documentation
handleClickEvent

virtual void handleClickEvent (const ClickEvent & evt)

Handles the click events when the Snapper is clicked.

It saves its current position as the snap position if the Snapper is pressed. This happens when the
drag operation starts.

The snapper will then move to the snap position when the click is released. This happens when the
drag operation ends.

Parameters:
evt The click event.

handleDragEvent
virtual void handleDragEvent (const DragEvent & evt)

Called when dragging the Draggable object.

The object is moved according to the drag event.

Parameters:
evt The drag event.

Reimplements: touchgfx::Draggable::handleDragEvent

setDragAction
void setDragAction (GenericCallback< const DragEvent & > & callback)

Associates an action to be performed when the Snapper is dragged.

Parameters:
callback The callback will be executed with the DragEvent.

See also:

GenericCallback

setSnappedAction
void setSnappedAction (GenericCallback<> & callback)

Associates an action to be performed when the Snapper is snapped.

Parameters:
callback The callback to be executed on snap.

See also:

GenericCallback

setSnapPosition
void setSnapPosition (int16_t x ,

int16_t y
)

Sets the position the Snapper should snap to.

This position will be overridden with the Snappers current position when the Snapper is pressed.

Parameters:
x The x coordinate.
y The y coordinate.

Snapper
Snapper ()

Version: 4.16

SnapshotWidget
A widget that is able to make a snapshot of the area the SnapshotWidget covers into either a Bitmap
or into animation storage (if this available). Once the snapshot has been taken using
SnapshowWidget::makeSnapshot(), the SnapshotWidget will show the captured snapshot when it is
subsequently drawn.

Inherits from: Widget, Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void makeSnapshot()
Makes a snapshot of the area the SnapshotWidget currently covers.

virtual void makeSnapshot(const BitmapId bmp)
Makes a snapshot of the area the SnapshotWidget currently covers.

void setAlpha(const uint8_t newAlpha)
Sets the opacity (alpha value).

SnapshotWidget()

Protected Attributes
uint8_t alpha

The alpha with which to draw this snapshot.

BitmapId bitmapId

BitmapId where copy is stored s copied to.

Additional inherited members
Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const

Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const

Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Drawable::draw

getAlpha
uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getSolidRect
virtual Rect getSolidRect () const

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

This information is important, as any Drawable underneath the solid area does not need to be
drawn.

Returns:

The solid rectangle part of the Drawable.

NOTE

The rectangle returned must be relative to upper left corner of the Drawable, meaning that a completely
solid widget should return the full size Rect(0, 0, getWidth(), getHeight()). If no area can be guaranteed to
be solid, an empty Rect(0, 0, 0, 0) must be returned. Failing to return the correct rectangle may result in
errors on the display.

Reimplements: touchgfx::Drawable::getSolidRect

makeSnapshot
virtual void makeSnapshot ()

Makes a snapshot of the area the SnapshotWidget currently covers.

This area is defined by setting the dimensions and the position of the SnapshotWidget. The
snapshot is stored in Animation Storage.

See also:

setPosition

makeSnapshot
virtual void makeSnapshot (const BitmapId bmp)

Makes a snapshot of the area the SnapshotWidget currently covers.

This area is defined by setting the dimensions and the position of the SnapshotWidget. The
snapshot is stored in the provided dynamic bitmap. The format of the Bitmap must match the
format of the display.

Parameters:
bmp The target dynamic bitmap.

setAlpha
void setAlpha (const uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

SnapshotWidget
SnapshotWidget ()

Protected Attributes Documentation
alpha

uint8_t alpha

The alpha with which to draw this snapshot.

bitmapId
BitmapId bitmapId

BitmapId where copy is stored s copied to.

Version: 4.16

StringVisuals
The visual elements when writing a string.

Public Functions
StringVisuals()
Initializes a new instance of the LCD class.

StringVisuals(const Font * font, colortype color, uint8_t alpha, Alignment alignment, int16_t
linespace, TextRotation rotation, TextDirection textDirection, uint8_t indentation, WideTextAction
wideTextAction =WIDE_TEXT_NONE)
Construct a StringVisual object for rendering text.

Public Attributes
Alignment alignment

The alignment to use. Default is LEFT.

uint8_t alpha
8-bit alpha value. Default is 255 (solid).

colortype color
RGB color value. Default is 0 (black).

const Font * font
The font to use.

uint8_t indentation
Indentation of text inside rectangle. Text will start this far from the left/right edge.

int16_t linespace
Line space in pixels for multiline strings. Default is 0.

TextRotation rotation
Orientation (rotation) of the text. Default is TEXT_ROTATE_0.

TextDirection textDirection

The direction to use. Default is LTR.

WideTextAction wideTextAction
What to do with wide text lines.

Public Functions Documentation
StringVisuals

StringVisuals ()

Initializes a new instance of the LCD class.

StringVisuals
StringVisuals (const Font * font ,

colortype color ,
uint8_t alpha ,
Alignment alignment ,
int16_t linespace ,
TextRotation rotation ,
TextDirection textDirection ,
uint8_t indentation ,
WideTextAction wideTextAction =WIDE_TEXT_NONE
)

Construct a StringVisual object for rendering text.

Parameters:
font The Font with which to draw the text.
color The color with which to draw the text.
alpha Alpha blending. Default value is 255 (solid)
alignment How to align the text.
linespace Line space in pixels between each line, in case the text contains newline

characters.
rotation How to rotate the text.
textDirection The text direction.
indentation The indentation of the text from the left and right of the text area rectangle.
wideTextAction (Optional) What to do with lines longer than the width of the TextArea.

Public Attributes Documentation
alignment

Alignment alignment

The alignment to use. Default is LEFT.

alpha
uint8_t alpha

8-bit alpha value. Default is 255 (solid).

color
colortype color

RGB color value. Default is 0 (black).

font
const Font * font

The font to use.

indentation
uint8_t indentation

Indentation of text inside rectangle. Text will start this far from the left/right edge.

linespace
int16_t linespace

Line space in pixels for multiline strings. Default is 0.

rotation
TextRotation rotation

Orientation (rotation) of the text. Default is TEXT_ROTATE_0.

textDirection
TextDirection textDirection

The direction to use. Default is LTR.

wideTextAction
WideTextAction wideTextAction

What to do with wide text lines.

Version: 4.16

SwipeContainer
A SwipeContainer is a Container with a horizontally laid out list of identically sized Drawables. The
bottom of the SwipeContainer shows a page indicator to indicate the position in the horizontal list of
items in the SwipeContainer.

See: ListLayout

Inherits from: Container, Drawable

Public Functions
virtual void add(Drawable & page)

Adds a page to the container.

uint8_t getNumberOfPages()
Gets number of pages.

uint8_t getSelectedPage() const
Gets the currently selected page.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to timer
ticks.

virtual void remove(Drawable & page)
Removes the page from the container.

void setEndSwipeElasticWidth(uint16_t width)
When dragging either one of the end pages a part of the background will become
visible until the user stop dragging and the end page swipes back to its position.

void setPageIndicatorBitmaps(const Bitmap & normalPage, const Bitmap &
highlightedPage)
Sets the bitmaps that are used by the page indicator.

void setPageIndicatorXY(int16_t x, int16_t y)
Sets the x and y position of the page indicator.

void setPageIndicatorXYWithCenteredX(int16_t x, int16_t y)
Sets the x and y position of the page indicator.

void setSelectedPage(uint8_t pageIndex)
Sets the selected page.

virtual void setSwipeCutoff(uint16_t cutoff)
Set the swipe cutoff which indicates how far you should drag a page before it results in a
page change.

SwipeContainer()

virtual ~SwipeContainer()

Additional inherited members
Public Functions inherited from Container

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const

Gets the y coordinate of this Drawable, relative to its parent.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
add

virtual void add (Drawable & page)

Adds a page to the container.

Parameters:
page The page to add.

NOTE

All pages must have the same width and height.

Reimplements: touchgfx::Container::add

getNumberOfPages
uint8_t getNumberOfPages ()

Gets number of pages.

Returns:

The number of pages.

getSelectedPage
uint8_t getSelectedPage () const

Gets the currently selected page.

Returns:

Zero-based index of the current page. Rage from 0 to numberOfPages-1.

See also:

setSelectedPage

handleClickEvent
virtual void handleClickEvent (const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

The default implementation ignores the event. The event is only received if the Drawable is
touchable and visible.

Parameters:
evt The ClickEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleClickEvent

handleDragEvent
virtual void handleDragEvent (const DragEvent & evt)

Defines the event handler interface for DragEvents.

The default implementation ignores the event. The event is only received if the drawable is
touchable and visible.

Parameters:
evt The DragEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleDragEvent

handleGestureEvent
virtual void handleGestureEvent (const GestureEvent & evt)

Defines the event handler interface for GestureEvents.

The default implementation ignores the event. The event is only received if the Drawable is
touchable and visible.

Parameters:
evt The GestureEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleGestureEvent

handleTickEvent
virtual void handleTickEvent ()

Called periodically by the framework if the Drawable instance has subscribed to timer ticks.

See also:

Application::registerTimerWidget

Reimplements: touchgfx::Drawable::handleTickEvent

remove
virtual void remove (Drawable & page)

Removes the page from the container.

Parameters:
page The page to remove.

NOTE

This is safe to call even if page is not a page (in which case nothing happens).

Reimplements: touchgfx::Container::remove

setEndSwipeElasticWidth
void setEndSwipeElasticWidth (uint16_t width)

When dragging either one of the end pages a part of the background will become visible until the
user stop dragging and the end page swipes back to its position.

The width of this area is set by this method.

Parameters:
width The width in pixels.

setPageIndicatorBitmaps
void setPageIndicatorBitmaps (const Bitmap & normalPage ,

const Bitmap & highlightedPage

)

Sets the bitmaps that are used by the page indicator.

The bitmap for the normal page is repeated side-by-side and the bitmap for a highlighted page is
put in the proper position.

Parameters:
normalPage The normal page.
highlightedPage The highlighted page.

setPageIndicatorXY
void setPageIndicatorXY (int16_t x ,

int16_t y
)

Sets the x and y position of the page indicator.

Parameters:
x The x coordinate.
y The y coordinate.

See also:

setPageIndicatorXYWithCenteredX

setPageIndicatorXYWithCenteredX
void setPageIndicatorXYWithCenteredX (int16_t x ,

int16_t y
)

Sets the x and y position of the page indicator.

The value specified as x will be the center coordinate of the page indicators.

Parameters:
x The center x coordinate.
y The y coordinate.

NOTE

This method should not be used until all pages have been added, the setPageIndicatorBitmaps() has been
called and the page indicator therefore has the correct width.

setSelectedPage
void setSelectedPage (uint8_t pageIndex)

Sets the selected page.

Parameters:
pageIndex Zero-based index of the page. Range from 0 to numberOfPages-1.

See also:

getSelectedPage

setSwipeCutoff
virtual void setSwipeCutoff (uint16_t cutoff)

Set the swipe cutoff which indicates how far you should drag a page before it results in a page
change.

Parameters:
cutoff The cutoff in pixels.

SwipeContainer
SwipeContainer ()

~SwipeContainer
virtual ~SwipeContainer ()

Version: 4.16

TextArea
This widget is capable of showing a text area on the screen. The text must be a predefined TypedText
in the text sheet in the assets folder. In order to display a dynamic text, use TextAreaWithOneWildcard
or TextAreaWithTwoWildcards.

See: TypedText, TextAreaWithOneWildcard, TextAreaWithTwoWildcards

Note: A TextArea just holds a pointer to the text displayed. The developer must ensure that the pointer
remains valid when drawing.

Inherits from: Widget, Drawable

Inherited by: TextAreaWithOneWildcard, TextAreaWithTwoWildcards

Public Functions
virtual int16_t calculateTextHeight(const Unicode::UnicodeChar * format,

...) const
Gets the total height needed by the text.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

FORCE_INLINE_FUNCTION colortype getColor() const
Gets the color of the text.

FORCE_INLINE_FUNCTION uint8_t getIndentation()
Gets the indentation of text inside the TextArea.

FORCE_INLINE_FUNCTION int16_t getLinespacing() const
Gets the line spacing of the TextArea.

TextRotation getRotation() const
Gets rotation of the text in the TextArea.

virtual Rect getSolidRect() const

Get (the largest possible) rectangle that is guaranteed to be
solid (opaque).

virtual int16_t getTextHeight()
Gets the total height needed by the text, taking number of
lines and line spacing into consideration.

virtual uint16_t getTextWidth() const
Gets the width in pixels of the current associated text in the
current selected language.

TypedText getTypedText() const
Gets the TypedText of the text area.

WideTextAction getWideTextAction() const
Gets wide text action previously set using setWideTextAction.

void resizeHeightToCurrentText()
Sets the height of the TextArea to match the height of the
current associated text for the current selected language.

void resizeHeightToCurrentTextWithRotation()
Sets the height of the TextArea to match the height of the
current associated text for the current selected language.

void resizeToCurrentText()
Sets the dimensions of the TextArea to match the width and
height of the current associated text for the current selected
language.

void resizeToCurrentTextWithAlignment()
Sets the dimensions of the TextArea to match the width and
height of the current associated text for the current selected
language, and for centered and right aligned text, the position
of the TextArea widget is also updated to keep the text in the
same position on the display.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setBaselineY(int16_t baselineY)
Adjusts the TextArea y coordinate so the text will have its
baseline at the specified value.

FORCE_INLINE_FUNCTION void setColor(colortype color)

Sets the color of the text.

FORCE_INLINE_FUNCTION void setIndentation(uint8_t indent)
Sets the indentation for the text.

FORCE_INLINE_FUNCTION void setLinespacing(int16_t space)
Sets the line spacing of the TextArea.

void setRotation(const TextRotation rotation)
Sets rotation of the text in the TextArea.

void setTypedText(TypedText t)
Sets the TypedText of the text area.

void setWideTextAction(WideTextAction action)
Defines what to do if a line of text is wider than the text area.

virtual void setXBaselineY(int16_t x, int16_t baselineY)
Adjusts the TextArea x and y coordinates so the text will have
its baseline at the specified y value.

TextArea()

Protected Attributes
uint8_t alpha

The alpha to use.

colortype color
The color to use for the text.

uint8_t indentation
The indentation of the text inside the text area.

int16_t linespace
The extra space between lines of text, measured in pixels.

TextRotation rotation
The text rotation to use in steps of 90 degrees.

TypedText typedText

The TypedText to display.

WideTextAction wideTextAction
What to do if the lines of text are wider than the text area.

Additional inherited members
Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()

Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const

Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
calculateTextHeight

virtual int16_t calculateTextHeight (const Unicode::UnicodeChar * format , const
... const
) const

Gets the total height needed by the text.

Determined by number of lines and linespace. The number of parameters passed after the format,
must match the number of wildcards in the TypedText.

Parameters:
format The text containing <placeholder> wildcards.
... Variable arguments providing additional information.

Returns:

the total height needed by the text.

draw
virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Drawable::draw

Reimplemented by: touchgfx::TextAreaWithOneWildcard::draw,
touchgfx::TextAreaWithTwoWildcards::draw

getAlpha
uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getColor
FORCE_INLINE_FUNCTION colortype getColor () const

Gets the color of the text.

If no color has been set, the default color, black, is returned.

Returns:

The color to used for drawing the text.

getIndentation
FORCE_INLINE_FUNCTION uint8_t getIndentation ()

Gets the indentation of text inside the TextArea.

Returns:

The indentation.

See also:

setIndentation

getLinespacing
FORCE_INLINE_FUNCTION int16_t getLinespacing () const

Gets the line spacing of the TextArea.

If no line spacing has been set, the line spacing is 0.

Returns:

The line spacing.

See also:

setLinespacing

getRotation
TextRotation getRotation () const

Gets rotation of the text in the TextArea.

Returns:

The rotation of the text.

See also:

setRotation

getSolidRect
virtual Rect getSolidRect () const

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

This information is important, as any Drawable underneath the solid area does not need to be
drawn.

Returns:

The solid rectangle part of the Drawable.

NOTE

The rectangle returned must be relative to upper left corner of the Drawable, meaning that a completely
solid widget should return the full size Rect(0, 0, getWidth(), getHeight()). If no area can be guaranteed to
be solid, an empty Rect(0, 0, 0, 0) must be returned. Failing to return the correct rectangle may result in
errors on the display.

Reimplements: touchgfx::Drawable::getSolidRect

getTextHeight
virtual int16_t getTextHeight ()

Gets the total height needed by the text, taking number of lines and line spacing into
consideration.

Returns:

the total height needed by the text.

Reimplemented by: touchgfx::TextAreaWithOneWildcard::getTextHeight,
touchgfx::TextAreaWithTwoWildcards::getTextHeight

getTextWidth
virtual uint16_t getTextWidth () const

Gets the width in pixels of the current associated text in the current selected language.

In case of multi-lined text the width of the widest line is returned.

Returns:

The width in pixels of the current text.

Reimplemented by: touchgfx::TextAreaWithOneWildcard::getTextWidth,
touchgfx::TextAreaWithTwoWildcards::getTextWidth

getTypedText
TypedText getTypedText () const

Gets the TypedText of the text area.

Returns:

The currently used TypedText.

getWideTextAction
WideTextAction getWideTextAction () const

Gets wide text action previously set using setWideTextAction.

Returns:

current WideTextAction setting.

See also:

setWideTextAction, WideTextAction

resizeHeightToCurrentText

void resizeHeightToCurrentText ()

Sets the height of the TextArea to match the height of the current associated text for the current
selected language.

This is especially useful for texts with WordWrap enabled.

NOTE

If the current text rotation is either 90 or 270 degrees, the width of the text area will be set and not the
height, as the text is rotated. If the current text is rotated, the x/y coordinate is not updated, which means
that the text will be repositioned on the display.

See also:

resizeToCurrentText, setWideTextAction, setRotation,
resizeHeightToCurrentTextWithRotation

resizeHeightToCurrentTextWithRotation
void resizeHeightToCurrentTextWithRotation ()

Sets the height of the TextArea to match the height of the current associated text for the current
selected language.

This is especially useful for texts with WordWrap enabled.

NOTE

If the current text rotation is either 90 or 270 degrees, the width of the text area will be set and not the
height, as the text is rotated. Also, the x or y coordinates will be updated.

See also:

resizeToCurrentText, setWideTextAction, setRotation, resizeHeightToCurrentText

resizeToCurrentText
void resizeToCurrentText ()

Sets the dimensions of the TextArea to match the width and height of the current associated text
for the current selected language.

If WordWrap is turned on for the TextArea, the height might be set to an unexpected value, as only
manually insert line breaks in the text will be respected - use resizeHeightToCurrentText() to keep

the width of the TextArea and therefore retain word wrapping.

If the text is centered or right aligned, calling resizeToCurrentText() will actually move the text on
the screen, as the x and y coordinates of the TextArea widget is not changed. To simply minimize
the size of the TextArea but keep the TypedText in the same position on the screen, use
resizeToCurrentTextWithAlignment(). This is also the case if the text is rotated, e.g. 180 degrees.

NOTE

If the current text rotation is either 90 or 270 degrees, the width of the text area will be set to the height of
the text and vice versa, as the text is rotated.

See also:

setRotation, resizeHeightToCurrentText

resizeToCurrentTextWithAlignment
void resizeToCurrentTextWithAlignment ()

Sets the dimensions of the TextArea to match the width and height of the current associated text
for the current selected language, and for centered and right aligned text, the position of the
TextArea widget is also updated to keep the text in the same position on the display.

Text that is rotated is also handled properly.

NOTE

If the current text rotation is either 90 or 270 degrees, the width of the text area will be set to the height of
the text and vice versa, as the text is rotated.

See also:

setRotation, resizeHeightToCurrentText

setAlpha
void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:

newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setBaselineY
virtual void setBaselineY (int16_t baselineY)

Adjusts the TextArea y coordinate so the text will have its baseline at the specified value.

The placements is relative to the specified TypedText so if the TypedText is changed, you have to
set the baseline again.

Parameters:
baselineY The y coordinate of the baseline of the text.

NOTE

setTypedText() must be called prior to setting the baseline.

setColor
FORCE_INLINE_FUNCTION void setColor (colortype color)

Sets the color of the text.

If no color is set, the default color (black) is used.

Parameters:
color The color to use.

setIndentation
FORCE_INLINE_FUNCTION void setIndentation (uint8_t indent)

Sets the indentation for the text.

This can be very useful when a font is an italic font where letters such as "j" and "g" extend a lot to
the left under the previous character(s). if a line starts with a "j" or "g" this letter would either have
to be pushed to the right to be able to see all of it, e.g. using spaces (which would ruin a multi line
text which is left aligned) - or by clipping the first letter (which could ruin the nice graphics). The
solution is to change

to

Characters that do not extend to the left under the previous characters will be drawn in the same
position in either case, but "j" and "g" will be aligned with other lines.

The function Font::getMaxPixelsLeft() will give you the maximum number of pixels any glyph in
the font extends to the left.

Parameters:
indent The indentation from left (when left aligned text) and right (when right aligned text).

See also:

Font::getMaxPixelsLeft

setLinespacing
FORCE_INLINE_FUNCTION void setLinespacing (int16_t space)

Sets the line spacing of the TextArea.

Setting a larger value will increase the space between lines. It is possible to set a negative value to
have lines (partially) overlap. Default line spacing, if not set, is 0.

Parameters:
space The line spacing of use in the TextArea.

See also:

getLinespacing

textarea.setPosition(50, 50, 100, 100);

textarea.setPosition(45, 50, 110, 100);
textarea.setIndentation(5);

setRotation
void setRotation (const TextRotation rotation)

Sets rotation of the text in the TextArea.

The value TEXT_ROTATE_0 is the default for normal text. The value TEXT_ROTATE_90 will rotate the
text clockwise, thus writing from the top of the display and down. Similarly TEXT_ROTATE_180 and
TEXT_ROTATE_270 will each rotate the text further 90 degrees clockwise.

Parameters:
rotation The rotation of the text.

setTypedText
void setTypedText (TypedText t)

Sets the TypedText of the text area.

If no prior size has been set, the TextArea will be resized to fit the new TypedText.

Parameters:
t The TypedText for this widget to display.

See also:

resizeToCurrentText

setWideTextAction
void setWideTextAction (WideTextAction action)

Defines what to do if a line of text is wider than the text area.

Default action is WIDE_TEXT_NONE which means that text lines are only broken if there is a
manually inserted newline in the text.

If wrapping is enabled and the text would occupy more lines than the size of the TextArea, the end
of the last line will get an ellipsis (often) to signal that some text is missing. The character used for
ellipsis is taken from the text spreadsheet.

Parameters:
action The action to perform for wide lines of text.

See also:

WideTextAction, getWideTextAction, resizeHeightToCurrentText

setXBaselineY
virtual void setXBaselineY (int16_t x ,

int16_t baselineY
)

Adjusts the TextArea x and y coordinates so the text will have its baseline at the specified y value.

The placements is relative to the specified TypedText so if the TypedText is changed you have to
set the baseline again. The specified x coordinate will be used as the x coordinate of the TextArea.

Parameters:
x The x coordinate of the TextArea.
baselineY The y coordinate of the baseline of the text.

NOTE

setTypedText() must be called prior to setting the baseline.

TextArea
TextArea ()

Protected Attributes Documentation
alpha

uint8_t alpha

The alpha to use.

color
colortype color

The color to use for the text.

indentation
uint8_t indentation

The indentation of the text inside the text area.

linespace
int16_t linespace

The extra space between lines of text, measured in pixels.

rotation
TextRotation rotation

The text rotation to use in steps of 90 degrees.

typedText
TypedText typedText

The TypedText to display.

wideTextAction
WideTextAction wideTextAction

What to do if the lines of text are wider than the text area.

Version: 4.16

TextAreaWithOneWildcard
TextArea with one wildcard. The format string (i.e. the TypedText set in setTypedText()) is expected to
contain a wildcard <placeholder> from the text.

Note: the text converter tool converts the <...> to ascii value 2 which is then being replaced by a
wildcard text.

Inherits from: TextArea, Widget, Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

virtual int16_t getTextHeight()
Gets the total height needed by the text, taking number of lines and
line spacing into consideration.

virtual uint16_t getTextWidth() const
Gets the width in pixels of the current associated text in the current
selected language.

const Unicode::UnicodeChar * getWildcard() const
Gets the wildcard used in the TypedText as previously set using
setWildcard().

void setWildcard(const Unicode::UnicodeChar * value)
Sets the wildcard used in the TypedText where <placeholder> is
placed.

TextAreaWithOneWildcard()

Protected Attributes
const Unicode::UnicodeChar * wildcard

Pointer to the wildcard string. Must be null-terminated.

Additional inherited members
Public Functions inherited from TextArea

virtual int16_t calculateTextHeight(const Unicode::UnicodeChar * format,
...) const
Gets the total height needed by the text.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

FORCE_INLINE_FUNCTION colortype getColor() const
Gets the color of the text.

FORCE_INLINE_FUNCTION uint8_t getIndentation()
Gets the indentation of text inside the TextArea.

FORCE_INLINE_FUNCTION int16_t getLinespacing() const
Gets the line spacing of the TextArea.

TextRotation getRotation() const
Gets rotation of the text in the TextArea.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be
solid (opaque).

TypedText getTypedText() const
Gets the TypedText of the text area.

WideTextAction getWideTextAction() const
Gets wide text action previously set using setWideTextAction.

void resizeHeightToCurrentText()
Sets the height of the TextArea to match the height of the
current associated text for the current selected language.

void resizeHeightToCurrentTextWithRotation()
Sets the height of the TextArea to match the height of the
current associated text for the current selected language.

void resizeToCurrentText()

Sets the dimensions of the TextArea to match the width and
height of the current associated text for the current selected
language.

void resizeToCurrentTextWithAlignment()
Sets the dimensions of the TextArea to match the width and
height of the current associated text for the current selected
language, and for centered and right aligned text, the position
of the TextArea widget is also updated to keep the text in the
same position on the display.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setBaselineY(int16_t baselineY)
Adjusts the TextArea y coordinate so the text will have its
baseline at the specified value.

FORCE_INLINE_FUNCTION void setColor(colortype color)
Sets the color of the text.

FORCE_INLINE_FUNCTION void setIndentation(uint8_t indent)
Sets the indentation for the text.

FORCE_INLINE_FUNCTION void setLinespacing(int16_t space)
Sets the line spacing of the TextArea.

void setRotation(const TextRotation rotation)
Sets rotation of the text in the TextArea.

void setTypedText(TypedText t)
Sets the TypedText of the text area.

void setWideTextAction(WideTextAction action)
Defines what to do if a line of text is wider than the text area.

virtual void setXBaselineY(int16_t x, int16_t baselineY)
Adjusts the TextArea x and y coordinates so the text will have
its baseline at the specified y value.

TextArea()

Protected Attributes inherited from TextArea

uint8_t alpha
The alpha to use.

colortype color
The color to use for the text.

uint8_t indentation
The indentation of the text inside the text area.

int16_t linespace
The extra space between lines of text, measured in pixels.

TextRotation rotation
The text rotation to use in steps of 90 degrees.

TypedText typedText
The TypedText to display.

WideTextAction wideTextAction
What to do if the lines of text are wider than the text area.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const

Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)

Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent

Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::TextArea::draw

getTextHeight
virtual int16_t getTextHeight ()

Gets the total height needed by the text, taking number of lines and line spacing into
consideration.

Returns:

the total height needed by the text.

Reimplements: touchgfx::TextArea::getTextHeight

getTextWidth
virtual uint16_t getTextWidth () const

Gets the width in pixels of the current associated text in the current selected language.

In case of multi-lined text the width of the widest line is returned.

Returns:

The width in pixels of the current text.

Reimplements: touchgfx::TextArea::getTextWidth

getWildcard
const Unicode::UnicodeChar * getWildcard () const

Gets the wildcard used in the TypedText as previously set using setWildcard().

Returns:

The wildcard used in the text.

setWildcard
void setWildcard (const Unicode::UnicodeChar * value)

Sets the wildcard used in the TypedText where <placeholder> is placed.

Wildcard string must be a null-terminated UnicodeChar array.

Parameters:
value A pointer to the UnicodeChar to set the wildcard to.

NOTE

The pointer passed is saved, and must be accessible whenever TextAreaWithOneWildcard may need it.

TextAreaWithOneWildcard
TextAreaWithOneWildcard ()

Protected Attributes Documentation
wildcard

const Unicode::UnicodeChar * wildcard

Pointer to the wildcard string. Must be null-terminated.

Version: 4.16

TextAreaWithTwoWildcards
TextArea with two wildcards. The format string (i.e. the TypedText set in setTypedText()) is expected to
contain two wildcards <placeholders> from the text.

Note: the text converter tool converts the <...> to ascii value 2 which is what is being replaced by a
wildcard text.

Inherits from: TextArea, Widget, Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

virtual int16_t getTextHeight()
Gets the total height needed by the text, taking number of lines and
line spacing into consideration.

virtual uint16_t getTextWidth() const
Gets the width in pixels of the current associated text in the current
selected language.

const Unicode::UnicodeChar * getWildcard1() const
Gets the first wildcard used in the TypedText as previously set using
setWildcard1().

const Unicode::UnicodeChar * getWildcard2() const
Gets the second wildcard used in the TypedText as previously set
using setWildcard1().

void setWildcard1(const Unicode::UnicodeChar * value)
Sets the wildcard used in the TypedText where first <placeholder> is
placed.

void setWildcard2(const Unicode::UnicodeChar * value)
Sets the wildcard used in the TypedText where second
<placeholder> is placed.

TextAreaWithTwoWildcards()

Protected Attributes
const Unicode::UnicodeChar * wc1

Pointer to the first wildcard string. Must be null-terminated.

const Unicode::UnicodeChar * wc2
Pointer to the second wildcard string. Must be null-terminated.

Additional inherited members
Public Functions inherited from TextArea

virtual int16_t calculateTextHeight(const Unicode::UnicodeChar * format,
...) const
Gets the total height needed by the text.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

FORCE_INLINE_FUNCTION colortype getColor() const
Gets the color of the text.

FORCE_INLINE_FUNCTION uint8_t getIndentation()
Gets the indentation of text inside the TextArea.

FORCE_INLINE_FUNCTION int16_t getLinespacing() const
Gets the line spacing of the TextArea.

TextRotation getRotation() const
Gets rotation of the text in the TextArea.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be
solid (opaque).

TypedText getTypedText() const
Gets the TypedText of the text area.

WideTextAction getWideTextAction() const
Gets wide text action previously set using setWideTextAction.

void resizeHeightToCurrentText()
Sets the height of the TextArea to match the height of the
current associated text for the current selected language.

void resizeHeightToCurrentTextWithRotation()
Sets the height of the TextArea to match the height of the
current associated text for the current selected language.

void resizeToCurrentText()
Sets the dimensions of the TextArea to match the width and
height of the current associated text for the current selected
language.

void resizeToCurrentTextWithAlignment()
Sets the dimensions of the TextArea to match the width and
height of the current associated text for the current selected
language, and for centered and right aligned text, the position
of the TextArea widget is also updated to keep the text in the
same position on the display.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setBaselineY(int16_t baselineY)
Adjusts the TextArea y coordinate so the text will have its
baseline at the specified value.

FORCE_INLINE_FUNCTION void setColor(colortype color)
Sets the color of the text.

FORCE_INLINE_FUNCTION void setIndentation(uint8_t indent)
Sets the indentation for the text.

FORCE_INLINE_FUNCTION void setLinespacing(int16_t space)
Sets the line spacing of the TextArea.

void setRotation(const TextRotation rotation)
Sets rotation of the text in the TextArea.

void setTypedText(TypedText t)
Sets the TypedText of the text area.

void setWideTextAction(WideTextAction action)
Defines what to do if a line of text is wider than the text area.

virtual void setXBaselineY(int16_t x, int16_t baselineY)
Adjusts the TextArea x and y coordinates so the text will have
its baseline at the specified y value.

TextArea()

Protected Attributes inherited from TextArea
uint8_t alpha

The alpha to use.

colortype color
The color to use for the text.

uint8_t indentation
The indentation of the text inside the text area.

int16_t linespace
The extra space between lines of text, measured in pixels.

TextRotation rotation
The text rotation to use in steps of 90 degrees.

TypedText typedText
The TypedText to display.

WideTextAction wideTextAction
What to do if the lines of text are wider than the text area.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::TextArea::draw

getTextHeight

virtual int16_t getTextHeight ()

Gets the total height needed by the text, taking number of lines and line spacing into
consideration.

Returns:

the total height needed by the text.

Reimplements: touchgfx::TextArea::getTextHeight

getTextWidth
virtual uint16_t getTextWidth () const

Gets the width in pixels of the current associated text in the current selected language.

In case of multi-lined text the width of the widest line is returned.

Returns:

The width in pixels of the current text.

Reimplements: touchgfx::TextArea::getTextWidth

getWildcard1
const Unicode::UnicodeChar * getWildcard1 () const

Gets the first wildcard used in the TypedText as previously set using setWildcard1().

Returns:

The first wildcard used in the text.

getWildcard2
const Unicode::UnicodeChar * getWildcard2 () const

Gets the second wildcard used in the TypedText as previously set using setWildcard1().

Returns:

The second wildcard used in the text.

setWildcard1
void setWildcard1 (const Unicode::UnicodeChar * value)

Sets the wildcard used in the TypedText where first <placeholder> is placed.

Wildcard string must be a null-terminated UnicodeChar array.

Parameters:
value A pointer to the UnicodeChar to set the wildcard to.

NOTE

The pointer passed is saved, and must be accessible whenever TextAreaWithTwoWildcard may need it.

setWildcard2
void setWildcard2 (const Unicode::UnicodeChar * value)

Sets the wildcard used in the TypedText where second <placeholder> is placed.

Wildcard string must be a null-terminated UnicodeChar array.

Parameters:
value A pointer to the UnicodeChar to set the wildcard to.

NOTE

The pointer passed is saved, and must be accessible whenever TextAreaWithTwoWildcard may need it.

TextAreaWithTwoWildcards
TextAreaWithTwoWildcards ()

Protected Attributes Documentation
wc1

const Unicode::UnicodeChar * wc1

Pointer to the first wildcard string. Must be null-terminated.

wc2
const Unicode::UnicodeChar * wc2

Pointer to the second wildcard string. Must be null-terminated.

Version: 4.16

TextButtonStyle
A text button style. This class is supposed to be used with one of the ButtonTrigger classes to create a
functional button. This class will show a text in one of two colors depending on the state of the button
(pressed or released).

The TextButtonStyle does not set the size of the enclosing container (normally
AbstractButtonContainer). The size must be set manually.

To get a background behind the text, use TextButtonStyle together with e.g. ImageButtonStyle:
TextButtonStyle<ImageButtonStyle<ClickButtonTrigger> > myButton;

The position of the text can be adjusted with setTextXY (default is centered).

See: AbstractButtonContainer

Inherits from: T

Public Functions
void setText(TypedText t)

Sets a text.

void setTextColors(colortype newColorReleased, colortype newColorPressed)
Sets text colors.

void setTextPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets text position.

void setTextRotation(TextRotation rotation)
Sets text rotation.

void setTextX(int16_t x)
Sets text x coordinate.

void setTextXY(int16_t x, int16_t y)
Sets text x and y.

void setTextY(int16_t y)
Sets text y coordinate.

TextButtonStyle()

Protected Functions
virtual void handleAlphaUpdated()

Handles what should happen when the alpha is updated.

virtual void handlePressedUpdated()
Handles what should happen when the pressed state is updated.

Protected Attributes
colortype colorPressed

The color pressed.

colortype colorReleased
The color released.

TextArea text
The text.

Public Functions Documentation
setText

void setText (TypedText t)

Sets a text.

Parameters:
t A TypedText to process.

setTextColors
void setTextColors (colortype newColorReleased ,

colortype newColorPressed
)

Sets text colors.

Parameters:
newColorReleased The new color released.
newColorPressed The new color pressed.

setTextPosition
void setTextPosition (int16_t x ,

int16_t y ,
int16_t width ,
int16_t height
)

Sets text position.

Parameters:
x The x coordinate.
y The y coordinate.
width The width of the text.
height The height of the text.

setTextRotation
void setTextRotation (TextRotation rotation)

Sets text rotation.

Parameters:
rotation The rotation.

setTextX
void setTextX (int16_t x)

Sets text x coordinate.

Parameters:
x The x coordinate.

setTextXY
void setTextXY (int16_t x ,

int16_t y
)

Sets text x and y.

Parameters:
x The x coordinate.
y The y coordinate.

setTextY
void setTextY (int16_t y)

Sets text y coordinate.

Parameters:
y The y coordinate.

TextButtonStyle
TextButtonStyle ()

Protected Functions Documentation
handleAlphaUpdated

virtual void handleAlphaUpdated ()

Handles what should happen when the alpha is updated.

handlePressedUpdated
virtual void handlePressedUpdated ()

Handles what should happen when the pressed state is updated.

Protected Attributes Documentation
colorPressed

colortype colorPressed

The color pressed.

colorReleased
colortype colorReleased

The color released.

text
TextArea text

The text.

Version: 4.16

TextProgress
A text progress will display progress as a number with a given number of decimals.

Note: The implementation does not use floating point variables to calculate the progress.

Inherits from: AbstractProgressIndicator, Container, Drawable

Public Functions
virtual uint8_t getAlpha() const

Gets the current alpha value of the widget.

virtual colortype getColor() const
Gets the color of the text in the used text area.

virtual uint16_t getNumberOfDecimals() const
Gets number of decimals.

virtual TypedText getTypedText() const
Gets the typed text.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setColor(colortype color)
Sets the color of the text in the used text area.

virtual void setNumberOfDecimals(uint16_t numberOfDecimals)
Sets number of decimals when displaying progress.

virtual void setProgressIndicatorPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the position and dimensions of the text progress indicator.

virtual void setTypedText(const TypedText & t)
Sets the typed text.

virtual void setValue(int value)
Sets the new value for the progress indicator.

TextProgress()

Protected Attributes
uint16_t decimals

The number of decimals.

TextAreaWithOneWildcard textArea
The text area.

Unicode::UnicodeChar textBuffer
Room for 100.0000.

Additional inherited members
Public Functions inherited from AbstractProgressIndicator

AbstractProgressIndicator()
Initializes a new instance of the AbstractProgressIndicator class with a default
range 0-100.

virtual uint16_t getProgress(uint16_t range =100) const
Gets the current progress based on the range set by setRange() and the value set by
setValue().

virtual int16_t getProgressIndicatorHeight() const
Gets progress indicator height.

virtual int16_t getProgressIndicatorWidth() const
Gets progress indicator width.

virtual int16_t getProgressIndicatorX() const
Gets progress indicator x coordinate.

virtual int16_t getProgressIndicatorY() const
Gets progress indicator y coordinate.

virtual void getRange(int & min, int & max) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps) const
Gets the range set by setRange().

virtual void getRange(int & min, int & max, uint16_t & steps, uint16_t & minStep) const
Gets the range set by setRange().

virtual int getValue() const
Gets the current value set by setValue().

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void setBackground(const Bitmap & bitmapBackground)
Sets the background image.

virtual void setEasingEquation(EasingEquation easingEquation)
Sets easing equation to be used in updateValue.

virtual void setRange(int min, int max, uint16_t steps =0, uint16_t minStep =0)
Sets the range for the progress indicator.

void setValueSetAction(GenericCallback< const AbstractProgressIndicator & > &
callback)
Sets callback that will be triggered every time a new value is assigned to the
progress indicator.

void setValueUpdatedAction(GenericCallback< const AbstractProgressIndicator & >
& callback)
Sets callback that will be triggered when updateValue has finished animating to the
final value.

virtual void updateValue(int value, uint16_t duration)
Update the current value in the range (min..max) set by setRange().

Protected Attributes inherited from AbstractProgressIndicator
int animationDuration

Duration of the animation.

int animationEndValue
The animation end value.

int animationStartValue
The animation start value.

int animationStep
The current animation step.

Image background
The background image.

int currentValue
The current value.

EasingEquation equation
The equation used in updateValue()

Container progressIndicatorContainer
The container that holds the actual
progress indicator.

int rangeMax
The range maximum.

int rangeMin
The range minimum.

uint16_t rangeSteps
The range steps.

uint16_t rangeStepsMin
The range steps minimum.

GenericCallback< const AbstractProgressIndicator & > * valueSetCallback
New value assigned Callback.

GenericCallback< const AbstractProgressIndicator & > * valueUpdatedCallback
Animation ended Callback.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const

Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const

Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
getAlpha

virtual uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getColor
virtual colortype getColor () const

Gets the color of the text in the used text area.

Returns:

The color.

getNumberOfDecimals
virtual uint16_t getNumberOfDecimals () const

Gets number of decimals.

Returns:

The number of decimals.

See also:

setNumberOfDecimals

getTypedText
virtual TypedText getTypedText () const

Gets the typed text.

Returns:

The typed text.

See also:

setTypedText

setAlpha
virtual void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setColor
virtual void setColor (colortype color)

Sets the color of the text in the used text area.

Parameters:
color The color.

See also:

getColor, TextArea::setColor

setNumberOfDecimals
virtual void setNumberOfDecimals (uint16_t numberOfDecimals)

Sets number of decimals when displaying progress.

Parameters:
numberOfDecimals Number of decimals. Only up to two decimals is supported.

See also:

getNumberOfDecimals

setProgressIndicatorPosition
virtual void setProgressIndicatorPosition (int16_t x ,

int16_t y ,
int16_t width ,
int16_t height
)

Sets the position and dimensions of the text progress indicator.

Sets the position and dimensions of the text progress indicator relative to the background image.

Parameters:
x The x coordinate.
y The y coordinate.
width The width of the text progress indicator.
height The height of the text progress indicator.

Reimplements: touchgfx::AbstractProgressIndicator::setProgressIndicatorPosition

setTypedText
virtual void setTypedText (const TypedText & t)

Sets the typed text.

The text should have exactly one wildcard and could for example look like this: "<progress>\%".

Parameters:
t The TypedText to process.

See also:

getTypedText

setValue
virtual void setValue (int value)

Sets the new value for the progress indicator.

Parameters:
value The value.

Reimplements: touchgfx::AbstractProgressIndicator::setValue

TextProgress
TextProgress ()

Protected Attributes Documentation
decimals

uint16_t decimals

The number of decimals.

textArea
TextAreaWithOneWildcard textArea

The text area.

textBuffer
Unicode::UnicodeChar textBuffer

Room for 100.0000.

Version: 4.16

TextProvider
The TextProvider is used in drawing basic strings and strings with one or two wildcards. The
TextProvider enables wildcard expansion of the string at the time it is written to the LCD.

Wildcards specified as <placeholder> are converted to Unicode value 2 by the text converter tool, and
the placeholders are automatically expanded with the specified wildcard buffers at runtime.

Public Functions
bool endOfString()

Tells if the end of the string has been reached.

Unicode::UnicodeChar getNextChar()
Gets the next character.

Unicode::UnicodeChar getNextLigature(TextDirection direction)
Gets the next ligature.

Unicode::UnicodeChar getNextLigature(TextDirection direction, const Font font, const
GlyphNode & glyph)
Gets the next ligature.

Unicode::UnicodeChar getNextLigature(TextDirection direction, const Font font, const
GlyphNode & glyph, const uint8_t *& pixelData, uint8_t & bitsPerPixel)
Gets the next ligature.

void initialize(const Unicode::UnicodeChar stringFormat, const uint16_t
gsubTable =0, ...)
Initializes the TextProvider.

void initialize(const Unicode::UnicodeChar stringFormat, va_list pArg, const
uint16_t gsubTable =0)
Initializes the TextProvider.

TextProvider()
Initializes a new instance of the TextProvider class.

Public Attributes
const uint32_t MAX_32BIT_INTEGER_DIGITS

Max number of digits used for the text representation of a 32 bit integer.

Public Functions Documentation
endOfString

bool endOfString ()

Tells if the end of the string has been reached.

Returns:

True if the end of the string has been reached, false if not.

See also:

TextProvider::getNextLigature()

getNextChar
Unicode::UnicodeChar getNextChar ()

Gets the next character.

For Arabic and Thai, it is important to use the getNextLigature instead.

Returns:

The next character of the expanded string or 0 if end of string is reached.

See also:

TextProvider::getNextLigature

getNextLigature
Unicode::UnicodeChar getNextLigature (TextDirection direction)

Gets the next ligature.

For most languages this is simply the next Unicode character from the buffer, but e.g. Arabic has
different ligatures for each character. Thai character placement might also depend on previous
characters. It is recommended to use getNextLigature with font and glyph parameters to ensure
coming glyphs in a text are placed correctly.

Parameters:
direction The direction.

Returns:

The next character of the expanded string or 0 if end of string is reached.

NOTE

Functions getNextLigature() and getNextChar() will advance through the same buffer and mixing the use
of those functions is not recommended and may cause undesired results. Instead create two TextProviders
and user getNextChar() on one and getNextLigature() on the other.

See also:

TextProvider::getNextChar

getNextLigature
Unicode::UnicodeChar getNextLigature (TextDirection direction ,

const Font * font ,
const GlyphNode *& glyph
)

Gets the next ligature.

For most languages this is simply the next Unicode character from the buffer, but e.g. Arabic has
different ligatures for each character.

Also gets a glyph for the ligature in a font. For non-Thai Unicodes, this is identical to using
Font::getGlyph(), but for Thai characters where diacritics glyphs are not always placed at the same
relative position, an adjusted GlyphNode will be generated with correct relative X/Y coordinates.

Parameters:
direction The direction.
font The font.
glyph The glyph.

Returns:

The next character of the expanded string or 0 if end of string i reached.

NOTE

Functions getNextLigature() and getNextChar() will advance through the same buffer and mixing the use
of those functions is not recommended and may cause undesired results. Instead create two TextProviders
and user getNextChar() on one and getNextLigature() on the other.

See also:

TextProvider::getNextChar, Font::getGlyph

getNextLigature
Unicode::UnicodeChar getNextLigature (TextDirection direction ,

const Font * font ,
const GlyphNode *& glyph ,
const uint8_t *& pixelData ,
uint8_t & bitsPerPixel
)

Gets the next ligature.

For most languages this is simply the next Unicode character from the buffer, but e.g. Arabic has
different ligatures for each character.

Also gets a glyph for the ligature in a font. For non-Thai Unicodes, this is identical to using
Font::getGlyph(), but for Thai characters where diacritics glyphs are not always placed at the same
relative position, an adjusted GlyphNode will be generated with correct relative X/Y coordinates.

Furthermore a pointer to the glyph data and the bit depth of the font are returned in parameters.

Parameters:
direction The direction.
font The font.
glyph The glyph.
pixelData Information describing the pixel.
bitsPerPixel The bits per pixel.

Returns:

The next character of the expanded string or 0 if end of string is reached.

NOTE

Functions getNextLigature() and getNextChar() will advance through the same buffer and mixing the use
of those functions is not recommended and may cause undesired results. Instead create two TextProviders
and user getNextChar() on one and getNextLigature() on the other.

See also:

TextProvider::getNextChar, Font::getGlyph

initialize
void initialize (const Unicode::UnicodeChar * stringFormat ,

const uint16_t * gsubTable =0,
...
)

Initializes the TextProvider.

Each '\2' character in the format is replaced by one UnicodeChar* argument from pArg.

Parameters:
stringFormat The string to format.
gsubTable (Optional) Pointer to GSUB table with Unicode substitution rules.
... Variable arguments providing additional information.

initialize
void initialize (const Unicode::UnicodeChar * stringFormat ,

va_list pArg ,
const uint16_t * gsubTable =0
)

Initializes the TextProvider.

Each '\2' character in the format is replaced by one UnicodeChar* argument from pArg.

Parameters:
stringFormat The string to format.
pArg Format arguments in the form of a va_list.
gsubTable (Optional) Pointer to GSUB table with Unicode substitution rules.

TextProvider
TextProvider ()

Initializes a new instance of the TextProvider class.

NOTE

The user must call initialize() before characters can be provided.

Public Attributes Documentation
MAX_32BIT_INTEGER_DIGITS

const uint32_t MAX_32BIT_INTEGER_DIGITS = 33U

Max number of digits used for the text representation of a 32 bit integer.

Version: 4.16

Texts
Class for setting language and getting texts. The language set will determine which texts will be used
in the application.

Public Functions
LanguageId getLanguage()

Gets the current language.

void setLanguage(LanguageId id)
Sets the current language for texts.

void setTranslation(LanguageId id, const void * translation)
Adds or replaces a translation.

const Unicode::UnicodeChar * getText(TypedTextId id) const
Get text in the set language.

Public Functions Documentation
getLanguage

static LanguageId getLanguage ()

Gets the current language.

Returns:

The id of the language.

setLanguage
static void setLanguage (LanguageId id)

Sets the current language for texts.

Parameters:

id The id of the language.

setTranslation
static void setTranslation (LanguageId id ,

const void * translation
)

Adds or replaces a translation.

This function allows an application to add a translation at runtime.

Parameters:
id The id of the language to add or replace.
translation A pointer to the translation in flash or RAM.

getText
const Unicode::UnicodeChar * getText (TypedTextId id)

Get text in the set language.

Parameters:
id The id of the text to lookup.

Returns:

The text.

See also:

setLanguage

Version: 4.16

TextureMapper
The TextureMapper widget displays a transformed image. It can be used to generate effects where an
image should be rotated in two or three dimensions.

The image can be freely scaled and rotated in three dimensions. The scaling and rotation is done
around the adjustable origin. A virtual camera is applied to the rendered image yielding a perspective
impression. The amount of perspective impression can be adjusted. The transformed image is clipped
according to the dimensions of the TextureMapper widget. In order to make the image fully visible the
TextureMapper should be large enough to accommodate the transformed image, which may be larger
than the raw image.

See: Widget

Note:

The drawing of this widget is not trivial and typically has a significant performance penalty. The
number of pixels drawn, the presence of global alpha or per pixel alpha inflicts the computation
and should be considered.
This widget does not support 1 bit per pixel color depth.

Inherits from: Image, Widget, Drawable

Inherited by: AnimationTextureMapper

Public Types
enum RenderingAlgorithm { NEAREST_NEIGHBOR, BILINEAR_INTERPOLATION }

Rendering algorithm to use when scaling the bitmap.

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

virtual float getBitmapPositionX() const
Gets bitmap position x coordinate.

virtual float getBitmapPositionY() const
Gets bitmap position y coordinate.

virtual float getCameraDistance() const
Gets camera distance.

virtual float getCameraX() const
Gets camera x coordinate.

virtual float getCameraY() const
Gets camera y coordinate.

virtual float getOrigoX() const
Gets transformation origo x coordinate.

virtual float getOrigoY() const
Gets transformation origo y coordinate.

virtual float getOrigoZ() const
Gets transformation origo z coordinate.

virtual RenderingAlgorithm getRenderingAlgorithm() const
Gets the algorithm used when rendering.

virtual float getScale() const
Gets the scale of the image.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid
(opaque).

virtual float getX0() const
Get the x coordinate of the top left corner of the transformed bitmap.

virtual float getX1() const
Get the x coordinate of the top right corner of the transformed bitmap.

virtual float getX2() const
Get the x coordinate of the bottom right of the transformed bitmap.

virtual float getX3() const
Get the x coordinate of the bottom left corner of the transformed
bitmap.

virtual float getXAngle() const
Get the x angle.

virtual float getY0() const
Get the y coordinate of the top left corner of the transformed bitmap.

virtual float getY1() const
Get the y coordinate of the top right corner of the transformed
bitmap.

virtual float getY2() const
Get the y coordinate of the bottom right corner of the transformed
bitmap.

virtual float getY3() const
Get the y coordinate of the bottom left corner of the transformed
bitmap.

virtual float getYAngle() const
Get the y angle.

virtual float getZ0() const
Get the z coordinate of the top left corner of the transformed bitmap.

virtual float getZ1() const
Get the z coordinate of the top right corner of the transformed bitmap.

virtual float getZ2() const
Get the z coordinate of the bottom right corner of the transformed
bitmap.

virtual float getZ3() const
Get the z coordinate of the bottom left corner of the transformed
bitmap.

virtual float getZAngle() const
Get the z angle.

void invalidateBoundingRect() const
Invalidate the bounding rectangle of the transformed bitmap.

virtual void setBitmap(const Bitmap & bitmap)
Sets the bitmap for this TextureMapper and updates the width and
height of this widget to match those of the Bitmap.

virtual void setBitmapPosition(float x, float y)
Sets the position of the bitmap within the TextureMapper.

virtual void setBitmapPosition(int x, int y)
Sets the position of the bitmap within the TextureMapper.

virtual void setCamera(float x, float y)
Sets the camera coordinate.

virtual void setCameraDistance(float d)
Sets camera distance.

virtual void setOrigo(float x, float y)
Sets the transformation origo (center) in two dimensions.

virtual void setOrigo(float x, float y, float z)
Sets the transformation origo (center).

virtual void setRenderingAlgorithm(RenderingAlgorithm algorithm)
Sets the render algorithm to be used.

virtual void setScale(float scale)
Sets the scale of the image.

TextureMapper(const Bitmap & bitmap =Bitmap())
Constructs a new TextureMapper with a default alpha value of 255
(solid) and a default Bitmap (undefined) if none is specified.

virtual void updateAngles(float newXAngle, float newYAngle, float newZAngle)
Updates the angles of the image.

virtual void updateXAngle(float newXAngle)
Updates the x angle.

virtual void updateYAngle(float newYAngle)
Updates the y angle.

virtual void updateZAngle(float newZAngle)
Updates the z angle.

Protected Functions

void applyTransformation()
Transform the bitmap using the supplied origo, scale, rotation and camera.

void
drawTriangle(const Rect & invalidatedArea, uint16_t fb, const float triangleXs,
const float triangleYs, const float triangleZs, const float triangleUs, const float
triangleVs) const
The TextureMapper will draw the transformed bitmap by drawing two triangles.

Rect getBoundingRect() const
Gets bounding rectangle of the transformed bitmap.

RenderingVariant lookupRenderVariant() const
Returns the rendering variant based on the bitmap format, alpha value and
rendering algorithm.

Protected Attributes
float cameraDistance

The camera distance.

RenderingAlgorithm currentRenderingAlgorithm
The current rendering algorithm.

float imageX0
The coordinate for the image points.

float imageX1
The coordinate for the image points.

float imageX2
The coordinate for the image points.

float imageX3
The coordinate for the image points.

float imageY0
The coordinate for the image points.

float imageY1
The coordinate for the image points.

float imageY2

The coordinate for the image points.

float imageY3
The coordinate for the image points.

float imageZ0
The coordinate for the image points.

float imageZ1
The coordinate for the image points.

float imageZ2
The coordinate for the image points.

float imageZ3
The coordinate for the image points.

float scale
The scale.

uint16_t subDivisionSize
The size of the affine sub divisions.

float xAngle
The angle x.

float xBitmapPosition
The bitmap position x.

float xCamera
The camera x coordinate.

float xOrigo
The origo x coordinate.

float yAngle
The angle y.

float yBitmapPosition
The bitmap position y.

float yCamera
The camera y coordinate.

float yOrigo
The origo y coordinate.

float zAngle
The angle z.

float zOrigo
The origo z coordinate.

const int MINIMAL_CAMERA_DISTANCE
The minimal camera distance.

Additional inherited members
Public Functions inherited from Image

uint8_t getAlpha() const
Gets the current alpha value of the widget.

Bitmap getBitmap() const
Gets the Bitmap currently assigned to the Image widget.

BitmapId getBitmapId() const
Gets the BitmapId currently assigned to the Image widget.

Image(const Bitmap & bitmap =Bitmap())
Constructs a new Image with a default alpha value of 255 (solid) and a default Bitmap
(undefined) if none is specified.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

Protected Attributes inherited from Image
uint8_t alpha

The Alpha for this image.

Bitmap bitmap
The Bitmap to display.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRectAbsolute()

Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)

Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Types Documentation
RenderingAlgorithm

enum RenderingAlgorithm

Rendering algorithm to use when scaling the bitmap.

NEAREST_NEIGHBOR Fast but not a very good image quality. Good for fast animations.
BILINEAR_INTERPOLATION Slower but better image quality. Good for static representation of a

scaled image.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Image::draw

getBitmapPositionX
virtual float getBitmapPositionX () const

Gets bitmap position x coordinate.

Returns:

The bitmap position x coordinate.

See also:

setBitmapPosition

getBitmapPositionY
virtual float getBitmapPositionY () const

Gets bitmap position y coordinate.

Returns:

The bitmap position y coordinate.

See also:

setBitmapPosition

getCameraDistance
virtual float getCameraDistance () const

Gets camera distance.

Returns:

The camera distance.

See also:

setCameraDistance

getCameraX
virtual float getCameraX () const

Gets camera x coordinate.

Returns:

The camera x coordinate.

See also:

setCamera

getCameraY
virtual float getCameraY () const

Gets camera y coordinate.

Returns:

The camera y coordinate.

See also:

setCamera

getOrigoX
virtual float getOrigoX () const

Gets transformation origo x coordinate.

Returns:

The transformation origo x coordinate.

See also:

setOrigo

getOrigoY
virtual float getOrigoY () const

Gets transformation origo y coordinate.

Returns:

The transformation origo y coordinate.

See also:

setOrigo

getOrigoZ
virtual float getOrigoZ () const

Gets transformation origo z coordinate.

Returns:

The transformation origo z coordinate.

See also:

setOrigo

getRenderingAlgorithm
virtual RenderingAlgorithm getRenderingAlgorithm () const

Gets the algorithm used when rendering.

Returns:

The algorithm used when rendering.

getScale

virtual float getScale () const

Gets the scale of the image.

Returns:

The scale.

See also:

setScale

getSolidRect
virtual Rect getSolidRect () const

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

This information is important, as any Drawable underneath the solid area does not need to be
drawn.

Returns:

The solid rectangle part of the Drawable.

NOTE

The rectangle returned must be relative to upper left corner of the Drawable, meaning that a completely
solid widget should return the full size Rect(0, 0, getWidth(), getHeight()). If no area can be guaranteed to
be solid, an empty Rect(0, 0, 0, 0) must be returned. Failing to return the correct rectangle may result in
errors on the display.

Reimplements: touchgfx::Image::getSolidRect

getX0
virtual float getX0 () const

Get the x coordinate of the top left corner of the transformed bitmap.

Returns:

The X0 coordinate.

getX1

virtual float getX1 () const

Get the x coordinate of the top right corner of the transformed bitmap.

Returns:

The X1 coordinate.

getX2
virtual float getX2 () const

Get the x coordinate of the bottom right of the transformed bitmap.

Returns:

The X2 coordinate.

getX3
virtual float getX3 () const

Get the x coordinate of the bottom left corner of the transformed bitmap.

Returns:

The X3 coordinate.

getXAngle
virtual float getXAngle () const

Get the x angle.

Returns:

The x angle.

See also:

updateXAngle

getY0
virtual float getY0 () const

Get the y coordinate of the top left corner of the transformed bitmap.

Returns:

The Y0 coordinate.

getY1
virtual float getY1 () const

Get the y coordinate of the top right corner of the transformed bitmap.

Returns:

The Y1 coordinate.

getY2
virtual float getY2 () const

Get the y coordinate of the bottom right corner of the transformed bitmap.

Returns:

The Y2 coordinate.

getY3
virtual float getY3 () const

Get the y coordinate of the bottom left corner of the transformed bitmap.

Returns:

The Y3 coordinate.

getYAngle
virtual float getYAngle () const

Get the y angle.

Returns:

The y angle.

See also:

updateYAngle

getZ0
virtual float getZ0 () const

Get the z coordinate of the top left corner of the transformed bitmap.

Returns:

The Z0 coordinate.

getZ1
virtual float getZ1 () const

Get the z coordinate of the top right corner of the transformed bitmap.

Returns:

The Z1 coordinate.

getZ2
virtual float getZ2 () const

Get the z coordinate of the bottom right corner of the transformed bitmap.

Returns:

The Z2 coordinate.

getZ3
virtual float getZ3 () const

Get the z coordinate of the bottom left corner of the transformed bitmap.

Returns:

The Z3 coordinate.

getZAngle
virtual float getZAngle () const

Get the z angle.

Returns:

The z angle.

See also:

updateZAngle

invalidateBoundingRect
void invalidateBoundingRect () const

Invalidate the bounding rectangle of the transformed bitmap.

See also:

getBoundingRect

setBitmap
virtual void setBitmap (const Bitmap & bitmap)

Sets the bitmap for this TextureMapper and updates the width and height of this widget to match
those of the Bitmap.

Parameters:
bitmap The bitmap instance.

NOTE

The user code must call invalidate() in order to update the image on the display.

Reimplements: touchgfx::Image::setBitmap

setBitmapPosition
virtual void setBitmapPosition (float x ,

float y

)

Sets the position of the bitmap within the TextureMapper.

The bitmap is clipped with respect to the dimensions of the TextureMapper widget.

Parameters:
x The x coordinate.
y The y coordinate.

See also:

getBitmapPositionX, getBitmapPositionY

setBitmapPosition
virtual void setBitmapPosition (int x ,

int y
)

Sets the position of the bitmap within the TextureMapper.

The bitmap is clipped with respect to the dimensions of the TextureMapper widget.

Parameters:
x The x coordinate.
y The y coordinate.

See also:

getBitmapPositionX, getBitmapPositionY

setCamera
virtual void setCamera (float x ,

float y
)

Sets the camera coordinate.

Parameters:
x The x coordinate for the camera.
y The y coordinate for the camera.

See also:

getCameraX, getCameraY

setCameraDistance
virtual void setCameraDistance (float d)

Sets camera distance.

If the given value is below TextureMapper::MINIMAL_CAMERA_DISTANCE, it will be set to
TextureMapper::MINIMAL_CAMERA_DISTANCE.

Parameters:
d The new camera distance.

See also:

getCameraDistance

setOrigo
virtual void setOrigo (float x ,

float y
)

Sets the transformation origo (center) in two dimensions.

Leaves the z coordinate untouched.

Parameters:
x The x coordinate.
y The y coordinate.

See also:

getOrigoX, getOrigoY

setOrigo
virtual void setOrigo (float x ,

float y ,
float z
)

Sets the transformation origo (center).

Parameters:

x The x coordinate.
y The y coordinate.
z The z coordinate.

See also:

getOrigoX, getOrigoY, getOrigoZ

setRenderingAlgorithm
virtual void setRenderingAlgorithm (RenderingAlgorithm algorithm)

Sets the render algorithm to be used.

Default setting is NEAREST_NEIGHBOR.

Parameters:
algorithm The algorithm to use when rendering.

setScale
virtual void setScale (float scale)

Sets the scale of the image.

Parameters:
scale The new scale value.

See also:

getScale

TextureMapper
TextureMapper (const Bitmap & bitmap =Bitmap())

Constructs a new TextureMapper with a default alpha value of 255 (solid) and a default Bitmap
(undefined) if none is specified.

If a Bitmap is passed to the constructor, the width and height of this widget is set to those of the
bitmap.

Parameters:
bitmap (Optional) The bitmap to display.

See also:

setBitmap

updateAngles
virtual void updateAngles (float newXAngle ,

float newYAngle ,
float newZAngle
)

Updates the angles of the image.

The area covered by the image before and after changing the angles is invalidated, which is the
smallest required rectangle.

Parameters:
newXAngle The new x Angle.
newYAngle The new y Angle.
newZAngle The new x Angle.

See also:

updateXAngle, updateYAngle, updateZAngle, getXAngle, getYAngle, getZAngle

updateXAngle
virtual void updateXAngle (float newXAngle)

Updates the x angle.

Parameters:
newXAngle The new x angle.

See also:

updateAngles, getXAngle

updateYAngle
virtual void updateYAngle (float newYAngle)

Updates the y angle.

Parameters:

newYAngle The new y angle.

See also:

updateAngles, getYAngle

updateZAngle
virtual void updateZAngle (float newZAngle)

Updates the z angle.

Parameters:
newZAngle The new z angle.

See also:

updateAngles, getZAngle

Protected Functions Documentation
applyTransformation

void applyTransformation ()

Transform the bitmap using the supplied origo, scale, rotation and camera.

This method is called by all the methods that manipulate origo, scale, rotation and camera.

drawTriangle
void drawTriangle (const Rect & invalidatedArea , const

uint16_t * fb , const
const float * triangleXs , const
const float * triangleYs , const
const float * triangleZs , const
const float * triangleUs , const
const float * triangleVs const
) const

The TextureMapper will draw the transformed bitmap by drawing two triangles.

One triangle is created from the points 0,1,2 and the other triangle from the points 1,2,3. The
triangle is drawn using the x,y,z values from each point along with the u,v coordinates in the bitmap
associated with each point.

Parameters:
invalidatedArea The invalidated area.
fb The framebuffer.
triangleXs The triangle xs.
triangleYs The triangle ys.
triangleZs The triangle zs.
triangleUs The triangle us.
triangleVs The triangle vs.

getBoundingRect
Rect getBoundingRect () const

Gets bounding rectangle of the transformed bitmap.

This is the smallest possible rectangle which covers the image of the bitmap after applying scale
and rotation.

Returns:

The bounding rectangle.

lookupRenderVariant
RenderingVariant lookupRenderVariant () const

Returns the rendering variant based on the bitmap format, alpha value and rendering algorithm.

Returns:

The RenderingVariant.

Protected Attributes Documentation
cameraDistance

float cameraDistance

The camera distance.

currentRenderingAlgorithm
RenderingAlgorithm currentRenderingAlgorithm

The current rendering algorithm.

imageX0
float imageX0

The coordinate for the image points.

imageX1
float imageX1

The coordinate for the image points.

imageX2
float imageX2

The coordinate for the image points.

imageX3
float imageX3

The coordinate for the image points.

imageY0
float imageY0

The coordinate for the image points.

imageY1
float imageY1

The coordinate for the image points.

imageY2
float imageY2

The coordinate for the image points.

imageY3
float imageY3

The coordinate for the image points.

imageZ0
float imageZ0

The coordinate for the image points.

imageZ1
float imageZ1

The coordinate for the image points.

imageZ2
float imageZ2

The coordinate for the image points.

imageZ3
float imageZ3

The coordinate for the image points.

scale
float scale

The scale.

subDivisionSize
uint16_t subDivisionSize

The size of the affine sub divisions.

xAngle
float xAngle

The angle x.

xBitmapPosition
float xBitmapPosition

The bitmap position x.

xCamera
float xCamera

The camera x coordinate.

xOrigo
float xOrigo

The origo x coordinate.

yAngle
float yAngle

The angle y.

yBitmapPosition
float yBitmapPosition

The bitmap position y.

yCamera
float yCamera

The camera y coordinate.

yOrigo
float yOrigo

The origo y coordinate.

zAngle
float zAngle

The angle z.

zOrigo
float zOrigo

The origo z coordinate.

MINIMAL_CAMERA_DISTANCE
const int MINIMAL_CAMERA_DISTANCE = 1

The minimal camera distance.

Version: 4.16

TextureSurface
A texture source. Contains a pointer to the data and the width and height of the texture. The alpha
channel is used in 565 rendering with alpha. The stride is the width used when moving to the next line
of the texture.

Public Attributes
const uint16_t * data

The pixel bits or indexes for color in CLUT entries.

const uint8_t * extraData
The alpha channel or clut data.

int32_t height
The height.

int32_t stride
The stride.

int32_t width
The width.

Public Attributes Documentation
data

const uint16_t * data

The pixel bits or indexes for color in CLUT entries.

extraData
const uint8_t * extraData

The alpha channel or clut data.

height
int32_t height

The height.

stride
int32_t stride

The stride.

width
int32_t width

The width.

Version: 4.16

TiledImage
Simple widget capable of showing a bitmap tiled indefinitely horizontally and vertically. This means
that when the TiledImageWidget is larger than the provided Bitmap, the Bitmap is repeated over and
over horizontally and vertically. The bitmap can be alpha- blended with the background and have
areas of transparency.

Inherits from: Image, Widget, Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

virtual void getOffset(int16_t & x, int16_t & y)
Gets the offset into the bitmap where the tile drawing should start.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual int16_t getXOffset()
Get x offset.

virtual int16_t getYOffset()
Get y coordinate offset.

virtual void setBitmap(const Bitmap & bitmap)
Sets the bitmap for this Image and updates the width and height of this widget to
match those of the Bitmap.

virtual void setOffset(int16_t x, int16_t y)
Sets an offset into the bitmap where the tile drawing should start.

virtual void setXOffset(int16_t x)
Sets x offset into the bitmap where the tile drawing should start.

virtual void setYOffset(int16_t y)
Sets y offset into the bitmap where the tile drawing should start.

TiledImage(const Bitmap & bmp =Bitmap())

Constructs a new TiledImage with a default alpha value of 255 (solid) and a default
Bitmap (undefined) if none is specified.

Protected Attributes
int16_t xOffset

The X offset into the bitmap to start drawing in range 0..bitmap.width-1.

int16_t yOffset
The Y offset into the bitmap to start drawing in range 0..bitmap.height-1.

Additional inherited members
Public Functions inherited from Image

uint8_t getAlpha() const
Gets the current alpha value of the widget.

Bitmap getBitmap() const
Gets the Bitmap currently assigned to the Image widget.

BitmapId getBitmapId() const
Gets the BitmapId currently assigned to the Image widget.

Image(const Bitmap & bitmap =Bitmap())
Constructs a new Image with a default alpha value of 255 (solid) and a default Bitmap
(undefined) if none is specified.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

Protected Attributes inherited from Image
uint8_t alpha

The Alpha for this image.

Bitmap bitmap
The Bitmap to display.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)

Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:

invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in
coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Image::draw

getOffset
virtual void getOffset (int16_t & x ,

int16_t & y
)

Gets the offset into the bitmap where the tile drawing should start.

Please note that the offsets set using setOffset have been normalized so that x is in the range 0 to
bitmap width - 1, and y is in the range 0 to bitmap height - 1.

Parameters:
x The x offset.
y The y offset.

See also:

getXOffset, getYOffset

getSolidRect
virtual Rect getSolidRect () const

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

This information is important, as any Drawable underneath the solid area does not need to be
drawn.

Returns:

The solid rectangle part of the Drawable.

NOTE

The rectangle returned must be relative to upper left corner of the Drawable, meaning that a completely
solid widget should return the full size Rect(0, 0, getWidth(), getHeight()). If no area can be guaranteed to
be solid, an empty Rect(0, 0, 0, 0) must be returned. Failing to return the correct rectangle may result in
errors on the display.

Reimplements: touchgfx::Image::getSolidRect

getXOffset
virtual int16_t getXOffset ()

Get x offset.

This is the value set using setXOffset() (or setOffset()) normalized to be in the range 0 to bitmap
width - 1.

Returns:

The x offset.

See also:

getYOffset, getOffset

getYOffset
virtual int16_t getYOffset ()

Get y coordinate offset.

This is the value set using setYOffset() (or setOffset()) normalized to be in the range 0 to bitmap
height - 1.

Returns:

The y offset.

See also:

getXOffset, getOffset

setBitmap
virtual void setBitmap (const Bitmap & bitmap)

Sets the bitmap for this Image and updates the width and height of this widget to match those of
the Bitmap.

Parameters:
bitmap The bitmap instance.

NOTE

The user code must call invalidate() in order to update the image on the display.

Reimplements: touchgfx::Image::setBitmap

setOffset
virtual void setOffset (int16_t x ,

int16_t y
)

Sets an offset into the bitmap where the tile drawing should start.

By default the first image is aligned along the top and left, i.e. offset at (0, 0).

Parameters:
x The x coordinate offset.
y The y coordinate offset.

See also:

setXOffset, setYOffset

setXOffset
virtual void setXOffset (int16_t x)

Sets x offset into the bitmap where the tile drawing should start.

Setting the x offset to 1 will push all images one pixel to the left.

Parameters:
x The x offset.

See also:

setYOffset, setOffset

setYOffset
virtual void setYOffset (int16_t y)

Sets y offset into the bitmap where the tile drawing should start.

Setting the y offset to 1 will push all images one pixel up.

Parameters:
y The y offset.

See also:

setXOffset, setOffset

TiledImage
TiledImage (const Bitmap & bmp =Bitmap())

Constructs a new TiledImage with a default alpha value of 255 (solid) and a default Bitmap
(undefined) if none is specified.

If a Bitmap is passed to the constructor, the width and height of this widget is set to those of the
bitmap.

Parameters:
bmp (Optional) The bitmap to display.

See also:

setBitmap

Protected Attributes Documentation
xOffset

int16_t xOffset

The X offset into the bitmap to start drawing in range 0..bitmap.width-1.

yOffset
int16_t yOffset

The Y offset into the bitmap to start drawing in range 0..bitmap.height-1.

Version: 4.16

TiledImageButtonStyle
A tiled image button style. An tiled image button style. This class is supposed to be used with one of
the ButtonTrigger classes to create a functional button. This class will show one of two tiled images
depending on the state of the button (pressed or released).

The TiledImageButtonStyle does not set the size of the enclosing container (normally
AbstractButtonContainer) to the size of the pressed Bitmap. This can be overridden by calling
setWidth/setHeight after setting the bitmaps.

Template Parameters:

T Generic type parameter. Typically a AbstractButtonContainer subclass.

See: AbstractButtonContainer

Inherits from: T

Public Functions
virtual void setHeight(int16_t height)

Sets height.

virtual void setTileBitmaps(const Bitmap & bmpReleased, const Bitmap & bmpPressed)
Sets tile bitmaps.

virtual void setTileOffset(int16_t x, int16_t y)
Sets an offset into the bitmap where the tile drawing should start.

virtual void setWidth(int16_t width)
Sets width.

TiledImageButtonStyle()

Protected Functions
virtual void handleAlphaUpdated()

Handles what should happen when the alpha is updated.

virtual void handlePressedUpdated()
Handles what should happen when the pressed state is updated.

Protected Attributes
Bitmap downTile

The image to display when button is pressed.

TiledImage tiledImage
The tiled image.

Bitmap upTile
The image to display when button is released.

Public Functions Documentation
setHeight

virtual void setHeight (int16_t height)

Sets height.

Parameters:
height The height.

setTileBitmaps
virtual void setTileBitmaps (const Bitmap & bmpReleased ,

const Bitmap & bmpPressed
)

Sets tile bitmaps.

Parameters:
bmpReleased The bitmap released.
bmpPressed The bitmap pressed.

setTileOffset
virtual void setTileOffset (int16_t x ,

int16_t y
)

Sets an offset into the bitmap where the tile drawing should start.

Parameters:
x The x coordinate offset.
y The y coordinate offset.

See also:

TiledImage::setOffset

setWidth
virtual void setWidth (int16_t width)

Sets width.

Parameters:
width The width.

TiledImageButtonStyle
TiledImageButtonStyle ()

Protected Functions Documentation
handleAlphaUpdated

virtual void handleAlphaUpdated ()

Handles what should happen when the alpha is updated.

handlePressedUpdated
virtual void handlePressedUpdated ()

Handles what should happen when the pressed state is updated.

Protected Attributes Documentation
downTile

Bitmap downTile

The image to display when button is pressed.

tiledImage
TiledImage tiledImage

The tiled image.

upTile
Bitmap upTile

The image to display when button is released.

Version: 4.16

ToggleButton
A ToggleButton is a Button specialization that swaps the two bitmaps when clicked, such that the
previous "pressed" bitmap, now becomes the one displayed when button is not pressed. This can by
used to give the effect of a button that can be pressed in and when it is subsequently pressed, it will
pop back out.

Inherits from: Button, AbstractButton, Widget, Drawable

Public Functions
void forceState(bool activeState)

Allows the ToggleButton to be forced into either the pressed state, or the normal state.

bool getState() const
Gets the state of the ToggleButton as set with forceState.

virtual void handleClickEvent(const ClickEvent & event)
Updates the current state of the button.

virtual void setBitmaps(const Bitmap & bitmapReleased, const Bitmap & bitmapPressed)
Sets the two bitmaps used by this button.

Protected Attributes
Bitmap originalPressed

Contains the bitmap that was originally being displayed when button is pressed.

Additional inherited members
Public Functions inherited from Button

Button()

virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

Bitmap getCurrentlyDisplayedBitmap() const
Gets currently displayed bitmap.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

Protected Attributes inherited from Button
uint8_t alpha

The current alpha value. 255=solid, 0=invisible.

Bitmap down
The image to display when button is pressed.

Bitmap up
The image to display when button is released (normal state).

Public Functions inherited from AbstractButton
AbstractButton()
Sets this Widget touchable so the user can interact with buttons.

virtual void executeAction()
Executes the previously set action.

virtual bool getPressedState() const
Function to determine if the AbstractButton is currently pressed.

void setAction(GenericCallback< const AbstractButton & > & callback)
Associates an action with the button.

Protected Attributes inherited from AbstractButton

GenericCallback< const AbstractButton & > * action
The callback to be executed when this
AbstractButton is clicked.

bool pressed
Is the button pressed or released? True if pressed.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)

Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation

forceState
void forceState (bool activeState)

Allows the ToggleButton to be forced into either the pressed state, or the normal state.

In the pressed state, the Button will always be shown as pressed down (and shown as released
when the user presses it). In the normal state, the Button will be show as released or pressed
depending on its actual state.

Parameters:
activeState If true, swap the images for released and pressed. If false display the Button

normally.

getState
bool getState () const

Gets the state of the ToggleButton as set with forceState.

Returns:

True if the button has been toggled, i.e. the pressed state is shown when the button is not
pressed.

handleClickEvent
virtual void handleClickEvent (const ClickEvent & event)

Updates the current state of the button.

The state can be either pressed or released, and if the new state is different from the current state,
the button is also invalidated to force a redraw.

If the button state is changed from ClickEvent::PRESSED to ClickEvent::RELEASED, the associated
action (if any) is also executed.

Parameters:
event Information about the click.

Reimplements: touchgfx::AbstractButton::handleClickEvent

setBitmaps

virtual void setBitmaps (const Bitmap & bitmapReleased ,
const Bitmap & bitmapPressed
)

Sets the two bitmaps used by this button.

One bitmap for the released (normal) state and one bitmap for the pressed state. The images are
expected to be of the same dimensions, and the Button is resized to the dimensions of the pressed
Bitmap.

Parameters:
bitmapReleased Bitmap to use when button is released.
bitmapPressed Bitmap to use when button is pressed.

NOTE

It is assumed that the dimensions of the bitmaps are the same. Unexpected (visual) behavior may be
observed if the bitmaps are of different sizes. The user code must call invalidate() in order to update the
button on the display.

Reimplements: touchgfx::Button::setBitmaps

Protected Attributes Documentation
originalPressed

Bitmap originalPressed

Contains the bitmap that was originally being displayed when button is pressed.

Version: 4.16

ToggleButtonTrigger
A toggle button trigger. This trigger will create a button that reacts on clicks. This means it will call the
set action when it gets a touch released event, just like a ClickButtonTrigger. The difference being that
a ToggleButtonTrigger will stay in pressed state until it is clicked again.

The ToggleButtonTrigger can be combined with one or more of the ButtonStyle classes to create a fully
functional button.

Inherits from: AbstractButtonContainer, Container, Drawable

Public Functions
void forceState(bool activeState)

Allows the button to be forced into either the pressed state, or the normal state.

bool getToggleCanceled()
Gets toggle canceled.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

void setToggleCanceled(bool isToggleCanceled)
Sets toggle canceled.

ToggleButtonTrigger()

Protected Attributes
bool toggleCanceled

True if toggle canceled.

Additional inherited members
Public Functions inherited from AbstractButtonContainer

AbstractButtonContainer()

virtual void executeAction()
Executes the previously set action.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

bool getPressed()
Gets the pressed state.

void setAction(GenericCallback< const AbstractButtonContainer & > & callback)
Sets an action callback to be executed by the subclass of AbstractContainerButton.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setPressed(bool isPressed)
Sets the pressed state to the given state.

Protected Functions inherited from AbstractButtonContainer
virtual void handleAlphaUpdated()

Handles what should happen when the alpha is updated.

virtual void handlePressedUpdated()
Handles what should happen when the pressed state is updated.

Protected Attributes inherited from AbstractButtonContainer
GenericCallback< const AbstractButtonContainer & > * action

The action to be executed.

uint8_t alpha
The current alpha value. 255 denotes
solid, 0 denotes completely invisible.

bool pressed
True if pressed.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()

Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const

Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
forceState

void forceState (bool activeState)

Allows the button to be forced into either the pressed state, or the normal state.

In the pressed state, the button will always be shown as pressed down (and shown as released
when the user presses it). In the normal state, the button will be show as released or pressed
depending on its actual state.

Parameters:
activeState If true, swap the images for released and pressed. If false display the button

normally.

getToggleCanceled
bool getToggleCanceled ()

Gets toggle canceled.

Returns:

True if it succeeds, false if it fails.

handleClickEvent
virtual void handleClickEvent (const ClickEvent & evt)

Defines the event handler interface for ClickEvents.

The default implementation ignores the event. The event is only received if the Drawable is
touchable and visible.

Parameters:
evt The ClickEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleClickEvent

setToggleCanceled
void setToggleCanceled (bool isToggleCanceled)

Sets toggle canceled.

Parameters:
isToggleCanceled True if is toggle canceled, false if not.

ToggleButtonTrigger
ToggleButtonTrigger ()

Protected Attributes Documentation
toggleCanceled

bool toggleCanceled

True if toggle canceled.

Version: 4.16

TouchArea
Invisible widget used to capture touch events. The TouchArea consumes drag events without the
widget it self moving.

Inherits from: AbstractButton, Widget, Drawable

Public Functions
virtual void draw(const Rect & invalidatedArea) const

Draw this drawable.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void handleClickEvent(const ClickEvent & event)
Updates the current state of the button.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

void setPressedAction(GenericCallback< const AbstractButton & > & callback)
Associates an action to be performed when the TouchArea is pressed.

TouchArea()

Protected Attributes
GenericCallback< const AbstractButton & > * pressedAction

The action to perform when the TouchArea is
clicked.

Additional inherited members
Public Functions inherited from AbstractButton

AbstractButton()
Sets this Widget touchable so the user can interact with buttons.

virtual void executeAction()
Executes the previously set action.

virtual bool getPressedState() const
Function to determine if the AbstractButton is currently pressed.

void setAction(GenericCallback< const AbstractButton & > & callback)
Associates an action with the button.

Protected Attributes inherited from AbstractButton
GenericCallback< const AbstractButton & > * action

The callback to be executed when this
AbstractButton is clicked.

bool pressed
Is the button pressed or released? True if pressed.

Public Functions inherited from Widget
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const

Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible

True if this drawable should be drawn.

Public Functions Documentation
draw

virtual void draw (const Rect & invalidatedArea)

Draw this drawable.

It is a requirement that the draw implementation does not draw outside the region specified by
invalidatedArea.

Parameters:
invalidatedArea The sub-region of this drawable that needs to be redrawn, expressed in

coordinates relative to its parent (e.g. for a complete redraw, invalidatedArea
will be (0, 0, width, height).

Reimplements: touchgfx::Drawable::draw

getSolidRect
virtual Rect getSolidRect () const

Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

This information is important, as any Drawable underneath the solid area does not need to be
drawn.

Returns:

The solid rectangle part of the Drawable.

NOTE

The rectangle returned must be relative to upper left corner of the Drawable, meaning that a completely
solid widget should return the full size Rect(0, 0, getWidth(), getHeight()). If no area can be guaranteed to
be solid, an empty Rect(0, 0, 0, 0) must be returned. Failing to return the correct rectangle may result in
errors on the display.

Reimplements: touchgfx::Drawable::getSolidRect

handleClickEvent
virtual void handleClickEvent (const ClickEvent & event)

Updates the current state of the button.

The state can be either pressed or released, and if the new state is different from the current state,
the button is also invalidated to force a redraw.

If the button state is changed from ClickEvent::PRESSED to ClickEvent::RELEASED, the associated
action (if any) is also executed.

Parameters:
event Information about the click.

Reimplements: touchgfx::AbstractButton::handleClickEvent

handleDragEvent
virtual void handleDragEvent (const DragEvent & evt)

Defines the event handler interface for DragEvents.

The default implementation ignores the event. The event is only received if the drawable is
touchable and visible.

Parameters:
evt The DragEvent received from the HAL.

Reimplements: touchgfx::Drawable::handleDragEvent

setPressedAction
void setPressedAction (GenericCallback< const AbstractButton & > & callback)

Associates an action to be performed when the TouchArea is pressed.

Parameters:
callback The callback is given a reference to this touch area.

TouchArea

TouchArea ()

Protected Attributes Documentation
pressedAction

GenericCallback< const AbstractButton & > * pressedAction

The action to perform when the TouchArea is clicked.

Version: 4.16

TouchButtonTrigger
A touch button trigger. This trigger will create a button that reacts on touches. This means it will call
the set action when it gets a touch pressed event. The TouchButtonTrigger can be combined with one
or more of the ButtonStyle classes to create a fully functional button.

See: ClickButtonTrigger

Inherits from: AbstractButtonContainer, Container, Drawable

Public Functions
virtual void handleClickEvent(const ClickEvent & event)

Handles a ClickAvent.

Additional inherited members
Public Functions inherited from AbstractButtonContainer

AbstractButtonContainer()

virtual void executeAction()
Executes the previously set action.

uint8_t getAlpha() const
Gets the current alpha value of the widget.

bool getPressed()
Gets the pressed state.

void setAction(GenericCallback< const AbstractButtonContainer & > & callback)
Sets an action callback to be executed by the subclass of AbstractContainerButton.

void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

void setPressed(bool isPressed)

Sets the pressed state to the given state.

Protected Functions inherited from AbstractButtonContainer
virtual void handleAlphaUpdated()

Handles what should happen when the alpha is updated.

virtual void handlePressedUpdated()
Handles what should happen when the pressed state is updated.

Protected Attributes inherited from AbstractButtonContainer
GenericCallback< const AbstractButtonContainer & > * action

The action to be executed.

uint8_t alpha
The current alpha value. 255 denotes
solid, 0 denotes completely invisible.

bool pressed
True if pressed.

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()

Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
handleClickEvent

virtual void handleClickEvent (const ClickEvent & event)

Handles a ClickAvent.

The action callback is called when the ClickButtonTrigger receives a ClickEvent::PRESSED event.
Function setPressed() will be called with the new button state.

Parameters:
event The click event.

See also:

setAction, setPressed, getPressed

Reimplements: touchgfx::Drawable::handleClickEvent

Version: 4.16

TouchCalibration
Calibrates a touch coordinate. Class TouchCalibraiton is responsible for translating coordinates (Point)
based on matrix of calibration values.

Public Functions
TouchCalibration()

void setCalibrationMatrix(const Point ref, const Point scr)
Initializes the calibration matrix based on reference and measured values.

void translatePoint(Point & p)
Translates the specified point using the matrix.

Public Functions Documentation
TouchCalibration

TouchCalibration ()

setCalibrationMatrix
static void setCalibrationMatrix (const Point * ref ,

const Point * scr
)

Initializes the calibration matrix based on reference and measured values.

Parameters:
ref Pointer to array of three reference points.
scr Pointer to array of three measured points.

translatePoint

static void translatePoint (Point & p)

Translates the specified point using the matrix.

If matrix has not been initialized, p is not modified.

Parameters:
p The point to translate.

Version: 4.16

TouchController
Basic Touch Controller interface.

Inherited by: I2CTouchController, NoTouchController, SDL2TouchController, SDLTouchController

Public Functions
virtual void init() =0

Initializes touch controller.

virtual bool sampleTouch(int32_t & x, int32_t & y) =0
Checks whether the touch screen is being touched, and if so, what coordinates.

virtual ~TouchController()
Finalizes an instance of the TouchController class.

Public Functions Documentation
init

virtual void init () =0

Initializes touch controller.

Reimplemented by: touchgfx::NoTouchController::init, touchgfx::SDL2TouchController::init,
touchgfx::SDLTouchController::init, touchgfx::I2CTouchController::init

sampleTouch
virtual bool sampleTouch (int32_t & x , =0

int32_t & y =0
) =0

Checks whether the touch screen is being touched, and if so, what coordinates.

Parameters:
x The x position of the touch.

y The y position of the touch.

Returns:

True if a touch has been detected, otherwise false.

Reimplemented by: touchgfx::NoTouchController::sampleTouch,
touchgfx::SDL2TouchController::sampleTouch, touchgfx::SDLTouchController::sampleTouch,
touchgfx::I2CTouchController::sampleTouch

~TouchController
virtual ~TouchController ()

Finalizes an instance of the TouchController class.

Version: 4.16

Transition
The Transition class is the base class for Transitions. Implementations of Transition defines what
happens when transitioning between Screens, which typically involves visual effects. An example of a
transition implementation can be seen in example custom_transition_example. The most basic
transition is the NoTransition class that does a transition without any visual effects.

See: NoTransition, SlideTransition

Inherited by: BlockTransition, CoverTransition< templateDirection >, NoTransition, SlideTransition<
templateDirection >, WipeTransition< templateDirection >

Public Functions
virtual void handleTickEvent()

Called for every tick when transitioning.

virtual void init()
Initializes the transition.

virtual void invalidate()
Invalidates the screen when starting the Transition.

bool isDone() const
Query if the transition is done transitioning.

virtual void setScreenContainer(Container & cont)
Sets the ScreenContainer.

virtual void tearDown()
Tears down the Animation.

Transition()
Initializes a new instance of the Transition class.

virtual ~Transition()
Finalizes an instance of the Transition class.

Protected Attributes
bool done

Flag that indicates when the transition is done. This should be set by implementing
classes.

Container * screenContainer
The screen Container of the Screen transitioning to.

Public Functions Documentation
handleTickEvent

virtual void handleTickEvent ()

Called for every tick when transitioning.

Reimplemented by: touchgfx::BlockTransition::handleTickEvent,
touchgfx::CoverTransition::handleTickEvent, touchgfx::NoTransition::handleTickEvent,
touchgfx::SlideTransition::handleTickEvent, touchgfx::WipeTransition::handleTickEvent

init
virtual void init ()

Initializes the transition.

Called after the constructor is called, when the application changes the transition.

Reimplemented by: touchgfx::BlockTransition::init, touchgfx::CoverTransition::init,
touchgfx::SlideTransition::init, touchgfx::WipeTransition::init

invalidate
virtual void invalidate ()

Invalidates the screen when starting the Transition.

Default is to invalidate the whole screen. Subclasses can do partial invalidation.

Reimplemented by: touchgfx::BlockTransition::invalidate,
touchgfx::WipeTransition::invalidate

isDone
bool isDone () const

Query if the transition is done transitioning.

It is the responsibility of the inheriting class to set the underlying done flag once the transition has
been completed.

Returns:

True if the transition is done, false otherwise.

setScreenContainer
virtual void setScreenContainer (Container & cont)

Sets the ScreenContainer.

Is used by Screen to enable the transition to access the Container.

Parameters:
cont The Container the transition should have access to.

tearDown
virtual void tearDown ()

Tears down the Animation.

Called before the destructor is called, when the application changes the transition.

Reimplemented by: touchgfx::BlockTransition::tearDown,
touchgfx::CoverTransition::tearDown, touchgfx::SlideTransition::tearDown,
touchgfx::WipeTransition::tearDown

Transition
Transition ()

Initializes a new instance of the Transition class.

~Transition
virtual ~Transition ()

Finalizes an instance of the Transition class.

Protected Attributes Documentation
done

bool done

Flag that indicates when the transition is done. This should be set by implementing classes.

screenContainer
Container * screenContainer

The screen Container of the Screen transitioning to.

Version: 4.16

TwoWildcardTextButtonStyle
A wildcard text button style. An wildcard text button style. This class is supposed to be used with one
of the ButtonTrigger classes to create a functional button. This class will show a text with a wildcard in
one of two colors depending on the state of the button (pressed or released).

The TwoWildcardTextButtonStyle does not set the size of the enclosing container (normally
AbstractButtonContainer). The size must be set manually.

To get a background behind the text, use TwoWildcardTextButtonStyle together with e.g.
ImageButtonStyle:

The position of the text can be adjusted with setTwoWildcardTextXY (default is centered).

Template Parameters:

T Generic type parameter. Typically a AbstractButtonContainer subclass.

See: AbstractButtonContainer

Inherits from: T

Public Functions
void setTwoWildcardText(TypedText t)

Sets wildcard text.

void setTwoWildcardTextColors(colortype newColorReleased, colortype newColorPressed)
Sets wild card text colors.

void setTwoWildcardTextPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets text position and dimensions.

void setTwoWildcardTextRotation(TextRotation rotation)
Sets wildcard text rotation.

void setTwoWildcardTextX(int16_t x)

TwoWildcardTextButtonStyle<ImageButtonStyle<ClickButtonTrigger> > myButton;

Sets wildcard text x coordinate.

void setTwoWildcardTextXY(int16_t x, int16_t y)
Sets wildcard text position.

void setTwoWildcardTextY(int16_t y)
Sets wildcard text y coordinate.

void setWildcardTextBuffer1(const Unicode::UnicodeChar * value)
Sets the first wildcard in the text.

void setWildcardTextBuffer2(const Unicode::UnicodeChar * value)
Sets the second wildcard in the text.

TwoWildcardTextButtonStyle()

Protected Functions
virtual void handleAlphaUpdated()

Handles what should happen when the alpha is updated.

virtual void handlePressedUpdated()
Handles what should happen when the pressed state is updated.

Protected Attributes
colortype colorPressed

The color pressed.

colortype colorReleased
The color released.

TextAreaWithTwoWildcards twoWildcardText
The wildcard text.

Public Functions Documentation

setTwoWildcardText
void setTwoWildcardText (TypedText t)

Sets wildcard text.

Parameters:
t A TypedText to process.

setTwoWildcardTextColors
void setTwoWildcardTextColors (colortype newColorReleased ,

colortype newColorPressed
)

Sets wild card text colors.

Parameters:
newColorReleased The new color released.
newColorPressed The new color pressed.

setTwoWildcardTextPosition
void setTwoWildcardTextPosition (int16_t x ,

int16_t y ,
int16_t width ,
int16_t height
)

Sets text position and dimensions.

Parameters:
x The x coordinate.
y The y coordinate.
width The width of the text.
height The height of the text.

setTwoWildcardTextRotation
void setTwoWildcardTextRotation (TextRotation rotation)

Sets wildcard text rotation.

Parameters:
rotation The rotation.

setTwoWildcardTextX
void setTwoWildcardTextX (int16_t x)

Sets wildcard text x coordinate.

Parameters:
x The x coordinate.

setTwoWildcardTextXY
void setTwoWildcardTextXY (int16_t x ,

int16_t y
)

Sets wildcard text position.

Parameters:
x The x coordinate.
y The y coordinate.

setTwoWildcardTextY
void setTwoWildcardTextY (int16_t y)

Sets wildcard text y coordinate.

Parameters:
y The y coordinate.

setWildcardTextBuffer1
void setWildcardTextBuffer1 (const Unicode::UnicodeChar * value)

Sets the first wildcard in the text.

Must be a null-terminated UnicodeChar array.

Parameters:
value A pointer to the UnicodeChar to set the wildcard to.

setWildcardTextBuffer2
void setWildcardTextBuffer2 (const Unicode::UnicodeChar * value)

Sets the second wildcard in the text.

Must be a null-terminated UnicodeChar array.

Parameters:
value A pointer to the UnicodeChar to set the wildcard to.

TwoWildcardTextButtonStyle
TwoWildcardTextButtonStyle ()

Protected Functions Documentation
handleAlphaUpdated

virtual void handleAlphaUpdated ()

Handles what should happen when the alpha is updated.

handlePressedUpdated
virtual void handlePressedUpdated ()

Handles what should happen when the pressed state is updated.

Protected Attributes Documentation
colorPressed

colortype colorPressed

The color pressed.

colorReleased
colortype colorReleased

The color released.

twoWildcardText
TextAreaWithTwoWildcards twoWildcardText

The wildcard text.

Version: 4.16

TypedText
TypedText represents text (for characters) and typography (for font and alignment). TypedText provides
methods for adjusting the text, font and alignment.

See: TextArea

Public Classes
struct TypedTextData

The data structure for typed texts.

Public Functions
FORCE_INLINE_FUNCTION Alignment getAlignment() const

Gets the alignment associated with this
TypedText.

FORCE_INLINE_FUNCTION const Font * getFont() const
Gets the font associated with this
TypedText.

FORCE_INLINE_FUNCTION FontId getFontId() const
Gets the font ID associated with this
TypedText.

FORCE_INLINE_FUNCTION TypedTextId getId() const
Gets the id of the typed text.

FORCE_INLINE_FUNCTION const Unicode::UnicodeChar * getText() const
Gets the text associated with this
TypedText.

FORCE_INLINE_FUNCTION TextDirection getTextDirection() const
Gets the text direction associated with
this TypedText.

FORCE_INLINE_FUNCTION bool hasValidId() const

Has the TypedText been set to a proper
value?

TypedText(const TypedTextId id
=TYPED_TEXT_INVALID)
Initializes a new instance of the
TypedText class.

virtual ~TypedText()
Finalizes an instance of the TypedText
class.

void registerTexts(const Texts * t)
Registers an array of texts.

void
registerTypedTextDatabase(const
TypedTextData data, const Font const *
f, const uint16_t n)
Registers an array of typed texts.

Public Functions Documentation
getAlignment

FORCE_INLINE_FUNCTION Alignment getAlignment () const

Gets the alignment associated with this TypedText.

Returns:

The alignment.

getFont
FORCE_INLINE_FUNCTION const Font * getFont () const

Gets the font associated with this TypedText.

Returns:

The font.

getFontId

g
FORCE_INLINE_FUNCTION FontId getFontId () const

Gets the font ID associated with this TypedText.

Returns:

The font.

getId
FORCE_INLINE_FUNCTION TypedTextId getId () const

Gets the id of the typed text.

Returns:

The id.

getText
FORCE_INLINE_FUNCTION const Unicode::UnicodeChar * getText () const

Gets the text associated with this TypedText.

Returns:

The text.

getTextDirection
FORCE_INLINE_FUNCTION TextDirection getTextDirection () const

Gets the text direction associated with this TypedText.

Returns:

The alignment.

hasValidId
FORCE_INLINE_FUNCTION bool hasValidId () const

Has the TypedText been set to a proper value?

Returns:

Is the id valid.

TypedText
explicit TypedText (const TypedTextId id =TYPED_TEXT_INVALID)

Initializes a new instance of the TypedText class.

Parameters:
id (Optional) The identifier.

~TypedText
virtual ~TypedText ()

Finalizes an instance of the TypedText class.

registerTexts
static void registerTexts (const Texts * t)

Registers an array of texts.

This function is called automatically from touchgfx_generic_init(). Should not be called under
normal circumstances.

Parameters:
t The array of texts.

registerTypedTextDatabase
static void registerTypedTextDatabase (const TypedTextData * data ,

const Font const f ,
const uint16_t n
)

Registers an array of typed texts.

All typed text instances are bound to this database. This function is called automatically when
setting a new language. Use Texts::setLanguage() instead of calling this function directly.

Parameters:
data A reference to the TypedTextData storage array.
f The fonts associated with the array.
n The number of typed texts in the array.

Version: 4.16

TypedTextData
The data structure for typed texts.

Public Attributes
const Alignment alignment

The alignment of the typed text (LEFT,CENTER,RIGHT)

const TextDirection direction
The text direction (LTR,RTL,...) of the typed text.

const unsigned char fontIdx
The ID of the font associated with the typed text.

Public Attributes Documentation
alignment

const Alignment alignment

The alignment of the typed text (LEFT,CENTER,RIGHT)

direction
const TextDirection direction

The text direction (LTR,RTL,...) of the typed text.

fontIdx
const unsigned char fontIdx

The ID of the font associated with the typed text.

Version: 4.16

UIEventListener
This class declares a handler interface for user interface events, i.e. events generated by the users
interaction with the device. With the exception of the system timer tick, all other system events, which
are not related to the user interface device peripherals (display, keys etc.) are not part of this interface.

Inherited by: Application

Public Functions
virtual void handleClickEvent(const ClickEvent & event)

This handler is invoked when a mouse click or display touch event has been detected by
the system.

virtual void handleDragEvent(const DragEvent & event)
This handler is invoked when a drag event has been detected by the system.

virtual void handleGestureEvent(const GestureEvent & event)
This handler is invoked when a gesture event has been detected by the system.

virtual void handleKeyEvent(uint8_t c)
This handler is invoked when a key (or button) event has been detected by the system.

virtual void handlePendingScreenTransition()
This handler is invoked when a change screen event is pending.

virtual void handleTickEvent()
This handler is invoked when a system tick event has been generated.

virtual ~UIEventListener()
Finalizes an instance of the UIEventListener class.

Public Functions Documentation
handleClickEvent

virtual void handleClickEvent (const ClickEvent & event)

This handler is invoked when a mouse click or display touch event has been detected by the
system.

Parameters:
event The event data.

Reimplemented by: touchgfx::Application::handleClickEvent

handleDragEvent
virtual void handleDragEvent (const DragEvent & event)

This handler is invoked when a drag event has been detected by the system.

Parameters:
event The event data.

Reimplemented by: touchgfx::Application::handleDragEvent

handleGestureEvent
virtual void handleGestureEvent (const GestureEvent & event)

This handler is invoked when a gesture event has been detected by the system.

Parameters:
event The event data.

Reimplemented by: touchgfx::Application::handleGestureEvent

handleKeyEvent
virtual void handleKeyEvent (uint8_t c)

This handler is invoked when a key (or button) event has been detected by the system.

Parameters:
c The key or button pressed.

Reimplemented by: touchgfx::Application::handleKeyEvent

handlePendingScreenTransition
virtual void handlePendingScreenTransition ()

This handler is invoked when a change screen event is pending.

Reimplemented by: touchgfx::MVPApplication::handlePendingScreenTransition,
touchgfx::Application::handlePendingScreenTransition

handleTickEvent
virtual void handleTickEvent ()

This handler is invoked when a system tick event has been generated.

The system tick period is configured in the HAL.

Reimplemented by: touchgfx::Application::handleTickEvent

~UIEventListener
virtual ~UIEventListener ()

Finalizes an instance of the UIEventListener class.

Version: 4.16

Unicode
This class provides simple helper functions for working with strings which are stored as a null-
terminated array of 16-bit characters.

Public Types
typedef uint16_t UnicodeChar

Use the UnicodeChar typename when referring to characters in a string.

Public Functions
int atoi(const UnicodeChar * s)

String to integer conversion.

uint16_t fromUTF8(const uint8_t utf8, UnicodeChar dst, uint16_t maxchars)
Convert a string from UTF8 to Unicode.

void itoa(int32_t value, UnicodeChar * buffer, uint16_t bufferSize, int radix)
Integer to ASCII conversion.

UnicodeChar * snprintf(UnicodeChar dst, uint16_t dstSize, const char format, ...)
Formats a string and adds null termination.

UnicodeChar * snprintf(UnicodeChar dst, uint16_t dstSize, const UnicodeChar format, ...)
Formats a string and adds null termination.

UnicodeChar * snprintfFloat(UnicodeChar dst, uint16_t dstSize, const char format, const float
value)
Variant of snprintfFloats() for exactly one float only.

UnicodeChar * snprintfFloat(UnicodeChar dst, uint16_t dstSize, const UnicodeChar format, const
float value)
Variant of snprintfFloats() for exactly one float only.

UnicodeChar * snprintfFloats(UnicodeChar dst, uint16_t dstSize, const char format, const float *
values)
Variant of snprintf for floats only.

UnicodeChar * snprintfFloats(UnicodeChar dst, uint16_t dstSize, const UnicodeChar format, const
float * values)
Variant of snprintf for floats only.

uint16_t strlen(const char * str)
Gets the length of a null-terminated string.

uint16_t strlen(const UnicodeChar * str)
Gets the length of a null-terminated Unicode string.

int strncmp(const UnicodeChar RESTRICT str1, const UnicodeChar RESTRICT str2,
uint16_t maxchars)
Compares up to maxchars characters in two strings.

int strncmp_ignore_whitespace(const UnicodeChar RESTRICT str1, const UnicodeChar
RESTRICT str2, uint16_t maxchars)
Like strncmp except that ignore any whitespaces in the two strings.

uint16_t strncpy(UnicodeChar RESTRICT dst, const char RESTRICT src, uint16_t maxchars)
Copy a string to a destination buffer, char to UnicodeChar version.

uint16_t strncpy(UnicodeChar RESTRICT dst, const UnicodeChar RESTRICT src, uint16_t
maxchars)
Copy a string to a destination buffer, UnicodeChar to UnicodeChar version.

uint16_t toUTF8(const UnicodeChar unicode, uint8_t utf8, uint16_t maxbytes)
Converts a string from Unicode to UTF8.

void utoa(uint32_t value, UnicodeChar * buffer, uint16_t bufferSize, int radix)
Integer to ASCII conversion.

UnicodeChar * vsnprintf(UnicodeChar dst, uint16_t dstSize, const char format, va_list pArg)
Variant of snprintf.

UnicodeChar * vsnprintf(UnicodeChar dst, uint16_t dstSize, const UnicodeChar format, va_list
pArg)
Variant of snprintf.

Public Types Documentation
UnicodeChar

typedef uint16_t UnicodeChar

Use the UnicodeChar typename when referring to characters in a string.

Public Functions Documentation
atoi

static int atoi (const UnicodeChar * s)

String to integer conversion.

Starts conversion at the start of the string. Running digits from here are converted. Only radix 10
supported.

Parameters:
s Radix 10, null-terminated Unicode string to convert.

Returns:

The converted integer value of the string, 0 if the string does not start with a digit.

fromUTF8
static uint16_t fromUTF8 (const uint8_t * utf8 ,

UnicodeChar * dst ,
uint16_t maxchars
)

Convert a string from UTF8 to Unicode.

The conversion stops if there is no more room in the destination or if the terminating zero
character has been converted.

Parameters:
utf8 The UTF8 string.
dst The destination buffer for the converted string.
maxchars The maximum number of chars that the dst array can hold.

Returns:

The number of characters successfully converted from UTF8 to Unicode including the
terminating zero.

itoa
static void itoa (int32_t value ,

UnicodeChar * buffer ,
uint16_t bufferSize ,
int radix
)

Integer to ASCII conversion.

Supports radix 2 to radix 36.

Parameters:
value to convert.
buffer to place result in.
bufferSize Size of buffer (number of UnicodeChar's).
radix to use (8 for octal, 10 for decimal, 16 for hex)

snprintf
static UnicodeChar * snprintf (UnicodeChar * dst ,

uint16_t dstSize ,
const char * format ,
...
)

Formats a string and adds null termination.

The string is formatted like when the standard printf is used.

Support formats: %c (element type: char), %s (element type: null-terminated UnicodeChar list), %u,
%i, %d, %o, %x (all these are integers formatted in radix 10, 10, 10, 8, 16 respectively).

The number formats (%u, %i, %d, %o and %x) all support

Where flags can be:

'-': left justify the field (see width).
'+': force sign.
' ': insert space if value is positive.
'0': left pad with zeros instead of spaces (see width). Where width is the desired width of the
output. If the value is larger, more characters may be generated, but not more than the

\%[flags][width][.precision]X

parameter dstSize. If width is '*' the actual width is read from the parameters passed to this
function.

Where precision is the number of number of digits after the decimal point, default is

1. Use "\%.f" to not generate any numbers after the decimal point. If precision is '*' the actual
precision is read from the parameters passed to this function.

Parameters:
dst Buffer for the formatted string.
dstSize Size of the dst buffer measured by number of UnicodeChars the buffer can hold.
format The format string.
... The values to insert in the format string.

Returns:

pointer to the first element in the buffer where the formatted string is placed.

NOTE

%f is not supported by this function because floats are converted to doubles when given as parameters in a
variable argument list (va_list). Use snprintfFloat or snprintfFloats instead.

See also:

snprintfFloat, snprintfFloats snprintfFloat, snprintfFloats

snprintf
static UnicodeChar * snprintf (UnicodeChar * dst ,

uint16_t dstSize ,
const UnicodeChar * format ,
...
)

Formats a string and adds null termination.

The string is formatted like when the standard printf is used.

Support formats: %c (element type: char), %s (element type: null-terminated UnicodeChar list), %u,
%i, %d, %o, %x (all these are integers formatted in radix 10, 10, 10, 8, 16 respectively).

The number formats (%u, %i, %d, %o and %x) all support %[0][length]X to specify the size of the
generated field (length) and whether the number should be prefixed with zeros (or blanks).

Parameters:
dst Buffer for the formatted string.

dstSize Size of the dst buffer measured by number of UnicodeChars the buffer can hold.
format The format string.
... The values to insert in the format string.

Returns:

pointer to the first element in the buffer where the formatted string is placed.

NOTE

%f is not supported by this function because floats are converted to doubles when given as parameters in a
variable argument list (va_list). Use snprintfFloat or snprintfFloats instead.

See also:

snprintfFloat, snprintfFloats

snprintfFloat
static UnicodeChar * snprintfFloat (UnicodeChar * dst ,

uint16_t dstSize ,
const char * format ,
const float value
)

Variant of snprintfFloats() for exactly one float only.

The number format supports only one %f with flags/modifiers. The following is supported:

Where flags can be:

'-': left justify the field (see width).
'+': force sign.
' ': insert space if value is positive.
'#': insert decimal point even if there are not decimals.
'0': left pad with zeros instead of spaces (see width). Where width is the desired width of the
output. If the value is larger, more characters may be generated, but not more than the
parameter dstSize.

Where precision is the number of number of digits after the decimal point, default is "3". Use "\%.f"
to not generate any numbers after the decimal point.

\%[flags][width][.precision]f

Filename: .cpp

If more control over the output is needed, see snprintfFloats which can have more than a single
"\%f" in the string and also supports "*" in place of a number.

Parameters:
dst Buffer for the formatted string.
dstSize Size of the dst buffer measured by number of UnicodeChars the buffer can hold.
format The format string containing exactly on occurrence of f.
value The floating point value to insert for f.

Returns:

pointer to the first element in the buffer where the formatted string is placed.

See also:

snprintf, snprintfFloats

snprintfFloat
static UnicodeChar * snprintfFloat (UnicodeChar * dst ,

uint16_t dstSize ,
const UnicodeChar * format ,
const float value
)

Variant of snprintfFloats() for exactly one float only.

The number format supports only one %f with flags/modifiers. The following is supported:

Where flags can be:

'-': left justify the field (see width).

Unicode::UnicodeChar buffer[20];
Unicode::snprintfFloat(buffer, 20, "%6.4f", 3.14159f);
// buffer="3.1416"
Unicode::snprintfFloat(buffer, 20, "%#6.f", 3.14159f);
// buffer=" 3."
Unicode::snprintfFloat(buffer, 20, "%6f", 3.14159f);
// buffer=" 3.142"
Unicode::snprintfFloat(buffer, 20, "%+06.f", 3.14159f);
// buffer="+00003"

\%[flags][width][.precision]f

'+': force sign.
' ': insert space if value is positive.
'#': insert decimal point even if there are not decimals.
'0': left pad with zeros instead of spaces (see width). Where width is the desired width of the
output. If the value is larger, more characters may be generated, but not more than the
parameter dstSize.

Where precision is the number of number of digits after the decimal point, default is "3". Use "\%.f"
to not generate any numbers after the decimal point.

Filename: .cpp

If more control over the output is needed, see snprintfFloats which can have more than a single
"\%f" in the string and also supports "*" in place of a number.

Parameters:
dst Buffer for the formatted string.
dstSize Size of the dst buffer measured by number of UnicodeChars the buffer can hold.
format The format string containing exactly on occurrence of f.
value The floating point value to insert for f.

Returns:

pointer to the first element in the buffer where the formatted string is placed.

See also:

snprintf, snprintfFloats

snprintfFloats
static UnicodeChar * snprintfFloats (UnicodeChar * dst ,

uint16_t dstSize ,
const char * format ,
const float * values

Unicode::UnicodeChar buffer[20];
Unicode::snprintfFloat(buffer, 20, "%6.4f", 3.14159f);
// buffer="3.1416"
Unicode::snprintfFloat(buffer, 20, "%#6.f", 3.14159f);
// buffer=" 3."
Unicode::snprintfFloat(buffer, 20, "%6f", 3.14159f);
// buffer=" 3.142"
Unicode::snprintfFloat(buffer, 20, "%+06.f", 3.14159f);
// buffer="+00003"

)

Variant of snprintf for floats only.

The format supports several %f with flags/modifiers. The following is supported:

Where flags can be:

'-': left justify the field (see width).
'+': force sign.
' ': insert space if value is positive
'#': insert decimal point even if there are not decimals
'0': left pad with zeros instead of spaces (see width) Where width is the desired width of the
output. If the value is larger, more characters may be generated, but not more than the
parameter dstSize. If width is '*' the actual width is read from the list of values passed to this
function.

Where precision is the number of number of digits after the decimal point, default is

1. Use "\%.f" to not generate any numbers after the decimal point. If precision is '*' the actual
precision is read from the list of values passed to this function.

Filename: .cpp

Parameters:
dst Buffer for the formatted string.
dstSize Size of the dst buffer measured by number of UnicodeChars the buffer can hold.
format The format string containing f's.
values The floating point values to insert for f. The number of elements in the array must

match the number of f's in the format string.

Returns:

pointer to the first element in the buffer where the formatted string is placed.

See also:

snprintf, snprintfFloat

\%[flags][width][.precision]f

float param1[3] = { 6.0f, 4.0f, 3.14159f };
Unicode::snprintfFloats(buffer, 20, "%*.*f", param1);
// buffer="3.1416" float param2[2] = { 3.14159f, -123.4f };
Unicode::snprintfFloats(buffer, 20, "%f %f", param2);
// buffer="3.142 -123.400"

snprintfFloats
static UnicodeChar * snprintfFloats (UnicodeChar * dst ,

uint16_t dstSize ,
const UnicodeChar * format ,
const float * values
)

Variant of snprintf for floats only.

The format supports several %f with flags/modifiers. The following is supported:

Where flags can be:

'-': left justify the field (see width).
'+': force sign.
' ': insert space if value is positive
'#': insert decimal point even if there are not decimals
'0': left pad with zeros instead of spaces (see width) Where width is the desired width of the
output. If the value is larger, more characters may be generated, but not more than the
parameter dstSize. If width is '*' the actual width is read from the list of values passed to this
function.

Where precision is the number of number of digits after the decimal point, default is

1. Use "\%.f" to not generate any numbers after the decimal point. If precision is '*' the actual
precision is read from the list of values passed to this function.

Filename: .cpp

Parameters:
dst Buffer for the formatted string.
dstSize Size of the dst buffer measured by number of UnicodeChars the buffer can hold.
format The format string containing f's.

\%[flags][width][.precision]f

float param1[3] = { 6.0f, 4.0f, 3.14159f };
Unicode::snprintfFloats(buffer, 20, "%*.*f", param1);
// buffer="3.1416" float param2[2] = { 3.14159f, -123.4f };
Unicode::snprintfFloats(buffer, 20, "%f %f", param2);
// buffer="3.142 -123.400"

values The floating point values to insert for f. The number of elements in the array must
match the number of f's in the format string.

Returns:

pointer to the first element in the buffer where the formatted string is placed.

See also:

snprintf, snprintfFloat

strlen
static uint16_t strlen (const char * str)

Gets the length of a null-terminated string.

Parameters:
str The string.

Returns:

Length of string.

strlen
static uint16_t strlen (const UnicodeChar * str)

Gets the length of a null-terminated Unicode string.

Parameters:
str The string in question.

Returns:

Length of string.

strncmp
static int strncmp (const UnicodeChar *RESTRICT str1 ,

const UnicodeChar *RESTRICT str2 ,
uint16_t maxchars
)

Compares up to maxchars characters in two strings.

One character from each buffer is compared, one at a time until the characters differ, until a
terminating null- character is reached, or until maxchars characters match in both strings,
whichever happens first.

Parameters:
str1 The first string.
str2 The second string.
maxchars The maximum number of chars to compare.

Returns:

Returns an integral value indicating the relationship between the strings: A zero value indicates
that the characters compared in both strings are all equal. A value greater than zero indicates
that the first character that does not match has a greater value in str1 than in str2; And a value
less than zero indicates the opposite.

strncmp_ignore_whitespace
static int strncmp_ignore_whitespace (const UnicodeChar *RESTRICT str1 ,

const UnicodeChar *RESTRICT str2 ,
uint16_t maxchars
)

Like strncmp except that ignore any whitespaces in the two strings.

Parameters:
str1 The first string.
str2 The second string.
maxchars The maximum number of chars to compare.

Returns:

Returns an integral value indicating the relationship between the strings: A zero value indicates
that the characters compared in both strings are all equal. A value greater than zero indicates
that the first character that does not match has a greater value in str1 than in str2; And a value
less than zero indicates the opposite.

strncpy
static uint16_t strncpy (UnicodeChar *RESTRICT dst ,

const char *RESTRICT src ,
uint16_t maxchars
)

Copy a string to a destination buffer, char to UnicodeChar version.

Stops after copying maxchars Unicode characters or after copying the ending null-termination
UnicodeChar.

Parameters:
dst The destination buffer. Must have a size of at least maxchars.
src The source string.
maxchars Maximum number of chars to copy.

Returns:

The number of characters copied (excluding null-termination if encountered)

NOTE

If there is no null-termination among the first n UnicodeChars of src, the string placed in destination will
NOT be null-terminated!

strncpy
static uint16_t strncpy (UnicodeChar *RESTRICT dst ,

const UnicodeChar *RESTRICT src ,
uint16_t maxchars
)

Copy a string to a destination buffer, UnicodeChar to UnicodeChar version.

Stops after copying maxchars Unicode characters or after copying the ending zero termination
UnicodeChar.

Parameters:
dst The destination buffer. Must have a size of at least maxchars.
src The source string.
maxchars Maximum number of UnicodeChars to copy.

Returns:

The number of characters copied (excluding null-termination if encountered)

NOTE

If there is no null-termination among the first n UnicodeChars of src, the string placed in destination will
NOT be null-terminated!

toUTF8
static uint16_t toUTF8 (const UnicodeChar * unicode ,

uint8_t * utf8 ,
uint16_t maxbytes
)

Converts a string from Unicode to UTF8.

The conversion stops if there is no more room in the destination or if the terminating zero
character has been converted. U+10000 through U+10FFFF are skipped.

Parameters:
unicode The Unicode string.
utf8 The destination buffer for the converted string.
maxbytes The maximum number of bytes that the UTF8 array can hold.

Returns:

The number of characters successfully converted from Unicode to UTF8 including the
terminating zero.

utoa
static void utoa (uint32_t value ,

UnicodeChar * buffer ,
uint16_t bufferSize ,
int radix
)

Integer to ASCII conversion.

Supports radix 2 to radix 36.

Parameters:
value to convert.
buffer to place result in.
bufferSize Size of buffer (number of UnicodeChar's).
radix to use (8 for octal, 10 for decimal, 16 for hex)

vsnprintf
static UnicodeChar * vsnprintf (UnicodeChar * dst ,

uint16_t dstSize ,

const char * format ,
va_list pArg
)

Variant of snprintf.

Parameters:
dst Buffer for the formatted string.
dstSize Size of the dst buffer measured by number of UnicodeChars the buffer can hold.
format The format string.
pArg The values to insert in the format string.

Returns:

pointer to the first element in the buffer where the formatted string is placed.

See also:

snprintf

vsnprintf
static UnicodeChar * vsnprintf (UnicodeChar * dst ,

uint16_t dstSize ,
const UnicodeChar * format ,
va_list pArg
)

Variant of snprintf.

Parameters:
dst Buffer for the formatted string.
dstSize Size of the dst buffer measured by number of UnicodeChars the buffer can hold.
format The format string.
pArg The values to insert in the format string.

Returns:

pointer to the first element in the buffer where the formatted string is placed.

See also:

snprintf

Version: 4.16

Vector
A very simple container class using pre-allocated memory.

Template Parameters:

T The type of objects this container works on.
capacity The maximum number of objects this container can store.

Public Functions
void add(T e)

Adds an element to the Vector if the Vector is not full.

void clear()
Clears the contents of the container.

bool contains(T elem)
Checks if the Vector contains an element.

bool isEmpty() const
Query if this object is empty.

uint16_t maxCapacity() const
Query the maximum capacity of the vector.

T & operator[](uint16_t idx)
Index operator.

const T & operator[](uint16_t idx) const
Const version of the index operator.

void quickRemoveAt(uint16_t index)
Removes an element at the specified index of the Vector.

void remove(T e)
Removes an element from the Vector if found in the Vector.

T removeAt(uint16_t index)

Removes an element at the specified index of the Vector.

void reverse()
Reverses the ordering of the elements in the Vector.

uint16_t size() const
Gets the current size of the Vector which is the number of elements contained in the
Vector.

Vector()
Default constructor.

Public Functions Documentation
add

void add (T e)

Adds an element to the Vector if the Vector is not full.

Adds an element to the Vector if the Vector is not full. Does nothing if the Vector is full.

Parameters:
e The element to add to the Vector.

clear
void clear ()

Clears the contents of the container.

It does not destruct any of the elements in the Vector.

contains
bool contains (T elem)

Checks if the Vector contains an element.

The == operator of the element is used when comparing it with the elements in the Vector.

Parameters:

elem The element.

Returns:

true if the Vector contains the element, false otherwise.

isEmpty
bool isEmpty () const

Query if this object is empty.

Returns:

true if the Vector contains no elements.

maxCapacity
uint16_t maxCapacity () const

Query the maximum capacity of the vector.

Returns:

The capacity the Vector was initialized with.

operator[]
T & operator[] (uint16_t idx)

Index operator.

Parameters:
idx The index of the element to obtain.

Returns:

A reference to the element placed at index idx.

operator[]
const T & operator[] (uint16_t idx)

Const version of the index operator.

Parameters:
idx The index of the element to obtain.

Returns:

A const reference to the element placed at index idx.

quickRemoveAt
void quickRemoveAt (uint16_t index)

Removes an element at the specified index of the Vector.

The last element in the list is moved to the position where the element is removed.

Parameters:
index The index to remove.

remove
void remove (T e)

Removes an element from the Vector if found in the Vector.

Does nothing if the element is not found in the Vector. The == operator of the element is used
when comparing it with the elements in the Vector.

Parameters:
e The element to remove from the Vector.

removeAt
T removeAt (uint16_t index)

Removes an element at the specified index of the Vector.

Will "bubble-down" any remaining elements after the specified index.

Parameters:
index The index to remove.

Returns:

The value of the removed element.

reverse
void reverse ()

Reverses the ordering of the elements in the Vector.

size
uint16_t size () const

Gets the current size of the Vector which is the number of elements contained in the Vector.

Gets the current size of the Vector which is the number of elements contained in the Vector.

Returns:

The size of the Vector.

Vector
Vector ()

Default constructor.

Constructs an empty vector.

Version: 4.16

Vector4
This class represents a homogeneous 3D vector.

See: Quadruple

Inherits from: Quadruple

Public Functions
FORCE_INLINE_FUNCTION Vector4 crossProduct(const Vector4 & operand)

Cross product.

FORCE_INLINE_FUNCTION Vector4()
Initializes a new instance of the Vector4 class.

FORCE_INLINE_FUNCTION Vector4(float x, float y, float z)
Initializes a new instance of the Vector4 class.

Additional inherited members
Public Functions inherited from Quadruple

FORCE_INLINE_FUNCTION float getElement(int row) const
Gets an element.

FORCE_INLINE_FUNCTION float getW() const
Get w coordinate.

FORCE_INLINE_FUNCTION float getX() const
Get x coordinate.

FORCE_INLINE_FUNCTION float getY() const
Get y coordinate.

FORCE_INLINE_FUNCTION float getZ() const
Get z coordinate.

FORCE_INLINE_FUNCTION void setElement(int row, float value)
Sets an element.

FORCE_INLINE_FUNCTION void setW(float value)
Sets a w coordinate.

FORCE_INLINE_FUNCTION void setX(float value)
Sets an x coordinate.

FORCE_INLINE_FUNCTION void setY(float value)
Sets a y coordinate.

FORCE_INLINE_FUNCTION void setZ(float value)
Sets a z coordinate.

Protected Functions inherited from Quadruple
FORCE_INLINE_FUNCTION Quadruple()

Initializes a new instance of the Quadruple class.

FORCE_INLINE_FUNCTION Quadruple(float x, float y, float z, float w)
Initializes a new instance of the Quadruple class.

Protected Attributes inherited from Quadruple
float elements

The elements[4].

Public Functions Documentation
crossProduct

FORCE_INLINE_FUNCTION Vector4 crossProduct (const Vector4 & operand)

Cross product.

Parameters:
operand The second operand.

Returns:

The result of the operation.

Vector4
FORCE_INLINE_FUNCTION Vector4 ()

Initializes a new instance of the Vector4 class.

Vector4
FORCE_INLINE_FUNCTION Vector4 (float x ,

float y ,
float z
)

Initializes a new instance of the Vector4 class.

Parameters:
x The x coordinate.
y The y coordinate.
z The z coordinate.

Version: 4.16

View
This is a generic touchgfx::Screen specialization for normal applications. It provides a link to the
Presenter class.

Template Parameters:

T The type of Presenter associated with this view.

See: Screen

Note: All views in the application must be a subclass of this type.

Inherits from: Screen

Public Functions
void bind(T & presenter)

Binds an instance of a specific Presenter type (subclass) to the View instance.

View()

Protected Attributes
T * presenter

Pointer to the Presenter associated with this view.

Additional inherited members
Public Functions inherited from Screen

virtual void afterTransition()
Called by Application::handleTickEvent() when the transition to the screen is done.

void bindTransition(Transition & trans)

Enables the transition to access the containers.

void draw()
Tells the screen to draw its entire area.

virtual void draw(Rect & rect)
Tell the screen to draw the specified area.

Container & getRootContainer()
Obtain a reference to the root container of this screen.

virtual void handleClickEvent(const ClickEvent & evt)
Traverse the drawables in reverse z-order and notify them of a click event.

virtual void handleDragEvent(const DragEvent & evt)
Traverse the drawables in reverse z-order and notify them of a drag event.

virtual void handleGestureEvent(const GestureEvent & evt)
Handle gestures.

virtual void handleKeyEvent(uint8_t key)
Called by the Application on the reception of a "key", the meaning of which is
platform/application specific.

virtual void handleTickEvent()
Called by the Application on the current screen with a frequency of
Application::TICK_INTERVAL_MS.

void JSMOC(const Rect & invalidatedArea, Drawable * widgetToDraw)
Recursive JSMOC function.

Screen()
Initializes a new instance of the Screen class.

virtual void setupScreen()
Called by Application::switchScreen() when this screen is going to be displayed.

void startSMOC(const Rect & invalidatedArea)
Starts a JSMOC run, analyzing what parts of what widgets should be redrawn.

virtual void tearDownScreen()
Called by Application::switchScreen() when this screen will no longer be displayed.

bool usingSMOC() const

Determines if using JSMOC.

virtual ~Screen()
Finalizes an instance of the Screen class.

Protected Functions inherited from Screen
void add(Drawable & d)

Add a drawable to the content container.

void remove(Drawable & d)
Removes a drawable from the content container.

void useSMOCDrawing(bool enabled)
Determines whether to use JSMOC or painter's algorithm for drawing.

Protected Attributes inherited from Screen
Container container

The container contains the contents of the screen.

Drawable * focus
The drawable currently in focus (set when DOWN_PRESSED is received).

Public Functions Documentation
bind

void bind (T & presenter)

Binds an instance of a specific Presenter type (subclass) to the View instance.

This function is called automatically when a new presenter/view pair is activated.

Parameters:
presenter The specific Presenter to be associated with the View.

View

View ()

Protected Attributes Documentation
presenter

T * presenter

Pointer to the Presenter associated with this view.

Version: 4.16

Widget
A Widget is an element which can be displayed (drawn) in the framebuffer. Hence a Widget is a
subclass of Drawable. It implements getLastChild(), but leaves the implementation of draw() and
getSolidRect() to subclasses of Widget, so it is still an abstract class.

If a Widget contains more than one logical element, consider implementing several subclasses of
Widget and create a Container with the Widgets.

See: Drawable

Inherits from: Drawable

Inherited by: AbstractButton, Box, CanvasWidget, Image, PixelDataWidget, SnapshotWidget, TextArea,
WipeTransition< templateDirection >::FullSolidRect

Public Functions
virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result,
but only if the Widget isVisible and isTouchable.

Additional inherited members
Public Functions inherited from Drawable

virtual void childGeometryChanged()
This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)

Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

Drawable * getNextSibling()
Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)

Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable instance has subscribed to
timer ticks.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const
Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

virtual void setWidth(int16_t width)

Sets the width of this drawable.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent

Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Functions Documentation
getLastChild

virtual void getLastChild (int16_t x ,
int16_t y ,
Drawable ** last
)

Since a Widget is only one Drawable, Widget::getLastChild simply yields itself as result, but only if
the Widget isVisible and isTouchable.

Parameters:
x Not used since this Widget is the only "child".
y Not used since this Widget is the only "child".
last Result, the address of the actual instance of the Widget.

Reimplements: touchgfx::Drawable::getLastChild

Version: 4.16

WildcardTextButtonStyle
A wildcard text button style. An wildcard text button style. This class is supposed to be used with one
of the ButtonTrigger classes to create a functional button. This class will show a text with a wildcard in
one of two colors depending on the state of the button (pressed or released).

The WildcardTextButtonStyle does not set the size of the enclosing container (normally
AbstractButtonContainer). The size must be set manually.

To get a background behind the text, use WildcardTextButtonStyle together with e.g.
ImageButtonStyle:

The position of the text can be adjusted with setTextXY (default is centered).

Template Parameters:

T Generic type parameter. Typically a AbstractButtonContainer subclass.

See: AbstractButtonContainer

Inherits from: T

Public Functions
void setWildcardText(TypedText t)

Sets wildcard text.

void setWildcardTextBuffer(const Unicode::UnicodeChar * buffer)
Sets wildcard text buffer.

void setWildcardTextColors(colortype newColorReleased, colortype newColorPressed)
Sets wild card text colors.

void setWildcardTextPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets text position and dimensions.

void setWildcardTextRotation(TextRotation rotation)

WildcardTextButtonStyle<ImageButtonStyle<ClickButtonTrigger> > myButton;

Sets wildcard text rotation.

void setWildcardTextX(int16_t x)
Sets wildcard text x coordinate.

void setWildcardTextXY(int16_t x, int16_t y)
Sets wildcard text position.

void setWildcardTextY(int16_t y)
Sets wildcard text y coordinate.

WildcardTextButtonStyle()

Protected Functions
virtual void handleAlphaUpdated()

Handles what should happen when the alpha is updated.

virtual void handlePressedUpdated()
Handles what should happen when the pressed state is updated.

Protected Attributes
colortype colorPressed

The color pressed.

colortype colorReleased
The color released.

TextAreaWithOneWildcard wildcardText
The wildcard text.

Public Functions Documentation
setWildcardText

void setWildcardText (TypedText t)

Sets wildcard text.

Parameters:
t A TypedText to process.

setWildcardTextBuffer
void setWildcardTextBuffer (const Unicode::UnicodeChar * buffer)

Sets wildcard text buffer.

Parameters:
buffer If non-null, the buffer.

setWildcardTextColors
void setWildcardTextColors (colortype newColorReleased ,

colortype newColorPressed
)

Sets wild card text colors.

Parameters:
newColorReleased The new color released.
newColorPressed The new color pressed.

setWildcardTextPosition
void setWildcardTextPosition (int16_t x ,

int16_t y ,
int16_t width ,
int16_t height
)

Sets text position and dimensions.

Parameters:
x The x coordinate.
y The y coordinate.
width The width of the text.
height The height of the text.

setWildcardTextRotation
void setWildcardTextRotation (TextRotation rotation)

Sets wildcard text rotation.

Parameters:
rotation The rotation.

setWildcardTextX
void setWildcardTextX (int16_t x)

Sets wildcard text x coordinate.

Parameters:
x The x coordinate.

setWildcardTextXY
void setWildcardTextXY (int16_t x ,

int16_t y
)

Sets wildcard text position.

Parameters:
x The x coordinate.
y The y coordinate.

setWildcardTextY
void setWildcardTextY (int16_t y)

Sets wildcard text y coordinate.

Parameters:
y The y coordinate.

WildcardTextButtonStyle

WildcardTextButtonStyle ()

Protected Functions Documentation
handleAlphaUpdated

virtual void handleAlphaUpdated ()

Handles what should happen when the alpha is updated.

handlePressedUpdated
virtual void handlePressedUpdated ()

Handles what should happen when the pressed state is updated.

Protected Attributes Documentation
colorPressed

colortype colorPressed

The color pressed.

colorReleased
colortype colorReleased

The color released.

wildcardText
TextAreaWithOneWildcard wildcardText

The wildcard text.

Version: 4.16

WipeTransition
A Transition that expands the new screen over the previous from the given direction. This transition
only draws the pixels in the framebuffer once, and never moves any pixels. It is therefore very usefull
on MCUs with limited performance.

Inherits from: Transition

Public Classes
class FullSolidRect

A Widget that reports solid and but does not draw anything.

Public Functions
virtual void handleTickEvent()

Handles the tick event when transitioning.

virtual void init()
Initializes the transition.

virtual void invalidate()
Wipe transition does not require an invalidation.

virtual void tearDown()
Tears down the Animation.

WipeTransition(const uint8_t transitionSteps =20)
Initializes a new instance of the WipeTransition class.

Additional inherited members
Public Functions inherited from Transition

bool isDone() const

Query if the transition is done transitioning.

virtual void setScreenContainer(Container & cont)
Sets the ScreenContainer.

Transition()
Initializes a new instance of the Transition class.

virtual ~Transition()
Finalizes an instance of the Transition class.

Protected Attributes inherited from Transition
bool done

Flag that indicates when the transition is done. This should be set by implementing
classes.

Container * screenContainer
The screen Container of the Screen transitioning to.

Public Functions Documentation
handleTickEvent

virtual void handleTickEvent ()

Handles the tick event when transitioning.

It uncovers and invalidates increasing parts of the new screen elements.

Reimplements: touchgfx::Transition::handleTickEvent

init
virtual void init ()

Initializes the transition.

Called after the constructor is called, when the application changes the transition.

Reimplements: touchgfx::Transition::init

invalidate
virtual void invalidate ()

Wipe transition does not require an invalidation.

Invalidation is handled by the class. Do no invalidation initially.

Reimplements: touchgfx::Transition::invalidate

tearDown
virtual void tearDown ()

Tears down the Animation.

Called before the destructor is called, when the application changes the transition.

Reimplements: touchgfx::Transition::tearDown

WipeTransition
WipeTransition (const uint8_t transitionSteps =20)

Initializes a new instance of the WipeTransition class.

Parameters:
transitionSteps (Optional) Number of steps in the transition animation.

Version: 4.16

ZoomAnimationImage
Class for optimizing and wrapping move and zoom operations on a ScalableImage. The
ZoomAnimationImage takes two bitmaps representing the same image but at a small and a large
resolution. These bitmaps should be the sizes that are used when not animating the image. The
ZoomAnimationImage will use an Image for displaying the Bitmap when its width and height matches
either of them. When it does not match the size of one of the bitmaps, it will use a ScalableImage
instead. The main idea is that the supplied bitmaps should be the end points of the zoom animation
so that it ends up using an Image when not animating. This is, however, not a requirement. You can
animate from and to sizes that are not equal the sizes of the bitmaps. The result is a container that has
the high performance of an ordinary image when the size matches the pre-rendered bitmaps.
Moreover it supplies easy to use animation functions that lets you zoom and move the image.

Note: Since this container uses the ScalableImage it has the same restrictions as a ScaleableImage, i.e.
1bpp is not supported.

Inherits from: Container, Drawable

Public Types

enum
ZoomMode { FIXED_CENTER, FIXED_LEFT, FIXED_RIGHT, FIXED_TOP, FIXED_BOTTOM,
FIXED_LEFT_AND_TOP, FIXED_RIGHT_AND_TOP, FIXED_LEFT_AND_BOTTOM,
FIXED_RIGHT_AND_BOTTOM }
A ZoomMode describes in which direction the image will grow/shrink when do a zoom
animation.

Protected Types
enum States { ANIMATE_ZOOM, ANIMATE_ZOOM_AND_MOVE, NO_ANIMATION }

Animation states.

Public Functions
void cancelZoomAnimation()

Cancel zoom animation.

virtual uint8_t getAlpha() const
Gets the current alpha value of the widget.

virtual uint16_t getAnimationDelay() const
Gets the current animation delay.

Bitmap getLargeBitmap() const
Gets the large bitmap.

virtual ScalableImage::ScalingAlgorithm getScalingMode()
Gets the scaling algorithm of the ScalableImage.

Bitmap getSmallBitmap() const
Gets the small bitmap.

virtual void handleTickEvent()
Called periodically by the framework if the Drawable
instance has subscribed to timer ticks.

bool isZoomAnimationRunning() const
Is there currently an animation running.

virtual void setAlpha(uint8_t newAlpha)
Sets the opacity (alpha value).

virtual void setAnimationDelay(uint16_t delay)
Sets a delay on animations done by the
ZoomAnimationImage.

void setAnimationEndedCallback(GenericCallback< const
ZoomAnimationImage & > & callback)
Associates an action to be performed when the
animation ends.

void setBitmaps(const Bitmap & smallBitmap, const Bitmap
& largeBitmap)
Initializes the bitmap of the image to be used.

virtual void setHeight(int16_t height)
Sets the height of this drawable.

virtual void setScalingMode(ScalableImage::ScalingAlgorithm
mode)
Sets the algorithm to be used.

virtual void setWidth(int16_t width)
Sets the width of this drawable.

void

startZoomAndMoveAnimation(int16_t endX, int16_t
endY, int16_t endWidth, int16_t endHeight, uint16_t
duration, ZoomMode zoomMode
=FIXED_LEFT_AND_TOP, EasingEquation
xProgressionEquation
=&EasingEquations::linearEaseNone, EasingEquation
yProgressionEquation
=&EasingEquations::linearEaseNone, EasingEquation
widthProgressionEquation
=&EasingEquations::linearEaseNone, EasingEquation
heightProgressionEquation
=&EasingEquations::linearEaseNone)
Setup and starts the zoom and move animation.

void

startZoomAnimation(int16_t endWidth, int16_t
endHeight, uint16_t duration, ZoomMode zoomMode
=FIXED_LEFT_AND_TOP, EasingEquation
widthProgressionEquation
=&EasingEquations::linearEaseNone, EasingEquation
heightProgressionEquation
=&EasingEquations::linearEaseNone)
Setup and starts the zoom animation.

ZoomAnimationImage()

Protected Functions
virtual void setCurrentState(States state)

Sets the current animation state and reset the animation counter.

void
startTimerAndSetParameters(int16_t endWidth, int16_t endHeight, uint16_t duration,
ZoomMode zoomMode, EasingEquation widthProgressionEquation, EasingEquation
heightProgressionEquation)
Starts timer and set parameters.

virtual void updateRenderingMethod()
Chooses the optimal rendering of the image given the current width and height.

virtual void updateZoomAnimationDeltaXY()

Calculates the change in X and Y caused by the zoom animation given the current
ZoomMode.

Protected Attributes
uint32_t animationCounter

The progress counter for the animation.

uint16_t animationDuration
Duration of the animation.

GenericCallback< const ZoomAnimationImage & > * animationEndedAction
The animation ended action.

States currentState
The current animation state.

ZoomMode currentZoomMode
The ZoomMode to use by the animation.

Image image
The image for displaying the bitmap when
the width/height is equal one of the
bitmaps.

Bitmap largeBmp
The bitmap representing the large image.

int16_t moveAnimationEndX
The move animation end x coordinate.

int16_t moveAnimationEndY
The move animation end y coordinate.

EasingEquation moveAnimationXEquation
The move animation x coordinate equation.

EasingEquation moveAnimationYEquation
The move animation y coordinate equation.

ScalableImage scalableImage

The scalable image for displaying the
bitmap when the width/height is not equal
one of the bitmaps.

Bitmap smallBmp
The bitmap representing the small image.

uint16_t zoomAnimationDelay
A delay that is applied before animation
start. Expressed in ticks.

int16_t zoomAnimationDeltaX
The zoom animation delta x.

int16_t zoomAnimationDeltaY
The zoom animation delta y.

int16_t zoomAnimationEndHeight
Height of the zoom animation end.

int16_t zoomAnimationEndWidth
Width of the zoom animation end.

EasingEquation zoomAnimationHeightEquation
The zoom animation height equation.

int16_t zoomAnimationStartHeight
Height of the zoom animation start.

int16_t zoomAnimationStartWidth
Width of the zoom animation start.

int16_t zoomAnimationStartX
The zoom animation start x coordinate.

int16_t zoomAnimationStartY
The zoom animation start y coordinate.

EasingEquation zoomAnimationWidthEquation
The zoom animation width equation.

Additional inherited members

Public Functions inherited from Container
virtual void add(Drawable & d)

Adds a Drawable instance as child to this Container.

Container()

virtual bool contains(const Drawable & d)
Query if a given Drawable has been added directly to this Container.

virtual void draw(const Rect & invalidatedArea) const
Draw this drawable.

virtual void forEachChild(GenericCallback< Drawable & > * function)
Executes the specified callback function for each child in the Container.

virtual Drawable * getFirstChild()
Obtain a pointer to the first child of this container.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last)
Gets the last child in the list of children in this Container.

virtual Rect getSolidRect() const
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual void insert(Drawable * previous, Drawable & d)
Inserts a Drawable after a specific child node.

virtual void remove(Drawable & d)
Removes a Drawable from the container by removing it from the linked list of
children.

virtual void removeAll()
Removes all children in the Container by resetting their parent and sibling
pointers.

virtual void unlink()
Removes all children by unlinking the first child.

Protected Functions inherited from Container
virtual Rect getContainedArea() const

Gets a rectangle describing the total area covered by the children of this container.

virtual void moveChildrenRelative(int16_t deltaX, int16_t deltaY)
Calls moveRelative on all children.

Protected Attributes inherited from Container
Drawable * firstChild

Pointer to the first child of this container. Subsequent children can be found through
firstChild's nextSibling.

Public Functions inherited from Drawable
virtual void childGeometryChanged()

This function can be called on parent nodes to signal that the size or position of
one or more of its children has changed.

virtual void draw(const Rect & invalidatedArea) const =0
Draw this drawable.

Drawable()
Initializes a new instance of the Drawable class.

void drawToDynamicBitmap(BitmapId id)
Render the Drawable object into a dynamic bitmap.

Rect getAbsoluteRect() const
Helper function for obtaining the rectangle this Drawable covers, expressed in
absolute coordinates.

virtual Drawable * getFirstChild()
Function for obtaining the first child of this drawable if any.

int16_t getHeight() const
Gets the height of this Drawable.

virtual void getLastChild(int16_t x, int16_t y, Drawable ** last) =0
Function for obtaining the the last child of this drawable that intersects with the
specified point.

Drawable * getNextSibling()

Gets the next sibling node.

Drawable * getParent() const
Returns the parent node.

const Rect & getRect() const
Gets the rectangle this Drawable covers, in coordinates relative to its parent.

virtual Rect getSolidRect() const =0
Get (the largest possible) rectangle that is guaranteed to be solid (opaque).

virtual Rect getSolidRectAbsolute()
Helper function for obtaining the largest solid rect (as implemented by
getSolidRect()) expressed in absolute coordinates.

virtual void getVisibleRect(Rect & rect) const
Function for finding the visible part of this drawable.

int16_t getWidth() const
Gets the width of this Drawable.

int16_t getX() const
Gets the x coordinate of this Drawable, relative to its parent.

int16_t getY() const
Gets the y coordinate of this Drawable, relative to its parent.

virtual void handleClickEvent(const ClickEvent & evt)
Defines the event handler interface for ClickEvents.

virtual void handleDragEvent(const DragEvent & evt)
Defines the event handler interface for DragEvents.

virtual void handleGestureEvent(const GestureEvent & evt)
Defines the event handler interface for GestureEvents.

virtual void invalidate() const
Tell the framework that this entire Drawable needs to be redrawn.

virtual void invalidateRect(Rect & invalidatedArea) const
Request that a region of this drawable is redrawn.

bool isTouchable() const

Gets whether this Drawable receives touch events or not.

bool isVisible() const
Gets whether this Drawable is visible.

virtual void moveRelative(int16_t x, int16_t y)
Moves the drawable.

virtual void moveTo(int16_t x, int16_t y)
Moves the drawable.

void setPosition(const Drawable & drawable)
Sets the position of the Drawable to the same as the given Drawable.

void setPosition(int16_t x, int16_t y, int16_t width, int16_t height)
Sets the size and position of this Drawable, relative to its parent.

void setTouchable(bool touch)
Controls whether this Drawable receives touch events or not.

void setVisible(bool vis)
Controls whether this Drawable should be visible.

void setWidthHeight(const Bitmap & bitmap)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Drawable & drawable)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(const Rect & rect)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

void setWidthHeight(int16_t width, int16_t height)
Sets the dimensions (width and height) of the Drawable without changing the x
and y coordinates).

virtual void setX(int16_t x)
Sets the x coordinate of this Drawable, relative to its parent.

void setXY(const Drawable & drawable)
Sets the x and y coordinates of this Drawable.

void setXY(int16_t x, int16_t y)
Sets the x and y coordinates of this Drawable, relative to its parent.

virtual void setY(int16_t y)
Sets the y coordinate of this Drawable, relative to its parent.

virtual void translateRectToAbsolute(Rect & r) const
Helper function for converting a region of this Drawable to absolute
coordinates.

virtual ~Drawable()
Finalizes an instance of the Drawable class.

Protected Attributes inherited from Drawable
Drawable * nextSibling

Pointer to the next Drawable.

Drawable * parent
Pointer to this drawable's parent.

Rect rect
The coordinates of this Drawable, relative to its parent.

bool touchable
True if this drawable should receive touch events.

bool visible
True if this drawable should be drawn.

Public Types Documentation
ZoomMode

enum ZoomMode

A ZoomMode describes in which direction the image will grow/shrink when do a zoom animation.

FIXED_CENTER The small image will grow from the center of the large image.

FIXED_LEFT The small image will grow from the middle of the left side of the
large image.

FIXED_RIGHT The small image will grow from the middle of the right side of the
large image.

FIXED_TOP The small image will grow from the middle of the top of the large
image.

FIXED_BOTTOM The small image will grow from the middle of the bottom of the
large image.

FIXED_LEFT_AND_TOP The small image will grow from the top left corner of the large
image.

FIXED_RIGHT_AND_TOP The small image will grow from the top right corner of the large
image.

FIXED_LEFT_AND_BOTTOM The small image will grow from the bottom left corner of the
large image.

FIXED_RIGHT_AND_BOTTOM The small image will grow from the bottom right corner of the
large image.

Protected Types Documentation
States

enum States

Animation states.

ANIMATE_ZOOM Zoom animation state.
ANIMATE_ZOOM_AND_MOVE Zoom and move animation state.
NO_ANIMATION No animation state.

Public Functions Documentation
cancelZoomAnimation

void cancelZoomAnimation ()

Cancel zoom animation.

The image is left in the position and size it is currently at.

getAlpha
virtual uint8_t getAlpha () const

Gets the current alpha value of the widget.

The alpha value is in range 255 (solid) to 0 (invisible).

Returns:

The current alpha value.

See also:

setAlpha

getAnimationDelay
virtual uint16_t getAnimationDelay () const

Gets the current animation delay.

Returns:

The current animation delay. Expressed in ticks.

See also:

setAnimationDelay

getLargeBitmap
Bitmap getLargeBitmap () const

Gets the large bitmap.

Returns:

the large bitmap.

See also:

setBitmaps

getScalingMode
virtual ScalableImage::ScalingAlgorithm getScalingMode ()

Gets the scaling algorithm of the ScalableImage.

Returns:

the scaling algorithm used.

See also:

setScalingMode

getSmallBitmap
Bitmap getSmallBitmap () const

Gets the small bitmap.

Returns:

the small bitmap.

See also:

setBitmaps

handleTickEvent
virtual void handleTickEvent ()

Called periodically by the framework if the Drawable instance has subscribed to timer ticks.

See also:

Application::registerTimerWidget

Reimplements: touchgfx::Drawable::handleTickEvent

isZoomAnimationRunning
bool isZoomAnimationRunning () const

Is there currently an animation running.

Returns:

true if there is an animation running.

setAlpha
virtual void setAlpha (uint8_t newAlpha)

Sets the opacity (alpha value).

This can be used to fade it away by gradually decreasing the alpha value from 255 (solid) to 0
(invisible).

Parameters:
newAlpha The new alpha value. 255=solid, 0=invisible.

NOTE

The user code must call invalidate() in order to update the display.

See also:

getAlpha

setAnimationDelay
virtual void setAnimationDelay (uint16_t delay)

Sets a delay on animations done by the ZoomAnimationImage.

Defaults to 0 which means that the animation starts immediately.

Parameters:
delay The delay in ticks.

See also:

getAnimationDelay

setAnimationEndedCallback

void setAnimationEndedCallback (GenericCallback< const ZoomAnimationImage & >
& callback)

Associates an action to be performed when the animation ends.

Parameters:
callback The callback to be executed. The callback will be given a reference to the

ZoomAnimationImage.

See also:

GenericCallback

setBitmaps
void setBitmaps (const Bitmap & smallBitmap ,

const Bitmap & largeBitmap
)

Initializes the bitmap of the image to be used.

The bitmaps should represent the same image in the two needed static resolutions.

Parameters:
smallBitmap The image in the smallest resolution.
largeBitmap The image in the largest resolution.

NOTE

The size of the bitmaps do not in any way limit the size of the ZoomAnimationImage and it is possible to
scale the image beyond the sizes of these bitmaps.

See also:

getSmallBitmap, getLargeBitmap

setHeight
virtual void setHeight (int16_t height)

Sets the height of this drawable.

Parameters:
height The new height.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a
redraw.ZoomAnimationImage diverts from the normal behavior by automatically invalidating which
causes a redraw.

Reimplements: touchgfx::Drawable::setHeight

setScalingMode
virtual void setScalingMode (ScalableImage::ScalingAlgorithm mode)

Sets the algorithm to be used.

In short, there is currently a value for fast (nearest neighbor) and a value for slow (bilinear
interpolation). Default is ScalableImage::NEAREST_NEIGHBOR since moving images do not need
to be of the best quality, until they stop moving. If the image moves only a little bit, or
moves/resizes slowly, consider using ScaleableImage::BILINEAR_INTERPOLATION.

Parameters:
mode The algorithm to use when rendering.

See also:

ScalableImage::ScalingAlgorithm, getScalingMode

setWidth
virtual void setWidth (int16_t width)

Sets the width of this drawable.

Parameters:
width The new width.

NOTE

For most Drawable widgets, changing this does normally not automatically yield a
redraw.ZoomAnimationImage diverts from the normal behavior by automatically invalidating which
causes a redraw.

Reimplements: touchgfx::Drawable::setWidth

startZoomAndMoveAnimation
void startZoomAndMoveAnimation (int16_t endX ,

int16_t endY ,
int16_t endWidth ,

int16_t endHeight ,
uint16_t duration ,
ZoomMode zoomMode =FIXED_LEFT_AND_TOP,

EasingEquation xProgressionEquation
=&EasingEquations::linearEaseNone,

EasingEquation yProgressionEquation
=&EasingEquations::linearEaseNone,

EasingEquation widthProgressionEquation
=&EasingEquations::linearEaseNone,

EasingEquation heightProgressionEquation
=&EasingEquations::linearEaseNone

)

Setup and starts the zoom and move animation.

At end of the animation the image will have been resized to the endWidth and endHeight and have
moved from its original position to the endX and endY. Please note that the ZoomMode might
influence the actual end position since the zoom transformation might change the X and Y of the
image. The ZoomMode FIXED_LEFT_AND_TOP ensures that the endX and endY will be the actual
end position.

The development of the width, height, X and Y during the animation is described by the supplied
EasingEquations. The container is registered as a TimerWidget and automatically unregistered
when the animation has finished.

Parameters:
endX The X position of the image at animation end. Relative to the

container or view that holds the ZoomAnimationImage.
endY The Y position of the image at animation end. Relative to the

container or view that holds the ZoomAnimationImage.
endWidth The width of the image at animation end.
endHeight The height of the image at animation end.
duration The duration of the animation measured in ticks.
zoomMode (Optional) The zoom mode that will be used during the animation.

Default is FIXED_LEFT_AND_TOP.
xProgressionEquation (Optional) The equation that describes the development of the X

position during the animation. Default is
EasingEquations::linearEaseNone.

yProgressionEquation (Optional) The equation that describes the development of the Y
position during the animation. Default is
EasingEquations::linearEaseNone.

widthProgressionEquation (Optional) The equation that describes the development of the
width during the animation. Default is
EasingEquations::linearEaseNone.

heightProgressionEquation (Optional) The equation that describes the development of the
height during the animation. Default is
EasingEquations::linearEaseNone.

startZoomAnimation
void startZoomAnimation (int16_t endWidth ,

int16_t endHeight ,
uint16_t duration ,
ZoomMode zoomMode =FIXED_LEFT_AND_TOP,

EasingEquation widthProgressionEquation
=&EasingEquations::linearEaseNone,

EasingEquation heightProgressionEquation
=&EasingEquations::linearEaseNone

)

Setup and starts the zoom animation.

At end of the animation the image will have been resized to the endWidth and endHeight. The
development of the width and height during the animation is described by the supplied
EasingEquations. The container is registered as a TimerWidget and automatically unregistered
when the animation has finished.

Parameters:
endWidth The width of the image at animation end.
endHeight The height of the image at animation end.
duration The duration of the animation measured in ticks.
zoomMode (Optional) The zoom mode that will be used during the animation.

Default is FIXED_LEFT_AND_TOP.
widthProgressionEquation (Optional) The equation that describes the development of the

width during the animation. Default is
EasingEquations::linearEaseNone.

heightProgressionEquation (Optional) The equation that describes the development of the
height during the animation. Default is
EasingEquations::linearEaseNone.

NOTE

The animation follows the specified ZoomMode so the X and Y coordinates of the image might change
during animation.

ZoomAnimationImage
ZoomAnimationImage ()

Protected Functions Documentation
setCurrentState

virtual void setCurrentState (States state)

Sets the current animation state and reset the animation counter.

Parameters:
state The new state.

startTimerAndSetParameters
void startTimerAndSetParameters (int16_t endWidth ,

int16_t endHeight ,
uint16_t duration ,
ZoomMode zoomMode ,
EasingEquation widthProgressionEquation ,
EasingEquation heightProgressionEquation
)

Starts timer and set parameters.

Contains code shared between startZoomAnimation() and startZoomAndMoveAnimation(). If
both delay and duration is zero, the end position and size is applied and the animation is ended
immediately.

Parameters:
endWidth The end width.
endHeight The end height.
duration The duration.
zoomMode The zoom mode.
widthProgressionEquation The width progression equation.
heightProgressionEquation The height progression equation.

updateRenderingMethod
virtual void updateRenderingMethod ()

Chooses the optimal rendering of the image given the current width and height.

If the dimensions match either the small or large bitmap, that will be used, otherwise the large
image will be scaled using the defined scaling mode.

See also:

setScalingMode, setBitmaps

updateZoomAnimationDeltaXY
virtual void updateZoomAnimationDeltaXY ()

Calculates the change in X and Y caused by the zoom animation given the current ZoomMode.

Protected Attributes Documentation
animationCounter

uint32_t animationCounter

The progress counter for the animation.

animationDuration
uint16_t animationDuration

Duration of the animation.

animationEndedAction
GenericCallback< const ZoomAnimationImage & > * animationEndedAction

The animation ended action.

currentState
States currentState

The current animation state.

currentZoomMode
ZoomMode currentZoomMode

The ZoomMode to use by the animation.

image
Image image

The image for displaying the bitmap when the width/height is equal one of the bitmaps.

largeBmp
Bitmap largeBmp

The bitmap representing the large image.

moveAnimationEndX
int16_t moveAnimationEndX

The move animation end x coordinate.

moveAnimationEndY
int16_t moveAnimationEndY

The move animation end y coordinate.

moveAnimationXEquation
EasingEquation moveAnimationXEquation

The move animation x coordinate equation.

moveAnimationYEquation
EasingEquation moveAnimationYEquation

The move animation y coordinate equation.

scalableImage
ScalableImage scalableImage

The scalable image for displaying the bitmap when the width/height is not equal one of the
bitmaps.

smallBmp
Bitmap smallBmp

The bitmap representing the small image.

zoomAnimationDelay
uint16_t zoomAnimationDelay

A delay that is applied before animation start. Expressed in ticks.

zoomAnimationDeltaX
int16_t zoomAnimationDeltaX

The zoom animation delta x.

zoomAnimationDeltaY
int16_t zoomAnimationDeltaY

The zoom animation delta y.

zoomAnimationEndHeight
int16_t zoomAnimationEndHeight

Height of the zoom animation end.

zoomAnimationEndWidth
int16_t zoomAnimationEndWidth

Width of the zoom animation end.

zoomAnimationHeightEquation
EasingEquation zoomAnimationHeightEquation

The zoom animation height equation.

zoomAnimationStartHeight
int16_t zoomAnimationStartHeight

Height of the zoom animation start.

zoomAnimationStartWidth
int16_t zoomAnimationStartWidth

Width of the zoom animation start.

zoomAnimationStartX
int16_t zoomAnimationStartX

The zoom animation start x coordinate.

zoomAnimationStartY

int16_t zoomAnimationStartY

The zoom animation start y coordinate.

zoomAnimationWidthEquation
EasingEquation zoomAnimationWidthEquation

The zoom animation width equation.

Version: 4.16

Globals
The global touchgfx namespace.
All TouchGFX framework enums, Type definitions, global functions and global variables are placed in
this namespace.

Enums
BlitOperations

enum BlitOperations

The Blit Operations.

BLIT_OP_COPY Copy the source to the destination.
BLIT_OP_FILL Fill the destination with color.
BLIT_OP_COPY_WITH_ALPHA Copy the source to the destination using the

given alpha.
BLIT_OP_FILL_WITH_ALPHA Fill the destination with color using the given

alpha.
BLIT_OP_COPY_WITH_TRANSPARENT_PIXELS Deprecated, ignored. (Copy the source to the

destination, but not the transparent pixels)
BLIT_OP_COPY_ARGB8888 Copy the source to the destination, performing

per-pixel alpha blending.
BLIT_OP_COPY_ARGB8888_WITH_ALPHA Copy the source to the destination, performing

per-pixel alpha blending and blending the result
with an image-wide alpha.

BLIT_OP_COPY_A4 Copy 4-bit source text to destination,
performing per-pixel alpha blending.

BLIT_OP_COPY_A8 Copy 8-bit source text to destination,
performing per-pixel alpha blending.

Location: touchgfx/hal/BlitOp.hpp

Direction
enum Direction

Values that represent directions.

NORTH An enum constant representing the north option.
SOUTH An enum constant representing the south option.
EAST An enum constant representing the east option.
WEST An enum constant representing the west option.

Location: touchgfx/hal/Types.hpp

DisplayOrientation
enum DisplayOrientation

Values that represent display orientations.

ORIENTATION_LANDSCAPE The display has more pixels from left to right than from top to
bottom.

ORIENTATION_PORTRAIT The display has more pixels from top to bottom than from right to
left.

Location: touchgfx/hal/Types.hpp

DisplayRotation
enum DisplayRotation

Values that represent display rotations.

rotate0 The display is oriented like the framebuffer.
rotate90 The display is rotated 90 degrees compared to the framebuffer layout.

Location: touchgfx/hal/Types.hpp

DMAType
enum DMAType

Values that represent dma types.

DMA_TYPE_GENERIC Generic DMA Implementation.

DMA_TYPE_CHROMART ChromART hardware DMA Implementation.

Location: touchgfx/hal/Types.hpp

FrameBuffer
enum FrameBuffer

Values that represent frame buffers.

FB_PRIMARY First framebuffer.
FB_SECONDARY Second framebuffer.
FB_TERTIARY Third framebuffer.

Location: touchgfx/hal/Types.hpp

GlyphFlags
enum GlyphFlags

Glyph flag definitions.

GLYPH_DATA_KERNINGTABLEPOS_BIT8_10 The 8th, 9th and 10th bit of the kerningTablePos.
GLYPH_DATA_WIDTH_BIT8 The 9th bit of "width".
GLYPH_DATA_HEIGHT_BIT8 The 9th bit of "height".
GLYPH_DATA_TOP_BIT8 The 9th bit of "top".
GLYPH_DATA_TOP_BIT9 The sign bit of "top".
GLYPH_DATA_ADVANCE_BIT8 The 9th bit of "advance".

Location: touchgfx/Font.hpp

Gradient
enum Gradient

Values that represent gradients.

GRADIENT_HORIZONTAL Horizontal gradient.

GRADIENT_VERTICAL Vertical gradient.

Location: touchgfx/hal/Types.hpp

TextRotation
enum TextRotation

Values that represent text rotations.

TEXT_ROTATE_0 Text is written from left to right.
TEXT_ROTATE_90 Text is written from top to bottom.
TEXT_ROTATE_180 Text is written from right to left (upside down)
TEXT_ROTATE_270 Text is written bottom to top.

Location: touchgfx/hal/Types.hpp

WideTextAction
enum WideTextAction

Values that represent wide text actions.

WIDE_TEXT_NONE Do nothing, simply cut the text in the
middle of any character that extends
beyond the width of the TextArea.

WIDE_TEXT_WORDWRAP Wrap between words, ellipsis anywhere
"Very long t...".

WIDE_TEXT_WORDWRAP_ELLIPSIS_AFTER_SPACE Wrap between words, ellipsis anywhere
only after space "Very long ...".

WIDE_TEXT_CHARWRAP Wrap between any two characters, ellipsis
anywhere, as used in Chinese.

WIDE_TEXT_CHARWRAP_DOUBLE_ELLIPSIS Wrap between any two characters, double
ellipsis anywhere, as used in Chinese.

Location: touchgfx/hal/Types.hpp

Type Definitions

Alignment
typedef uint8_t Alignment

Defines an alignment type.

Location: touchgfx/hal/Types.hpp

AnimatedImageClickButton
typedef AnimatedImageButtonStyle< ClickButtonTrigger > AnimatedImageClickButton

Defines an alias representing the animated image click button.

Location: touchgfx/containers/buttons/Buttons.hpp

AnimatedImageRepeatButton
typedef AnimatedImageButtonStyle< RepeatButtonTrigger > AnimatedImageRepeatButton

Defines an alias representing the animated image repeat button.

Location: touchgfx/containers/buttons/Buttons.hpp

AnimatedImageToggleButton
typedef AnimatedImageButtonStyle< ToggleButtonTrigger > AnimatedImageToggleButton

Defines an alias representing the animated image toggle button.

Location: touchgfx/containers/buttons/Buttons.hpp

AnimatedImageTouchButton
typedef AnimatedImageButtonStyle< TouchButtonTrigger > AnimatedImageTouchButton

Defines an alias representing the animated image touch button.

Location: touchgfx/containers/buttons/Buttons.hpp

BitmapId
typedef uint16_t BitmapId

This type shall be used by the application to define unique IDs for all bitmaps in the system.

Location: touchgfx/Bitmap.hpp

BoxClickButton
typedef BoxWithBorderButtonStyle< ClickButtonTrigger > BoxClickButton

Defines an alias representing the box click button.

Location: touchgfx/containers/buttons/Buttons.hpp

BoxRepeatButton
typedef BoxWithBorderButtonStyle< RepeatButtonTrigger > BoxRepeatButton

Defines an alias representing the box repeat button.

Location: touchgfx/containers/buttons/Buttons.hpp

BoxToggleButton
typedef BoxWithBorderButtonStyle< ToggleButtonTrigger > BoxToggleButton

Defines an alias representing the box toggle button.

Location: touchgfx/containers/buttons/Buttons.hpp

BoxTouchButton
typedef BoxWithBorderButtonStyle< TouchButtonTrigger > BoxTouchButton

Defines an alias representing the box touch button.

Location: touchgfx/containers/buttons/Buttons.hpp

EasingEquation
typedef int16_t(* EasingEquation) (uint16_t, int16_t, int16_t, uint16_t)

This function pointer typedef matches the signature for all easing equations.

Location: touchgfx/EasingEquations.hpp

fixed16_16
typedef int32_t fixed16_16

A fixed point value using 16 bits for the decimal part and 16 bits for the integral part.

Location: touchgfx/hal/Types.hpp

fixed28_4
typedef int32_t fixed28_4

A fixed point value using 4 bits for the decimal part and 28 bits for the integral part.

Location: touchgfx/hal/Types.hpp

FontId
typedef uint16_t FontId

Defines an alias representing a Font ID.

Location: touchgfx/Font.hpp

GlyphNode
typedef struct touchgfx::GlyphNode GlyphNode

struct providing information about a glyph.

Location: touchgfx/Font.hpp

IconClickButton
typedef IconButtonStyle< ClickButtonTrigger > IconClickButton

Defines an alias representing the icon click button.

Location: touchgfx/containers/buttons/Buttons.hpp

IconImageClickButton
typedef ImageButtonStyle< IconButtonStyle< ClickButtonTrigger > > IconImageClickButton

Defines an alias representing the icon image click button.

Location: touchgfx/containers/buttons/Buttons.hpp

IconImageRepeatButton
typedef ImageButtonStyle< IconButtonStyle< RepeatButtonTrigger > >
IconImageRepeatButton

Defines an alias representing the icon image repeat button.

Location: touchgfx/containers/buttons/Buttons.hpp

IconImageToggleButton
typedef ImageButtonStyle< IconButtonStyle< ToggleButtonTrigger > >
IconImageToggleButton

Defines an alias representing the icon image toggle button.

Location: touchgfx/containers/buttons/Buttons.hpp

IconImageTouchButton
typedef ImageButtonStyle< IconButtonStyle< TouchButtonTrigger > >
IconImageTouchButton

Defines an alias representing the icon image touch button.

Location: touchgfx/containers/buttons/Buttons.hpp

IconRepeatButton
typedef IconButtonStyle< RepeatButtonTrigger > IconRepeatButton

Defines an alias representing the icon repeat button.

Location: touchgfx/containers/buttons/Buttons.hpp

IconToggleButton
typedef IconButtonStyle< ToggleButtonTrigger > IconToggleButton

Defines an alias representing the icon toggle button.

Location: touchgfx/containers/buttons/Buttons.hpp

IconTouchButton
typedef IconButtonStyle< TouchButtonTrigger > IconTouchButton

Defines an alias representing the icon touch button.

Location: touchgfx/containers/buttons/Buttons.hpp

ImageClickButton
typedef ImageButtonStyle< ClickButtonTrigger > ImageClickButton

Defines an alias representing the image click button.

Location: touchgfx/containers/buttons/Buttons.hpp

ImageRepeatButton
typedef ImageButtonStyle< RepeatButtonTrigger > ImageRepeatButton

Defines an alias representing the image repeat button.

Location: touchgfx/containers/buttons/Buttons.hpp

ImageToggleButton
typedef ImageButtonStyle< ToggleButtonTrigger > ImageToggleButton

Defines an alias representing the image toggle button.

Location: touchgfx/containers/buttons/Buttons.hpp

ImageTouchButton
typedef ImageButtonStyle< TouchButtonTrigger > ImageTouchButton

Defines an alias representing the image touch button.

Location: touchgfx/containers/buttons/Buttons.hpp

LanguageId
typedef uint16_t LanguageId

Language IDs generated by the text converter are uint16_t typedef'ed.

Location: touchgfx/Texts.hpp

RenderingVariant
typedef uint16_t RenderingVariant

Describes a combination of rendering algorithm, image format, and alpha information.

Location: touchgfx/hal/Types.hpp

TextClickButton
typedef TextButtonStyle< ClickButtonTrigger > TextClickButton

Defines an alias representing the text click button.

Location: touchgfx/containers/buttons/Buttons.hpp

TextDirection
typedef uint8_t TextDirection

Defines a the direction to write text.

Location: touchgfx/hal/Types.hpp

TextRepeatButton
typedef TextButtonStyle< RepeatButtonTrigger > TextRepeatButton

Defines an alias representing the text repeat button.

Location: touchgfx/containers/buttons/Buttons.hpp

TextToggleButton
typedef TextButtonStyle< ToggleButtonTrigger > TextToggleButton

Defines an alias representing the text toggle button.

Location: touchgfx/containers/buttons/Buttons.hpp

TextTouchButton
typedef TextButtonStyle< TouchButtonTrigger > TextTouchButton

Defines an alias representing the text touch button.

Location: touchgfx/containers/buttons/Buttons.hpp

TiledImageClickButton
typedef TiledImageButtonStyle< ClickButtonTrigger > TiledImageClickButton

Defines an alias representing the tiled image click button.

Location: touchgfx/containers/buttons/Buttons.hpp

TiledImageRepeatButton
typedef TiledImageButtonStyle< RepeatButtonTrigger > TiledImageRepeatButton

Defines an alias representing the tiled image repeat button.

Location: touchgfx/containers/buttons/Buttons.hpp

TiledImageToggleButton
typedef TiledImageButtonStyle< ToggleButtonTrigger > TiledImageToggleButton

Defines an alias representing the tiled image toggle button.

Location: touchgfx/containers/buttons/Buttons.hpp

TiledImageTouchButton
typedef TiledImageButtonStyle< TouchButtonTrigger > TiledImageTouchButton

Defines an alias representing the tiled image touch button.

Location: touchgfx/containers/buttons/Buttons.hpp

TwoWildcardTextClickButton
typedef TwoWildcardTextButtonStyle< ClickButtonTrigger > TwoWildcardTextClickButton

Defines an alias representing the wildcard text click button.

Location: touchgfx/containers/buttons/Buttons.hpp

TwoWildcardTextRepeatButton
typedef TwoWildcardTextButtonStyle< RepeatButtonTrigger >
TwoWildcardTextRepeatButton

Defines an alias representing the wildcard text repeat button.

Location: touchgfx/containers/buttons/Buttons.hpp

TwoWildcardTextToggleButton
typedef TwoWildcardTextButtonStyle< ToggleButtonTrigger >
TwoWildcardTextToggleButton

Defines an alias representing the wildcard text toggle button.

Location: touchgfx/containers/buttons/Buttons.hpp

TwoWildcardTextTouchButton
typedef TwoWildcardTextButtonStyle< TouchButtonTrigger > TwoWildcardTextTouchButton

Defines an alias representing the wildcard text touch button.

Location: touchgfx/containers/buttons/Buttons.hpp

TypedTextId
typedef uint16_t TypedTextId

Text IDs as generated by the text converter are simple uint16_t typedefs.

Location: touchgfx/hal/Types.hpp

WildcardTextClickButton
typedef WildcardTextButtonStyle< ClickButtonTrigger > WildcardTextClickButton

Defines an alias representing the wildcard text click button.

Location: touchgfx/containers/buttons/Buttons.hpp

WildcardTextRepeatButton

typedef WildcardTextButtonStyle< RepeatButtonTrigger > WildcardTextRepeatButton

Defines an alias representing the wildcard text repeat button.

Location: touchgfx/containers/buttons/Buttons.hpp

WildcardTextToggleButton
typedef WildcardTextButtonStyle< ToggleButtonTrigger > WildcardTextToggleButton

Defines an alias representing the wildcard text toggle button.

Location: touchgfx/containers/buttons/Buttons.hpp

WildcardTextTouchButton
typedef WildcardTextButtonStyle< TouchButtonTrigger > WildcardTextTouchButton

Defines an alias representing the wildcard text touch button.

Location: touchgfx/containers/buttons/Buttons.hpp

Functions
abs

T abs (T d)

Simple implementation of the standard abs function.

Template Parameters:
T The type on which to perform the abs.

Parameters:
d The entity on which to perform the abs.

Returns:

The absolute (non-negative) value of d.

Location: touchgfx/Utils.hpp

ceil28_4
int32_t ceil28_4 (fixed28_4 value)

Round up a fixed28_4 value.

Parameters:
value The fixed28_4 value.

Returns:

The ceil result.

Location: touchgfx/TextureMapTypes.hpp

clz
int32_t clz (int32_t x)

Count leading zeros in the binary representation of absolute value of the given int32_t.

Parameters:
x The value to count the number of leading zeros in.

Returns:

The number of leading zeros (from 0 to 31).

See also:

clzu

Location: touchgfx/Utils.hpp

clzu
int32_t clzu (uint32_t x)

Count leading zeros in the binary representation of absolute value of the given uint32_t.

Parameters:
x The value to count the number of leading zeros in.

Returns:

The number of leading zeros (from 0 to 32).

See also:

clz

Location: touchgfx/Utils.hpp

finalizeTransition
static FORCE_INLINE_FUNCTION void finalizeTransition (Screen * newScreen ,

Presenter * newPresenter ,
Transition * newTransition
)

Finalize screen transition.

Private helper function for makeTransition. Do not use.

Parameters:
newScreen If non-null, the new screen.
newPresenter If non-null, the new presenter.
newTransition If non-null, the new transition.

Location: mvp/MVPApplication.hpp

fixed28_4Mul
fixed28_4 fixed28_4Mul (fixed28_4 a ,

fixed28_4 b
)

Multiply two fixed28_4 numbers.

Parameters:
a The fixed28_4 to process.
b The fixed28_4 to process.

Returns:

the result.

Location: touchgfx/TextureMapTypes.hpp

fixed28_4ToFloat
float fixed28_4ToFloat (fixed28_4 value)

Convert fixed28_4 to float.

Parameters:
value The fixed28_4 value.

Returns:

The value as float.

Location: touchgfx/TextureMapTypes.hpp

floatToFixed16_16
fixed16_16 floatToFixed16_16 (float value)

Convert float to fixed16_16.

Parameters:
value The float value.

Returns:

The value as fixed16_16.

Location: touchgfx/TextureMapTypes.hpp

floatToFixed28_4
fixed28_4 floatToFixed28_4 (float value)

Convert float to fixed28_4.

Parameters:
value The float value.

Returns:

The value as fixed28_4.

Location: touchgfx/TextureMapTypes.hpp

floorDivMod
void floorDivMod (int32_t numerator ,

int32_t denominator ,
int32_t & floor ,
int32_t & mod
)

Divides two fixed28_4 numbers and returns the result as well as the remainder.

Parameters:
numerator The numerator.
denominator The denominator.
floor numerator/denominator.
mod numerator%denominator.

Location: touchgfx/TextureMapTypes.hpp

FrameBufferAllocatorSignalBlockDrawn
void FrameBufferAllocatorSignalBlockDrawn ()

Called by FrameBufferAllocator when a block is drawn and therefore ready for transfer.

The LCD driver should use this method to start a transfer.

Location: touchgfx/hal/FrameBufferAllocator.hpp

FrameBufferAllocatorWaitOnTransfer
void FrameBufferAllocatorWaitOnTransfer ()

Called by FrameBufferAllocator to wait for a LCD Transfer, when the allocator has no free blocks.

The LCD driver can use this function to synchronize the UI thread with the transfer logic.

Location: touchgfx/hal/FrameBufferAllocator.hpp

gcd
T gcd (T a ,

T b
)

Find greatest common divisor of two given numbers.

Template Parameters:

T Generic type parameter.

Parameters:
a The first number.
b The second number.

Returns:

The greatest common divisor.

Location: touchgfx/Utils.hpp

hw_init
void hw_init ()

Function to perform generic hardware initialization of the board.

This function prototype is only provided as a convention.

Location: touchgfx/hal/BoardConfiguration.hpp

lookupBilinearRenderVariant
RenderingVariant lookupBilinearRenderVariant (const Bitmap & bitmap)

Returns the associated bilinear render variant based on the bitmap format.

This is used for quick determination of the type of bitmap during TextureMapper drawing.

Parameters:
bitmap The bitmap.

Returns:

A RenderingVariant based on the bitmap format.

Location: touchgfx/Utils.hpp

lookupNearestNeighborRenderVariant
RenderingVariant lookupNearestNeighborRenderVariant (const Bitmap & bitmap)

Returns the associated nearest neighbor render variant based on the bitmap format.

This is used for quick determination of the type of bitmap during TextureMapper drawing.

Parameters:
bitmap The bitmap.

Returns:

A RenderingVariant based on the bitmap format.

Location: touchgfx/Utils.hpp

makeTransition
PresenterType * makeTransition (Screen ** currentScreen ,

Presenter ** currentPresenter ,
MVPHeap & heap ,
Transition ** currentTrans ,
ModelType * model
)

Function for effectuating a screen transition (i.e.

makes the requested new presenter/view pair active). Once this function has returned, the new
screen has been transitioned to. Due to the memory allocation strategy of using the same memory
area for all screens, the old view/presenter will no longer exist when this function returns.

Will properly clean up old screen (tearDownScreen, Presenter::deactivate) and call
setupScreen/activate on new view/presenter pair. Will also make sure the view, presenter and
model are correctly bound to each other.

Template Parameters:
ScreenType Class type for the View.
PresenterType Class type for the Presenter.
TransType Class type for the Transition.
ModelType Class type for the Model.

Parameters:
currentScreen Pointer to pointer to the current view.
currentPresenter Pointer to pointer to the current presenter.
heap Reference to the heap containing the memory storage in which to allocate.
currentTrans Pointer to pointer to the current transition.
model Pointer to model.

Returns:

Pointer to the new Presenter of the requested type. Incidentally it will be the same value as the
old presenter due to memory reuse.

Location: mvp/MVPApplication.hpp

memset
void memset (void * data ,

uint8_t c ,
uint32_t size
)

Simple implementation of the standard memset function.

Will write the value of 'c' in 'size' consecutive bytes starting from 'data'.

Parameters:
data Address of data to set.
c Value to set.
size Number of bytes to set.

Location: touchgfx/Utils.hpp

muldiv
int32_t muldiv (int32_t factor1 ,

int32_t factor2 ,
int32_t divisor
)

Multiply and divide without causing overflow.

Multiplying two large values and subsequently dividing the result with another large value might
cause an overflow in the intermediate result. The function muldiv() will multiply factor1 and factor2
and divide the result by divisor without causing overflow (unless the final result would overflow).
The remainder is used to round the result up or down.

Parameters:
factor1 The first factor.
factor2 The second factor.
divisor The divisor.

Returns:

(factor1 * factor2) / divisor rounded.

See also:

muldiv(int32_t,int32_t,int32_t,int32_t&)

Location: touchgfx/Utils.hpp

muldiv
int32_t muldiv (int32_t factor1 ,

int32_t factor2 ,
int32_t divisor ,
int32_t & remainder
)

Multiply and divide without causing overflow.

Multiplying two large values and subsequently dividing the result with another large value might
cause an overflow in the intermediate result. The function muldiv() will multiply factor1 and factor2
and divide the result by divisor without causing overflow (unless the final result would overflow).
The remainder from the division is returned.

Parameters:
factor1 The first factor.
factor2 The second factor.
divisor The divisor.
remainder The remainder.

Returns:

(factor1 * factor2) / divisor.

NOTE

For large numbers close to the limit of int32_t, the calculation may not be correct.

See also:

muldivu

Location: touchgfx/Utils.hpp

muldivu

uint32_t muldivu (uint32_t factor1 ,
uint32_t factor2 ,
uint32_t divisor ,
uint32_t & remainder
)

Multiply and divide without causing overflow.

Multiplying two large values and subsequently dividing the result with another large value might
cause an overflow in the intermediate result. The function muldiv() will multiply factor1 and factor2
and divide the result by divisor without causing overflow (unless the final result would overflow).
The remainder from the division is returned.

Parameters:
factor1 The first factor.
factor2 The second factor.
divisor The divisor.
remainder The remainder.

Returns:

(factor1 * factor2) / divisor.

NOTE

For large numbers close to the limit of uint32_t, the calculation may not be correct.

See also:

muldiv

Location: touchgfx/Utils.hpp

operator*
Matrix4x4 operator* (const Matrix4x4 & multiplicand ,

const Matrix4x4 & multiplier
)

Multiplication operator.

Parameters:
multiplicand The first value to multiply.
multiplier The second value to multiply.

Returns:

The result of the operation.

Location: touchgfx/Math3D.hpp

operator*
Point4 operator* (const Matrix4x4 & multiplicand ,

const Point4 & multiplier
)

Multiplication operator.

Parameters:
multiplicand The first value to multiply.
multiplier The second value to multiply.

Returns:

The result of the operation.

Location: touchgfx/Math3D.hpp

prepareTransition
static FORCE_INLINE_FUNCTION void prepareTransition (Screen ** currentScreen ,

Presenter ** currentPresenter ,
Transition ** currentTrans
)

Prepare screen transition.

Private helper function for makeTransition. Do not use.

Parameters:
currentScreen If non-null, the current screen.
currentPresenter If non-null, the current presenter.
currentTrans If non-null, the current transaction.

Location: mvp/MVPApplication.hpp

shouldTransferBlock
int shouldTransferBlock (uint16_t bottom)

Check if a Frame Buffer Block ending at bottom may be sent.

Parameters:
bottom The bottom coordinate of the block to transfer.

Returns:

Non zero if possible.

Location: touchgfx/hal/PartialFrameBufferManager.hpp

simulator_enable_stdio
void simulator_enable_stdio ()

Simulator enable stdio.

Location: platform/hal/simulator/sdl2/HALSDL2.hpp

simulator_printf
void simulator_printf (const char * format ,

va_list pArg
)

Simulator printf.

Parameters:
format Describes the format to use.
pArg The argument list.

Location: platform/hal/simulator/sdl2/HALSDL2.hpp

touchgfx_generic_init
HAL & touchgfx_generic_init (DMA_Interface & dma ,

LCD & display ,
TouchController & tc ,
int16_t width ,
int16_t height ,
uint16_t * bitmapCache ,
uint32_t bitmapCacheSize ,

uint32_t numberOfDynamicBitmaps =0
)

TouchGFX generic initialize.

Template Parameters:
HALType The class type of the HAL subclass used for this port.

Parameters:
dma Reference to the DMA implementation object to use. Can be of

type NoDMA to disable the use of DMA for rendering.
display Reference to the LCD renderer implementation (subclass of LCD).

Could be either LCD16bpp for RGB565 UIs, or LCD1bpp for
monochrome UIs or LCD24bpp for 24bit displays using RGB888
UIs.

tc Reference to the touch controller driver (or NoTouchController to
disable touch input).

width The native display width of the actual display, in pixels. This value
is irrespective of whether the concrete UI should be portrait or
landscape mode. It must match what the display itself is
configured as.

height The native display height of the actual display, in pixels. This value
is irrespective of whether the concrete UI should be portrait or
landscape mode. It must match what the display itself is
configured as.

bitmapCache Optional pointer to starting address of a memory region in which
to place the bitmap cache. Usually in external RAM. Pass 0 if
bitmap caching is not used.

bitmapCacheSize Size of bitmap cache in bytes. Pass 0 if bitmap cache is not used.
numberOfDynamicBitmaps (Optional) Number of dynamic bitmaps.

Returns:

A reference to the allocated (and initialized) HAL object.

Location: common/TouchGFXInit.hpp

touchgfx_init
void touchgfx_init ()

Function to perform touchgfx initialization.

This function prototype is only provided as a convention.

Location: touchgfx/hal/BoardConfiguration.hpp

transmitActive
int transmitActive ()

Check if a Frame Buffer Block is beeing transmitted.

Returns:

Non zero if possible.

Location: touchgfx/hal/PartialFrameBufferManager.hpp

transmitBlock
void transmitBlock (const uint8_t * pixels ,

uint16_t x ,
uint16_t y ,
uint16_t w ,
uint16_t h
)

Transmit a Frame Buffer Block.

Parameters:
pixels Pointer to the pixel data.
x X coordinate of the block.
y Y coordinate of the block.
w Width of the block.
h Height of the block.

Location: touchgfx/hal/PartialFrameBufferManager.hpp

Variables
BITMAP_ANIMATION_STORAGE

const BitmapId BITMAP_ANIMATION_STORAGE = 0xFFFEU

A virtual id representing animation storage.

Location: touchgfx/Bitmap.hpp

BITMAP_INVALID
const BitmapId BITMAP_INVALID = 0xFFFFU

Define the bitmapId of an invalid bitmap.

Location: touchgfx/Bitmap.hpp

CENTER
const Alignment CENTER = 1

Text is centered horizontally.

Location: touchgfx/hal/Types.hpp

LEFT
const Alignment LEFT = 0

Text is left aligned.

Location: touchgfx/hal/Types.hpp

PI
const float PI = 3.14159265358979323846f

PI.

Location: touchgfx/hal/Types.hpp

RenderingVariant_Alpha
const uint16_t RenderingVariant_Alpha = 2

The rendering variant alpha bit value.

Location: touchgfx/hal/Types.hpp

RenderingVariant_Bilinear
const uint16_t RenderingVariant_Bilinear = 1

The rendering variant bilinear bit value.

Location: touchgfx/hal/Types.hpp

RenderingVariant_FormatShift
const uint16_t RenderingVariant_FormatShift = 2

The rendering variant format shift.

Location: touchgfx/hal/Types.hpp

RenderingVariant_NearestNeighbor
const uint16_t RenderingVariant_NearestNeighbor = 0

The rendering variant nearest neighbor bit value.

Location: touchgfx/hal/Types.hpp

RenderingVariant_NoAlpha
const uint16_t RenderingVariant_NoAlpha = 0

The rendering variant no alpha bit value.

Location: touchgfx/hal/Types.hpp

RIGHT
const Alignment RIGHT = 2

Text is right aligned.

Location: touchgfx/hal/Types.hpp

TEXT_DIRECTION_LTR
const TextDirection TEXT_DIRECTION_LTR = 0

Text is written Left-To-Right, e.g. English.

Location: touchgfx/hal/Types.hpp

TEXT_DIRECTION_RTL
const TextDirection TEXT_DIRECTION_RTL = 1

Text is written Right-To-Left, e.g. Hebrew.

Location: touchgfx/hal/Types.hpp

TYPED_TEXT_INVALID
const TypedTextId TYPED_TEXT_INVALID = 0xFFFFU

The ID of an invalid text.

Location: touchgfx/TypedText.hpp

Version: 4.16

Presentations
In this section, you will find a wide range of TouchGFX presentations used for demonstrations,
seminars, webinars and workshops. The presentations can be used directly or as inspiration for
TouchGFX presentations of your own or simply as a source of information on a given topic.

It is the intention that you can piece together a set of presentations to match your needs for topics for
a TouchGFX demonstration or seminar. All presentations come with references to relevant articles and
to chapters and sections on this documentation site.

Presentations are available for download in slide format PDFs and in "speaker's note" versions where
additional presentation information for the speaker can be found.

Not all presentations are available yet, but will be made available as soon as ready.

It is the intention, that in the future most of the presentations will be accompanied by videos that
show a presentation of the topic using the slides.

TouchGFX Presentations
TouchGFX Introduction

Description A short, general and non-technical introduction to TouchGFX.

Target Audience Beginner - All

Duration 15 minutes

Links Not available yet.

TouchGFX Technical Introduction

Description A short, technical introduction to doing TouchGFX development. Covers the
tools involved and describes the workflow.

Target Audience Beginner - Any TouchGFX Developers

Duration 14 minutes

Links Presentation
Speaker notes

Video available on Youtube

Embedded Graphics - Basic Concepts

Description A general introduction to key concepts of graphics on embedded devices.
Good background knowledge for doing TouchGFX project development.

Target Audience Beginner - TouchGFX Application Developers

Duration 55 minutes

Links
Presentation
Speaker notes
Video available on Youtube

Board Bring Up - Introduction

Description Covers key topics you need to address when doing board bring up for a
TouchGFX project.

Target Audience Beginner - Hardware Integrator

Duration 30 minutes

Links Not available yet.

Abstraction Layer Development - Introduction

Description
Introduces the TouchGFX Abstraction Layer development process. Describes
the key responsibilities of the Abstraction Layer and how to use the TouchGFX
Generator.

Target Audience Beginner - TouchGFX AL Developers

Duration 60 minutes

Links Presentation

Abstraction Layer Development - Advanced Topics

Description

Dives into advanced topics on TouchGFX Abstration Layer development.
Discusses how the TouchGFX AL (generated by TouchGFX Generator) and
CubeMX MCU configuration integrate, how to add your own BSP and how
TouchGFX is configured manually to support scenarios not configurable in
CubeMX.

Target Audience Medium - TouchGFX AL Developers

Duration 60 minutes

Links Not available yet.

UI Development - Fundamentals

Description
Introduction to key TouchGFX topics essential for UI development. Covers
topics like the UI Application architecture, how to work with TouchGFX
Designer during development, using the PC simulator and writing correct and
effient user code.

Target Audience Medium - TouchGFX Application Developers

Duration 60 minutes

Links
Presentation
Speaker notes
Video available on Youtube

UI Development - Using Texts and Fonts

Description Shows all the details that developers encounters when using texts and fonts in
a TouchGFX application.

Target Audience Medium - TouchGFX Application Developers

Duration 60 minutes

Links Not available yet.

UI Development - Backend Communication

Description Explains the suggested way to interface with the non-GUI part of your system
and shows examples hereof.

Target Audience Medium - TouchGFX Application Developers

Duration 60 minutes

Links Not available yet.

TouchGFX Hands-on Workshops
UI Development - Getting Started

Description Introdution to TouchGFX Application Development. Installing tools, creating
and modifying your first application.

Target Audience Beginner - TouchGFX Application Developers

Duration 60 - 90 minutes

Links Presentation
Speakers note

UI Development - Fundamentals - Hands on

Description
Covers UI development fundamentals like reacting to user input, changing
screen, persisting and restoring data, doing animations and tips and tricks for
efficient development.

Target Audience Medium - TouchGFX Application Developers

Duration 2 hours

Links Not available yet.

Abstraction Layer Development - Introduction - Hands on

Description Introduction to TouchGFX AL development for an STM32H7B3I-DK board
using TouchGFX Generator and STM32CubeIDE.

Target Audience Beginner - TouchGFX AL Developers

Duration 90 minutes

Links Presentation

